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Preface

In the first edition of this book (published by Kluwer Academic in November
2000) the methodology of dynamical systems theory was introduced and appli-
cations of this theory to the large-scale ocean circulation and El Niño were pro-
vided. Surprised by the favorable reactions, I decided to make a second edition of
the book which could be more easily used as a textbook for a graduate (700-level)
course. The first edition has undergone a substantial rewrite on three aspects:

(i) the text has been adapted at many locations to improve clarity and readability,

(ii) many recent results on the wind-driven ocean circulation, the thermohaline
circulation and El Niño have been included, and˜

(iii) a number of exercises have been added at the end of each chapter.

In chapter 1, the description of what is known from observations on the global
ocean circulation has been improved by including, for example, recent estimates
of transport quantities. Both the chapters 2 and 3 have only slightly changed;
in chapter 3, the text on homoclinic orbits has been extended as these type of
phenomena have now clearly been found in the wind-driven double-gyre ocean
circulation (as presented in chapter 5). In chapter 4, I have added a paragraph on
the computation of isolated branches of steady states and the text on the iterative
linear systems solvers has been shortened.

Concerning the application of dynamical systems theory to the large-scale ocean
circulation and El Niño in the chapters 5 to 7, many recent results on the dynam-˜
ics of these flows are added. I have been tempted to include results on stochastic
dynamics, on the use of dynamical systems theory in data analysis (e.g., attractor
reconstruction techniques), and on ergodic theory. It would have been difficult,
however, to keep the book self-contained. Therefore, I decided to restrict the text
to results on bifurcation diagrams for deterministic models. Most of the changes
have occurred in chapter 6, where I have omitted the material on flux-corrected
models and shortened the section on the zonally averaged models. Instead, I have
added recent work on the multiple equilibria of the thermohaline circulation in a
hierarchy of three-dimensional models and on the multidecadal variability in the

xiii
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North Atlantic. The introduction to El Niño in section 7.1 has been revised and re-˜
sults on the simulation of ENSO in coupled general circulation models have been
added in section 7.9.

Each chapter now contains five exercises and two more computational ori-
ented projects. In many of the exercises, additional material is introduced which
could not be covered in the main text. For each exercise, references are pro-
vided to help with obtaining the answers to the problems. For the computa-
tional projects in each chapter, links and references to software needed to perform
the computations is provided. In many of these exercises, the software package
AUTO (which is freely available via FTP from the directory pub/doedel/auto at
ftp.cs.concordia.ca) is used; AUTO runs on many UNIX platforms and PC’s. If
you have MATLAB available, I would recommend using the software package
MATCONT (download from http://allserv.rug.ac.be/∼ajdhooge/research.html)
For alternative software, you may have a look at Gabriel Lord’s website at
http://www.ma.hw.ac.uk/∼gabriel/auto/index.html.

Going over the final manuscript one more time, I think that the second edi-
tion of the book is in good shape to be used within a graduate course in physi-
cal oceanography, for example on ‘nonlinear dynamics of the ocean circulation’,
combining chapters 1, 2, 3, 5 and 6. Another possibility is to use the book for a
‘special topics’ (capita selecta) course in climate dynamics. Combining chapters
1, 3 and 7 could provide material for a course on El Niño or on ‘nonlinear tropical˜
climate dynamics’. The computational aspects in chapter 4 are mainly of inter-
est for those who intend to apply the techniques themselves to large-dimensional
dynamical systems and the numerical methodology can be added to a graduate
course, if desired.

The application of dynamical systems theory certainly has its limitations, but
it provides an elegant framework for the interpretation of results from ocean and
climate models. It is a pity that its powerful concepts and methods are still mostly
ignored by researchers in physical oceanography and climate dynamics. I there-
fore sincerely hope that this second edition of the book will be used in future
classes and that the material will find its way to the generation of future scientists
in these fields.

JANUARY 2005, FORT COLLINS, USA
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Chapter 1

INTRODUCTION

Patterns and their rhythms fill the spheres.
Evocation. Preludios Americanos I, A. Carlevaro

1
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At the beginning of this century, the concept of ‘climate’ belonged to meteo-
rologists and was considered to be a long term average state of temperature and
precipitation. Later, other quantities were added to describing the average state of
the atmosphere more accurately. At the moment, the atmosphere is considered to
be only one of the components of a larger entity. The atmosphere (the world of
air) together with the hydrosphere (the world of water), the cryosphere (the world
of ice), the biosphere (the world of living beings) and the lithosphere (the world
of the solid Earth) can be logically studied as one system: the climate system.

Earth’s climate system displays variability on a multitude of time scales. Over
long periods in Earth’s history, large parts have been covered with ice, with warmer
periods in between. On the very short time scale, the fluctuations of the weather
on a day to day basis are experienced. In this first chapter, some motivating ex-
amples of climate variability are described. In particular, examples are chosen for
which it is very plausible that changes in the ocean circulation are or have been
involved.

In section 1.1, a short description of the history of Earth’s climate sets the con-
text for the discussion of the Younger Dryas event and the Little Ice Age period.
Both phenomena illustrate that climate can undergo relatively rapid transitions
which are not expected a priori from changes in the forcing conditions. In sec-
tion 1.2, the present large-scale ocean circulation is introduced by sketching its
forcing, the mean circulation patterns and the associated transport of heat and
freshwater. Section 1.3 contains a brief description of two climate phenomena
of current interest, the El Niño /Southern Oscillation in the Tropical Pacific and˜
the Atlantic Multidecadal Oscillation. In both phenomena, there are significant
changes in the sea-surface temperature and the ocean circulation. The central
questions addressed in this book, and a motivation for the approach chosen to-
wards possible answers, follows in section 1.4.

1.1. Past Climate Variability
Until fairly recently, the climates of the past had been described only qualita-

tively. At the moment, many techniques are available to construct climatic records
from geological, biological and physical data (Bradley, 1999). Much information
has been obtained through measurement of isotope content (such as oxygen and
carbon isotopes) in material derived from ocean sediments and from ice cores.
Accurate dating techniques are essential to interpret these measurements. For ex-
ample, the carbonate in shells of marine organisms (e.g., foraminifera) and water
in ice caps contain two isotopes of oxygen, 18O and 16O. The normalized isotope
ratio δ18O is calculated as a deviation from a reference sample as

δ18O =
(

18O
16O

)sample − (
18O
16O

)reference
( 18O

16O
)reference

where the reference sample is different for ice cores (i.e., standard mean ocean
water) than for carbonate shells (i.e., a specific fossil Cretaceous species). The
isotope 16O is lighter than 18O so that water containing 16O is preferentially evap-
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orated and a temperature-dependent fractionation occurs. Under cold conditions,
less water containing 18O is able to evaporate into the atmosphere.

Changes in δ18O reflect the combined effect of changes in global ice volume
and temperature at the time of deposition of the material. The two effects cannot
be separated easily, and only recently an additional temperature indicator (Ca/Ma-
thermometry) has been used to accomplish this (Lear et al., 2000). During very
cold conditions, global ice volume is relatively large and sea level is low, which
enriches water in the ocean with 18O. Because of the colder temperatures, also
more 18O remains in the ocean and less 18O becomes locked in the ice. Hence,
in ocean sediments the ratio δ18O will increase under cold conditions, whereas in
ice cores it will decrease.

When corrections for global ice volume (with respect to the reference sample)
are made, δ18O can be used as an indicator for the temperature at the time of depo-
sition. In the next subsections, δ18O records from the last 2.5 million years (My)
will be shortly discussed. All these data (and many more) are available through
NOAA’s Paleoclimatology site (http://www.ngdc.noaa.gov/paleo/paleo.html). In
addition to the information provided at this site, the books by Broecker (1995),
Bradley (1999) and Ruddiman (2001) – where most of the references to the orig-
inal studies can be found – are recommended sources of information.

1.1.1. The last 2.5 million years
Based on the oxygen isotope record of benthic foraminifera in ocean sediments

and the reconstructed deep ocean temperature it is found that about 55 My ago
(after the warm Cretaceous period), a gradual cooling started on Earth. Three
major steps have occurred within this gradual cooling, one near 36 My, one near
14 My and the last near 3 My ago, each involving a temperature decrease of about
2-3◦C, which induced an increase in δ18O from near zero (note that the reference
value was in the Cretaceous) to the current value of about 4.0. The δ18O record
from the last 2.5 My, as obtained from deep sea sediments (ODP site 677 in the
equatorial Pacific at 1◦N, 84◦W), is plotted in Fig. 1.1; data are based on Raymo
et al. (1990).

One observes the variations in climate superposed on a gradual cooling trend,
with a change in pace about 0.7 My ago. From then on, a dominant period of
about 100,000 year is found reflecting the frequency of major glaciations which
occurred in the northern hemisphere. Termination of these glaciations seems to be
rather abrupt and leads to warmer periods, called interglacials; at the moment, we
live in the Holocene interglacial. The previous interglacial (the Eemian) can be
seen as a peak of relatively small δ18O at about 140,000 years ago. The transitions
between glacials and interglacials are global in extent, since their signatures are
found in available data all over the globe.

The oxygen isotope record of the last 110,000 years within the GRIP ice core
from Greenland (Johnsen et al., 1997) is plotted in Fig. 1.2. Note that, contrary to
the values of ocean sediments, values of δ18O are now negative and cool periods
have smaller (larger negative) values than warm periods. No further smoothing
was done on the 0.55 m averaged values (the total core depth is about 3 km); the
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Figure 1.1. Isotope ratio δ18O for benthic foraminifera at Ocean Drilling Program site 677
located in the eastern equatorial Pacific at 1◦N, 84◦W (Raymo et al., 1990). A change in δ18O of
0.23 units can be translated into a temperature change of about 1◦C (Broecker, 1995).

time scale zero point is at 1950 AD. From the Eemian, the transition to the last
glacial period has been in several stages, with again warmer periods alternating
with cold intervals. These are the Heinrich (1988) events, with a near-periodicity
of 6–7 kyr, and the Dansgaard-Oeschger cycles (Dansgaard et al., 1989) with an
average period around 1–2.5 kyr. Rapid changes in temperature, of up to one half
of the amplitude of a typical glacial-interglacial temperature difference, occurred
during Heinrich events and somewhat smaller ones over a Dansgaard-Oeschger
cycle. Progressive cooling through several of these cycles followed by an abrupt
warming defines a Bond cycle (Bond et al., 1995). In North Atlantic sediment
cores, the coldest part of each Bond cycle is marked by a so-called Heinrich layer
that is rich in ice-rafted debris.

The Last Glacial Maximum (LGM) occurred at about 20,000 years ago, and
the temperature difference between LGM and Eemian is about 10◦C. When the
transition of the Last Glacial Maximum to the Holocene is considered in more
detail, a rapid transition is observed near 12 kyr, where temperatures drop again
about 5◦C. This transition, called the Younger Dryas, is also considered to be one
of the Dansgaard-Oeschger events but it has been studied in much more detail.
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Figure 1.2. Oxygen isotope record of the last interglacial and the most recent glacial episode. A
change in δ18O of one unit corresponds to a temperature change of about 2◦C. Data are based on
Johnsen et al. (1997)

1.1.2. The Younger Dryas
A magnification of the δ18O record from the GRIP ice core is plotted in

Fig. 1.3. The warming of the Earth from 20,000 years onward has been in sev-
eral relatively distinctive stages. First, relatively fast transitions to the Bølling and
Allerød interstadials occur, during which the temperature is relatively high. This
is followed by a period of significant cooling between 12,500 and 11,500 years
ago. The resulting stadial, during which the apparent warming trend was delayed
for approximately 1,000 years, is referred to as the Younger Dryas. The period
ends with a rapid shift to warmer temperatures into the beginning of the Holocene,
with indications of a temperature rise of 1◦C per decade (Broecker, 1995)!

Signatures of the Younger Dryas period are found at many locations on Earth
using different indicators (Roberts, 1998; Bradley, 1999). In Scandinavia, re-
duced sedimentation and foraminiferal production is found in the north Norwe-
gian Sea. Indications of changing vegetation have been found in southern Alaska,
with expansion of tundra as a reaction to colder conditions. In the temperature
record for northern Britain, which is reconstructed through Coleopteran (beetles)
data (Lowe et al., 1995), a very rapid change is observed at the beginning of the
Younger Dryas (Fig. 1.4A). July temperatures dropped a few degrees during this
period and at the end of the period a fast increase in temperature occurs. Sea-level
reconstructions from drowned coral reefs at Bermuda (Fairbancks, 1990), shown
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Figure 1.3. Oxygen isotope record from the GRIP ice core (shown in Fig. 1.2) over a smaller
window of time, showing the Bølling and Allerød interstadials and the Younger Dryas stadial.

in Fig. 1.4D, indicate that during the Younger Dryas, the trend of increasing sea
levels set by the deglacation from the Last Glacial Maximum has been retarded.
The ice accumulation rate at Greenland (Fig. 1.4B) is small during the Younger

Dryas and its dust content (Fig. 1.4C) is relatively high, which indicates that pre-
cipitation has been reduced at (northern) high latitudes.

In the Southern Hemisphere, signatures of the Younger Dryas period are
present as well, although not as clear as in the Northern Hemisphere. Evidence
for a colder period has been found from pollen data of the southern part of South
America and there are some indications that glaciers advanced during this period
in New Zealand. On the other hand, analysis of a South Chinese Sea core shows
a warming at 13,000 years ago, which continues uninterrupted into the Holocene.
It therefore appears that the Younger Dryas is mainly a northern hemispheric, and
in particular a North Atlantic, phenomenon and effects have propagated over the
globe. A more detailed description of the climate changes during the Younger
Dryas period can be found in Chapter 14 of Ruddiman (2001).

1.1.3. The Little Ice Age
The end of the Younger Dryas marks the beginning of the Holocene during

which climate has been relatively stable (McManus et al., 1994) with globally
averaged temperature variations limited by an amplitude of about 2◦C. Fossil
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Figure 1.4. Changes in proxy indicators during the Younger Dryas Period (Roberts, 1998). A.
Mean July temperatures in northern Britain based on insect (Coleopteran) data. B. Ice accumu-
lation rate in the GISP2 ice core. C. Atmospheric dust in the GISP2 summit ice core. D. Rate of
sea-level rise.

records and lake level data indicate that during the climatic optimum, about 5,500
years ago, the temperature was about 1.5◦C warmer than present and since then
global temperatures have declined. Within the last two millennia, variability on
century time scales is observed with an amplitude of about 1.0◦C. For example,
tree-ring data indicate that the Middle Ages were relatively warm and were fol-
lowed by a colder period which is referred to as the Little Ice Age (Matthes, 1940;
Grove, 1988). Although the conventional period of the Little Ice Age is between
1500 and 1850, a series of post-Medieval cool events started already in the four-
teenth century. These events varied from region to region and it does not appear to
have been uniformly colder in all regions over the whole period (Bradley, 1999).
This can also be seen in a reconstruction of northern hemispheric temperature
anomalies (with respect to the 1881-1960 mean) from tree-ring data, as plotted in
Fig. 1.5.

These climate fluctuations had a significant impact on the lives of people in
Europe. The years 1314 and 1319 saw harvests fail over large parts of Europe,
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Figure 1.5. Reconstruction from tree-ring data of the northern hemisphere temperature deviation
ΔT over the period 1450-1750 from the mean temperature over the period 1881-1960; data from
Briffa et al. (1998).

probably due to extremes in weather. Travel to Greenland became more diffi-
cult in these periods and finally people disappeared over there towards the end of
the fifteenth century. The river Thames was frozen over several winters during
the Little Ice Age, and one could skate on many Dutch rivers, as is beautifully
painted by the masters of that time. It was considerable more wet during this pe-
riod and glaciers advanced, in correspondence with the decrease in temperatures
(Roberts, 1998). This also had immediate impact on the communities of people
during that time, in particular in the areas where conditions for growth of food are
critical. The timing of European glacier advances shows remarkable consistency
with those in other regions of the world, for example Canada, Alaska and Asia
(Grove, 1988). This may indicate that the Little Ice Age had global signatures,
but the issue is not yet settled. It has been well established that the cooling period
had ended by the mid-nineteenth century (Bradley, 1999).

1.1.4. Causes of past climate variability
In the previous subsections, typical examples of both fairly regular and dra-

matic climate change were shown. There is ample evidence that even such
changes as the Little Ice Age had major impacts on human beings. The records
force us to pose the question of how these climate changes were caused and not
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only because of scientific curiosity: if these happened in the (far) past, they may
happen again. Causes of climate change can be roughly divided into two types:
external causes and internal causes.

1.1.4.1 External forcing: orbital and solar variations
Clear examples of external causes are variations in solar insolation (the amount

of solar radiation arriving at the top of Earth’s atmosphere), volcanic activity and
continental drift. Obviously, the major forcing of the climate system is the radia-
tion received on Earth from the Sun. However, this input of energy is not constant

(a) (b)
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Figure 1.6. (a) Sketch of the elliptical orbit of the Earth with the Sun in one of the focal points.
The distance a is the length of half the major axis of the ellipse and likewise b is the length of
half the minor axis; the eccentricity e is defined as e2 = 1 − (b/a)2. (b) The axis of the Earth
makes an angle with respect to the normal of the surface which the orbit encloses; the angle is
currently 23.5◦. This angle is the origin of the seasons on Earth through its effect on the incidence
of radiation. It is sketched here together with the current timing of the Earth-Sun distance which is
minimal (maximal) in January (June).

at a particular point on Earth but varies as we know with season. This is mainly
due to the tilt of Earth’s spin axis — the obliquity — with respect to the normal
of the plane of Earth’s orbit around the Sun (Fig. 1.6). The Northern Hemisphere
receives more heat during March - September while during the rest of the year
preferential heating occurs over the Southern Hemisphere.

This seasonal contrast is modulated because the orbit of the Earth is not a per-
fect circle but rather an ellipse, with eccentricity e2 = 1 − (b/a)2; the Sun is
located in one of its foci (Fig. 1.6a). The distance between the Earth and the Sun
varies over the year and more energy is received when the Earth is closer to the
Sun. At the moment, the Earth is closest to (farthest from) the Sun in January
(June), such that the seasonal contrast is smaller in the Northern Hemisphere than
in the Southern Hemisphere (Fig. 1.6b).

Over long time scales, the orbital characteristics of the Earth change and there
are three types of motion relevant for the insolation on Earth. First, the spin axis
of the Earth undergoes precession, which induces a shift of the seasons along the
orbit (Fig. 1.7). About 12,000 years ago, the Earth was closest to the Sun in June
and hence the seasonal contrast was larger in the northern hemisphere. The net
effect of the precession of Earth’s orbit is a fluctuation in solar insolation with a
period of about 23,000 years. In addition, both the obliquity and the eccentric-
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Figure 1.7. Sketch of the effect of precession of Earth’s spin axis on the phasing of the position of
maximum incidence of radiation in the northern hemisphere, with (left) present situation, (middle)
6,000 year ago and (right) 12,000 year ago.

ity of Earth’s orbit undergo periodic variations. The tilt angle changes in 41,000
years between 22◦ and 24◦ leading to variations in seasonal contrast, and the ec-
centricity varies from 0.0 (perfect circle) to about 0.05 with periodicities 100,000
and 450,000 years. Tilt changes are felt more strongly at high latitudes (if there
was no tilt, the poles would receive no radiation) whereas the variations in ec-
centricity are felt over all latitudes. All these orbital variations do not cause any
substantial change in the annual-mean solar insolation, but they induce changes
in the seasonal contrast. Both precession and eccentricity have opposite effects in
the Northern and Southern Hemisphere, but the effects of obliquity variations are
similar in both hemispheres. This results in an equatorially-asymmetric effect of
orbital changes on the insolation.

A plot of the June insolation at 60◦N for the last million years (Berger and
Loutre, 1991) is shown in Fig. 1.8. For June, the amount of radiation decreases
from north to south; in December this situation is reversed. The 100,000 year
component of the signal is relatively weak, whereas the 23,000 and 41,000 com-
ponents are quite strong. More details on the spectra of these time series can be
found in Berger (1978) and in Bradley (1999). The different periods in the solar
forcing variability are called Milankovitch cycles and the net changes in insola-
tion the Milankovitch forcing. Because ice sheets in glacial times were located
at northern high latitudes and since the mass balance of glaciers is sensitive to
changes in summer heating, ice volume changes are most likely related to varia-
tions of insolation at 60◦N. Spectral analysis of the δ18O record in ice cores has
given fairly convincing evidence of the presence of the 23,000 and 41,000 year
periods (Imbrie and Imbrie, 1980).

Apart from the orbital changes, the radiation from the Sun also changes due so-
lar variability, in particular those associated with the 11 year Sunspot cycle. Dur-
ing this cycle, the number of Sunspots varies and the output of the Sun increases
with increasing number of Sunspots. The peak-to-peak variations in the intensity
are about 0.2% of the mean. During the Little Ice Age there was a minimum in
Sunspots (the Maunder minimum ) and hence a slightly smaller amount of insola-
tion. Although it may have been a factor in the origin of the Little Ice Age, there
is no obvious direct relation. The timing is far from perfect since the Maunder
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Figure 1.8. Variation of net insolation over the last million years for June at 60◦N (data from
Berger and Loutre (1991)).

minimum does not cover the whole period and also the variations in solar output
are very small to be directly responsible for the temperature variations.

Clearly, variations in insolation have an effect on the climate system, lead-
ing to temperature variations on the same time scales as the forcing frequencies.
One could view this as the deterministic linear response to the forcing and things
would be dull if all climate variability could be explained in this way. Interestingly
enough, however, it can not.

1.1.4.2 Internal variability
Looking at midlatitude weather maps, we discover a strong variability at time

scales of 3-7 days associated with the development of high- and low-pressure
systems. This variability is not related to any variation in the solar forcing and
is known to develop through instabilities of the mean atmospheric flow. It is an
example of so-called internal variability as the time scale is determined by nonlin-
ear processes in the climate system itself (here the atmosphere). This variability
would occur even when the forcing would be constant in time.

Internal variability is not restricted to the atmosphere, but also occurs in the
other components of the climate system. In the ocean, internal processes cause the
formation of ocean rings, ocean eddies and the meandering of the ocean currents
such as the Gulf Stream. Going through the different components of the climate
system, it is recognized that nonlinear processes are in every component and can
lead to complex behavior on many different time scales. At the low-frequency
end, there are the changes in land-ice distribution and at the high-frequency end,
there are the variations found in the atmosphere. Interactions between compo-
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nents, for example in the ocean-ice system or the ocean-atmosphere system, may
induce internal variability on other time scales than those present in the uncoupled
systems.

The variability found on much longer time scales may also have internal causes.
For example, the amplitude of the spectral component of the 100,000 years Mi-
lankovitch cycle is very weak and yet, there appears a strong signal of this period
in the climate record over the last 700,000 years. Is the amplitude of this 100,000
year forcing signal simply amplified by linear processes in the climate system or
are nonlinear processes involved (Ghil, 1994)? Also, the variations on suborbital
time scales, for example the Dansgaard-Oeschger cycles, have no direct link to
orbital variations in solar forcing and the climate system itself is likely to be re-
sponsible for this type of variability. Volcanic activity may have been an important
factor, but is not expected to lead to the fairly regular cycles as observed in the
climate record.

In summary, climate variations range from the large-amplitude climate ex-
cursions of the past millennia to smaller-amplitude fluctuations on shorter time
scales. Several spectral peaks of variability are clearly related to forcing mecha-
nisms; others simply can not. Processes internal to the climate system can also
give rise to spectral peaks that are not related directly to the temporal variability
of the forcing. Hence, even if the external forcing were constant in time — i.e.,
if no systematic changes in insolation or atmospheric composition (trace gases,
aerosols) would occur — the climate system would display variability on many
time scales. It is the interaction of this highly complex intrinsic variability with
relatively small time-dependent variations in the forcing that is recorded in the
proxy records and instrumental data.

The ocean, and in particular its circulation, takes a central position in this book
as a starting point to understand the whole spectrum of processes which cause
internal variability in the climate system. It is therefore time to have a closer look
at the ocean circulation.

1.2. The Present Ocean Circulation
This section is devoted to an overview of the mean forcing fields of the ocean

circulation (section 1.2.1), and the properties of the circulation and the water
masses involved (section 1.2.2). The global ocean moderates climate through
its large thermal inertia, its capacity to store enormous amounts of heat, and its
poleward heat transport through ocean currents (section 1.2.3). The effects of
the ocean circulation on the climate system will be addressed in the last section
(section 1.2.4).

1.2.1. Surface forcing
On the large scale, the ocean circulation is driven by momentum fluxes (by the

wind) and by fluxes of heat and freshwater at the ocean-atmosphere interface. The
latter fluxes change the surface density of the ocean water and through mixing and
advection, density differences are propagated horizontally and vertically. It is not
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straightforward to determine the annual-mean forcing fields and several methods
have been used to compile these fields. Nearly all these data are available online
(see, for example, http://ingrid.ldgo.columbia.edu/).

The annual-mean wind stress, as compiled in Trenberth et al. (1989), is shown
in Fig. 1.9. Each arrow shows the direction of the wind stress and its length is
an indication of its magnitude, with the arrow at the bottom having an amplitude
of 0.25 Pa. Large amplitude easterly winds can be seen in equatorial latitudes,
forming the trade wind system. Maximum wind stress values in this system are
about 0.2 Pa and occur to the north of the equator in the eastern Pacific. At mid-
latitudes, a belt of strong westerly winds is seen, with a maximum amplitude of
about 0.3 Pa, which are particularly strong in the North Atlantic and over the
Southern Ocean.

Figure 1.9. Wind-stress distribution (Pa) at the ocean - atmosphere interface as compiled by
Trenberth et al. (1989); the arrow shows a strength of 0.25 Pa.

The total downward annual-mean heat flux into the ocean as compiled in Ober-
huber (1988) is plotted in Fig. 1.10; the contour interval is 50 Wm−2. There is
net heat input near the equator and net heat loss at higher latitudes with a strong
zonal asymmetry within the North Atlantic and North Pacific. In the areas near
the eastern side of the continents, apparently the ocean is much warmer than the
atmosphere with up to 150 Wm−2 transferring from the ocean to the atmosphere.
The zonally averaged heat flux is fairly symmetric about the equator.
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Figure 1.10. Net downward annual-mean heat flux (in Wm−2) into the ocean obtained from the
Oberhuber (1988) data set.

The freshwater flux, compiled again by Oberhuber (1988), is plotted in
Fig. 1.11 and shows a fairly zonally homogeneous pattern in both Atlantic and
Pacific. The precipitation areas near the equator associated with the Intertropical
Convergence Zone can be clearly distinguished. For example, in the eastern Trop-
ical Pacific, values of 150 mm month−1 are found just north of the equator. In the
subtropics, there are broad zones of net evaporation, for example in the North At-
lantic and in the Southern Indian Ocean, with values of 100 mm month−1 excess
evaporation over precipitation. The zonally averaged profile of the freshwater flux
does not show any strong equatorial asymmetry, although the data from different
sources show substantial variations (Zaucker et al., 1994). From the heat flux
and freshwater flux, the surface buoyancy flux can be determined. The buoyancy
flux and momentum flux largely determine the forcing of the ocean. There are
other (more localized) sources which may be important, such as the heat released
by deep ocean volcanic activity but these are not further considered here.

1.2.2. Ocean circulation patterns
A classical textbook picture of the surface ocean circulation (Peixoto and Oort,

1992) is shown in Fig. 1.12. This figure, although wrong in certain details, gives
a good first impression of the current systems. The major current in the Southern
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Figure 1.11. Downward freshwater flux into the ocean as obtained from Oberhuber (1988). Units
are in mm/month and contour levels are 50 mm/month.

Ocean is the Antarctic Circumpolar Current (ACC), which encircles the Antarctic
continent from west to east. The ACC has an average volume transport of about
150 Sv (1 Sv = 106 m3s−1). In the southern hemisphere, the circulation between
the ACC and the equatorial currents is dominated by cellular type circulations
(called gyres), which rotate anti-clockwise. Although this is not so clear in the
picture, the currents at the western side of each basin are the strongest, i.e., the
East Australian Current in the South Pacific, the Brazil Current in the South At-
lantic and the Agulhas Current in the South Indian Ocean. The major currents
near the equator are westward, as one would expect from the direction of the trade
winds. The eastward equatorial countercurrents just north of the equator in both
the Atlantic and Pacific are peculiar features.

In the North Pacific and North Atlantic, cellular type motions are seen again,
with a stronger clockwise rotating (subtropical) gyre and a weaker anti-clockwise
(subpolar) gyre. Also here, currents at the western side of the basin are strongest,
with the Gulf Stream in the Atlantic and the Kuroshio in the Pacific as major
currents. The Gulf Stream can be viewed as an eastward jet being part of both
the Atlantic subtropical and subpolar gyres. Typical horizontal velocities in the
Gulf Stream are up to 1 ms−1, whereas depth averaged velocities in the gyres
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Figure 1.12. Sketch of the global surface ocean circulation (Peixoto and Oort (1992)).

Some typical transports of the ocean currents
Current Location Value

Agulhas(a) 31◦S, Indian 70 Sv
Gulf Stream(b) 26◦N, Atlantic 32 Sv
Gulf Stream(c) 38◦N, Atlantic 88 Sv
Brazil Current(d) 28◦S, Atlantic 22 Sv
Kuroshio(e) 25◦N, Pacific 22 Sv
Kuroshio(f) 33◦N, Pacific 57 Sv
East Australian (g) 30◦S, Pacific 22 Sv
AAC(h) 150◦E, Southern 147 Sv
ACC(i) 60◦E, Southern 137 Sv

Table 1.1. Some typical transports of the ocean currents as determined during WOCE. These
transports can, for example, be used as checkpoints of ocean modeling output. (a): Bryden and
Beal (2001); (b): Baringer and Larsen (2001); (c): Johns et al. (1995); (d): Mueller et al. (2000);
(e): Johns et al. (2000); (f): Imawaki et al. (2001); (g): Mata et al. (2000); (h): Rintoul et al.
(2001); (i): Cunningham et al. (2003).

are of order 0.01 ms−1. Typical volume transports of the Gulf Stream and other
western boundary currents are given in Table 1.1.

The circulation of heat and salt through the ocean basins is called the thermo-
haline circulation (Wunsch, 2002), usually abbreviated with THC. Since the trans-
port of both salt and heat is quite advection dominated and both quantities are not
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mixed very well once deep below the surface, a particular amount of water can be
traced back to its origin. Hence, such a volume of water can be characterized by
its temperature and salinity at formation and is called a water mass. For example,
in the North Atlantic, the relatively warm and saline water transported by the Gulf
Stream is cooled on its way northward. In certain regions, i.e., the Greenland Sea
and the Labrador Sea, the water column becomes unstably stratified and vigorous
convection occurs. The net effect is the formation of a relatively dense water mass
called the North Atlantic Deep Water (NADW), with a temperature of 2–4◦C and
a salinity of 34.9–35.0 psu. This water is transported southwards at mid-depth
as a deep (western boundary) current, it crosses the equator and connects to the
water masses of the Southern Ocean.

In the North-Pacific, no deep water is formed because the surface waters are
too fresh and hence there is no equivalent of NADW. Deep water formation also
occurs near the Antarctic continent. In the Pacific, this inflow of heavy deep
water is compensated by a surface return flow which again connects with water
masses in the Southern Ocean. The water mass entering the Atlantic from the
south is an even denser water mass than the North Atlantic Deep Water, called the
Antarctic Bottom Water (AABW), with a temperature of -0.5–0.0◦C and a salinity
of 34.6–34.7 psu. The outflow of NADW in the Atlantic is, apart from AABW,
also compensated by surface inflow of water coming from the Indian Ocean and
water coming through Drake Passage (Schmitz, 1995). For the Atlantic basin,
the structure of these water masses shows up as layers, which gives a stepwise
impression of the vertical stratification in the basin. An important additional water
mass found between 20◦N and 40◦N, with a temperature of 10◦C and a relatively
high salinity of 35.5 psu, has its origin in the Mediterranean.

The three-dimensional flow of different water masses through the ocean basins
has been termed (Gordon, 1986; Broecker, 1991) the ‘Ocean Conveyor’. The
simplest picture (Schmitz, 1995) arises when the vertical structure of the flow
field is separated in a shallow and a deep flow (Fig. 1.13). In this figure, the
dark (light) shaded flow is the surface (deep) water and the numbers indicate vol-
ume transports in Sv. Fig. 1.13 suggests a strong coherence of the flows in the
basins. The three-dimensional ocean circulation, however, is a complex flow with
different levels of coherence on different scales. Its properties, even at the very
large scales are not well-determined yet because of a lack of observations over
the whole globe. Analysis of the section data of the World Ocean Circulation
Experiment (WOCE, see http://oceanic.cms.udel.edu/woce/), combined with in-
version studies have lead to a more detailed estimates over the volume transports
through the world oceans (Ganachaud and Wunsch, 2000). In Fig. 1.14, the zon-
ally integrated mass transports over several sections are presented. The boundaries
between water masses are taken as certain density surfaces (defined by a value of
the quantity γn). In this way, the red arrows represent the surface transport, the
blue arrows show the transport at intermediate depths and the green arrows indi-
cate the transport in the deep ocean. Upwelling and downwelling are indicated by
arrows and dots, respectively and their color indicates from which level the water
is coming.
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Figure 1.13. Sketch of the three-dimensional ocean circulation as a two-layer flow (after Schmitz
(1995), but the figure is taken from Bradley (1999)) with dark (light) shaded indicating flow of
surface (deep) water.

1.2.3. Heat and freshwater transport
The oceans take care of about one third to a half of the total meridional heat

transport of the combined ocean-atmosphere system. The total meridional heat
transport due to the ocean circulation is difficult to measure directly and only
a few estimates at certain locations have been obtained (Hall and Bryden, 1982;
Wunsch et al., 1983; Bryden et al., 1991; Rintoul, 1991). Recent inversion studies
of the WOCE-section data have lead to section estimates (Ganachaud and Wun-
sch, 2000) and a summary result is presented in Fig. 1.15. The meridional heat
transport in the Atlantic is positive over the whole basin with a maximum of about
1.3 PW at 30◦N. In the Pacific, the heat transport is at least a factor two smaller
than in the Atlantic. The meridional heat transport in the Indian Ocean is mainly
southward with a maximum of 1.8 PW near 20◦S. Best estimates of the zonally
averaged meridional heat transport are also presented in Ganachaud and Wunsch
(2000) with a maximal northward heat transport of about 1.8 PW at 30◦N.

Estimates of the freshwater transport through the oceans are also hard to ob-
tain from direct observations. As can be seen from the surface freshwater flux in
Fig. 1.11, there is net precipitation in the tropical, middle and high-latitude re-
gions, and there is net evaporation in the subtropics. This leads to a net surface
freshwater flux which is fairly equatorially symmetric. The ocean circulation must
transport water into the evaporative zones and away from precipitation regions for
compensation. Wijffels et al. (1992) present estimates of this freshwater transport
(Fig. 1.16) and demonstrate the importance of the Bering Strait through-flow. The
Pacific is a net precipitative basin with much of the gain occurring between 0-15
◦N (the location of the Intertropical Convergence Zone), while the Atlantic and
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Figure 1.14. (in color on page 517). Estimated section integrated mass transports as determined
in Ganachaud and Wunsch (2000) from the WOCE data.

Indian Ocean are evaporative basins. Over the whole North Atlantic Ocean, there
is southward transport of freshwater with a maximum of about 0.95 × 109 kgs−1

at 60◦N.

1.2.4. Ocean circulation and past climate variability
With the limited information of the ocean circulation as provided in the pre-

vious section, already effects of changes in the ocean circulation on climate can
be anticipated. Most of the heat transport in the Atlantic is determined by the
overturning component of the circulation. Warm surface water moves northwards,
sinks and the mass balance is closed by cold deep water moving southward, which
effectively induces heat transport northward. In the gyre part of the circulation
also warm surface water moves northwards, but the mass balance is closed by
slightly cooler water moving southward. Since the THC is believed to be strongly
influenced by the surface buoyancy forcing, changes in the buoyancy of the up-
per ocean can lead to substantial changes in poleward heat transport and hence to
climate changes.

Are there any indications that these changes indeed happened, for example,
during the Younger Dryas? For a full account of the evidence of these changes,
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Figure 1.15. (in color on page 517). Estimated section averaged heat transport over WOCE
sections (Ganachaud and Wunsch, 2000); 1 PW = 1015W.

sections 6.10 and 6.11 of Bradley (1999) are recommended. The interpretation of
these changes is still under discussion, but several scenarios have been proposed.
One of these is that meltwater pulses into the North Atlantic, due to the melting
of the ice caps in the transition from the Last Glacial Maximum to the Holocene,
reduced the surface salinity significantly. For example, indications for such an
increased flux at about 14,500 years ago have been attributed to meltwater com-
ing from the Fennoscandian ice sheet. The lower surface salinity in the North
Atlantic may have shut down formation of North Atlantic Deep Water, which in
turn interrupted the THC. As a consequence, less heat was transported northward
and cooling occurred leading to the Younger Dryas period (Rooth, 1982; Broecker
et al., 1985; Broecker, 2000).

Alternative scenarios for the cause of the Younger Dryas are discussed in
(Berger and Jansen, 1994); one of these involves the Bering Strait transport. Dur-
ing the Last Glacial Maximum, the global sea level was about 100 m lower than
today and the Bering Strait was closed off by land. When sea level was rising, at
some point (timed near the Younger Dryas onset) the Bering Strait was flooded
and a current from the Pacific to the Atlantic developed. This flow discharged an
enormous amount of sea ice into the North Atlantic, which again through melt-
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Figure 1.16. Meridional freshwater transport (in 109 kg/s) in the ocean, with the quantities FPF
and FAF referring to the freshwater transport of the Pacific-Indian through flow and that of the
Antarctic Circumpolar Current at Drake Passage, respectively (Wijffels et al., 1992).

water, reduced the strength of the THC. It is still unclear which scenario is most
consistent with the present database of observations; both scenarios, however, in-
volve changes in the THC.

1.3. Present Climate Variability
In this section two examples are given, which show the involvement of the

ocean circulation in climate variability on interannual-to-multidecadal time scales.
The first example is the El Niño /Southern Oscillation phenomenon in the equato-˜
rial Pacific, which will be discussed in chapter 7. The second example is the less
known Atlantic Multidecadal Oscillation (AMO) in the North Atlantic, of which
the physics is a main topic in chapter 6.

1.3.1. ENSO
Once about every four years, the sea-surface temperature (SST) in the east-

ern equatorial Pacific increases by a few degrees over a period of about one year.
These events are called El Niño (literally: the little boy), referring to the Christ˜
Child, since the maximum of the event is usually around December. This phe-
nomenon arises through large-scale interaction between the Pacific Ocean and the
overlying atmosphere and is associated with variations in the equatorial surface
winds. Normally, the equatorial Pacific surface winds, the trade winds, are di-
rected westward and are driven by a pressure difference between a high-pressure
region in the east (e.g., at Tahiti) and a low-pressure region in the west (e.g.,
at Darwin). During an El Niño , the pressure is lower than normal in Tahiti˜
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and higher than normal in Darwin. These variations in atmospheric pressure are
known as the Southern Oscillation. (Philander, 1990). The El Niño /Southern˜
Oscillation (ENSO) phenomenon is the most prominent interannual signal in the
climate system and has large effects on the weather, even far outside the Pacific
basin. During the strong El Niño -event in 1997-1998, anomalies in the eastern˜
Pacific SST exceeded 5◦C locally, and the trade winds changed direction in the
western equatorial Pacific. The associated shift in convection zones caused severe
drought in Indonesia and torrential rains in Peru and Ecuador.

ENSO is one of the best studied climate phenomena, and from observations the
relationship between the oceanic and atmospheric variables, the relevant spatial
structures and their temporal development are well-known (Wallace et al., 1998).
The time-averaged SST is characterized by a cold tongue (Fig. 1.17a) of 24◦C
water in the Eastern Pacific and a warm pool of 30◦C near the western boundary
of the basin. The 1997/1998 El Niño had one of the largest amplitudes of this˜
century; the SST anomaly pattern for December 1997 (with respect to the mean
state of Fig. 1.17a) is plotted in Fig. 1.17b. El Niño is seen as a basin wide˜
SST perturbation with a (monthly averaged) maximum amplitude near the South-
American coast of about 3◦C.

One of the measures of the temperature variations of the eastern equatorial Pa-
cific is the NINO3 index, which gives the SST anomaly with respect to the mean
state averaged over the box [150◦W-90◦W] × [5◦S-5◦N]; this index is positive
during an El Niño . The thick curve in Fig. 1.18 shows the course of this index˜
from 1900-2000. El Niño episodes occur once every three to seven years and˜
last more than one year, with substantial variations in strength. The strongest El
Niño ’s were those of 1982/1983 and 1997/1998. The sea level pressure anomaly˜
pattern of El Niño can be obtained through correlation with the NINO3 index.˜
The pattern is more global than that of sea-surface temperature. An index that
captures the amplitude of this sea level pressure pattern is the Southern Oscilla-
tion Index (SOI), which is the normalized difference of the pressure anomalies
between Tahiti (18◦S, 150◦W) and Darwin (12◦S, 131◦E). The SOI is plotted as
the thin curve in Fig. 1.18. When this index is negative, the westward trade winds
are weak and vice versa.

Although the strong negative correlation between SOI and NINO3 in Fig. 1.18
is obvious, it took until 1969 (Bjerknes, 1969) before it was realized that the
changes occurring in the atmosphere and the ocean are closely related. Warm
water in the eastern Pacific causes a weakening of the trade winds, which in
turn drives changes in the oceanic circulation which influence SST. The El Niño
/Southern Oscillation is therefore a coupled ocean-atmosphere phenomenon. The
warm phase of the oscillation coincides with El Niño (positive NINO3) in the˜
ocean and with weak trade winds (negative SOI) in the atmosphere. The cold
phase (also called La Niña meaning the little girl) coincides with strong trade˜
winds (positive SOI) and lower than normal SST (negative NINO3) in the eastern
part of the equatorial Pacific.
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(a)

(b)

Figure 1.17. (a) Annual-mean SST in the Tropical Pacific from the Reynolds and Smith (1994)
data set, with contour levels in ◦C (b) SST anomaly pattern for December 1997 with a maximum
amplitude of 3◦C.
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Figure 1.18. Time series of the SST anomaly averaged over the box [150◦W-90◦W]× [5◦S-5◦N]
(NINO3) and the difference in sea level pressure (SOI) between Tahiti (Eastern Pacific) and Darwin
(Western Pacific). The figure is taken from Dijkstra and Burgers (2002).

1.3.2. The Atlantic Multidecadal Oscillation
In Fig. 1.19a, the famous Central England annual-mean temperature time series

(available through the British Archive and Data Centre, http://www.badc.rl.ac.uk/)
is plotted. As can be seen by inspection, variability on interdecadal-to-
multidecadal time scales seems likely, but there is also smaller time scale vari-
ability. Plaut et al. (1995) analyzed this data set in detail and found strong indi-
cations of interannual and interdecadal variability with a maximum amplitude of
about 1◦C (Fig. 1.19b). In general, it is difficult to extract the signal of variabil-
ity (pattern and amplitude) on decadal and larger time scales because of the low
signal-to-noise ratio.

The North Atlantic SST appears to have a distinct signal of multidecadal vari-
ability. Schlesinger and Ramankutty (1994) presented first indications of this vari-
ability from a singular spectrum analysis of four global-mean temperature records.
Through objective analysis of the SST records in the North Atlantic over the years
1950-1990, Kushnir (1994) found a specific pattern characterizing the difference
between the years 1950-1964 and 1970-1984. The dominant SST pattern found is
basin scale, is strongest in winter and displays maximum amplitudes in the vicin-
ity of Iceland and the Labrador Sea (Fig. 1.20). The North Atlantic was warmer
in 1950-1964 than in 1970-1984.

By subsequent analysis of longer and better quality SST and sea level pressure
fields, the pattern of multidecadal variability has been characterized more accu-
rately (Deser and Blackmon, 1993; Latif, 1998; Moron et al., 1998). Delworth
and Mann (2000) extended the instrumental record with proxy data and demon-
strated that there is a significant spectral peak in the 50-70 year frequency band.
It was named the Atlantic Multidecadal Oscillation (AMO) by Kerr (2000) and an
AMO index was defined by Enfield et al. (2001) as the 10-year running mean of
the detrended SST anomalies north of the equator (Fig. 1.21).
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Figure 1.19. (a) Plot of the annual-mean Central England Temperature from 1650 to present.
The data were made available by the British Archive and Data Centre (http://www.badc.rl.ac.uk/).
(b) Spectrum of this time series as determined in Plaut et al. (1995), showing energy at interannual,
decadal and interdecadal time scales.

Enfield et al. (2001) showed that there is a strong negative correlation of the
AMO with US continental rainfall, with less (more) rain over most of the cen-
tral US during a high (low) AMO-index period. The Mississippi outflow is about
5 % smaller than average during high-AMO periods. High-positive correlations

Figure 1.20. Pattern of multidecadal SST anomalies obtained as the difference in SST of the
relatively warm period 1950-1964 and the relatively cold period 1970-1984 (Kushnir, 1994). The
figure is from Latif (1998).
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have also been found between the AMO and Sahel rainfall and between the AMO
and the hurricane intensity in the Atlantic (Gray et al., 1997). During the posi-
tive AMO-index period 1950-1964, there were 47 intense (class 3-4-5) hurricanes
originating east of 60◦W, whereas in a same length low AMO-index period 1970-
1984, there were only 19.

1.4. Physics of Climate Variability
Many more examples of low-frequency climate variability have been found

in observations and although it would be desirable to have a text where most of
them were described, it is not the purpose of this book to cover that material.
Rather, focus will be on the more abstract problem related to the origin of the
variability. Can the physics of the variability be identified and the patterns of the
different fields and their temporal development be understood through elementary
mechanistic description?

1.4.1. The system view
On choosing a particular time scale of variability, it makes sense to decide how

to handle much smaller and much larger time scales of variability. In studying
the present ENSO variability, one obviously does not need to consider continental
drift and variations in the solar insolation due to orbital changes Hence, the phys-
ical processes of relatively large time scale changes do not have to be taken into
account and the situation they create can be assumed as a fixed boundary and/or
forcing condition. But what to do with the smaller time scale variations, for exam-
ple, the variations of the weather in the Tropical Pacific on a day to day basis? In
ENSO studies, these rapid atmospheric fluctuations can be modelled by assuming
a random component in the response of the atmospheric winds to SST anomalies,
superposed on the deterministic response. In this way, when the space and time
scales of the phenomena under study are chosen, the evolution of the determin-
istic system at these scales is subjected to noise with given statistical properties,

Figure 1.21. Detrended 10-year running mean of the Atlantic SST anomaly north of the equator
over the period 1860–1995 (Enfield et al., 2001).
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while all long time scale variations are considered fixed through the boundary and
forcing conditions.

It is possible that high-frequency variability (noise) in one component of the
system (e.g., the atmosphere) is able to create low-frequency variability when
coupled to a slower (e.g., the ocean) component (Hasselmann, 1976). This is the
‘default’ explanation of interannual climate variability at midlatitudes (Frankig-
noul, 1999). However, it is unlikely that a ‘noise’ driven linear system can explain
all of the low-frequency variability, because certain preferential spatial patterns
and preferential time scales seem to be involved. If so, the nonlinear nature of
physical processes within individual components of the system and interactions
between these components is likely to be important for the selection of these pat-
terns. The question then becomes which physical processes are responsible for
the pronounced signals of climate variability in the past (Younger Dryas, Little
Ice Age) as well as for the interannual-to-multidecadal variability (ENSO, AMO)
in the instrumental record.

It is known that nonlinear systems can display very irregular behavior. Much of
this complex behavior is related to instabilities which occur when a certain thresh-
old is exceeded. Such a threshold indicates sensitivity of the system to particular
perturbations having a certain spatial pattern. Physically, these phenomena are re-
lated to feedbacks which only become active when dissipative effects in a system
can be overcome by active energy producing processes. In this way, relatively
fast changes may occur and the behavior of the system may change unexpectedly.
However, combined with noise, even stable states may show preferential scales,
when the linearized operator on this state is non-normal (Trefethen et al., 1993;
Farrell and Ioannou, 1996). Rapid amplification of components may occur due
to this non-normality which, combined with noise, leads to complicated behav-
ior. In this way, noise can have unexpected effects when put on a rather passive
slow system which is advecting quantities for example due to spatial resonance
(Saravanan and McWilliams, 1997, 1998). When noise is added to strongly non-
linear systems, the realm of stochastic differential equations is entered (Oksendal,
1995). Initially, it was intended to cover part of this material also in this book, but
it turned out to be too ambitious. Therefore, focus in this book will only be on
deterministic nonlinear systems.

1.4.2. Central questions
Looking at the ocean circulation, it is likely that a three-dimensional complex

and highly nonlinearly interacting stratified rotating flow is sensitive to pertur-
bations on a large range of scales. Sensitivity can occur within one particular
basin, causing changes in surface or overturning circulation. It may also occur
on a global scale, involving a transition to different patterns within the ‘Ocean
Conveyor’. As changes in ocean currents can lead to substantial changes in heat
and freshwater transports, these may influence the climate over large areas on the
globe.

From this viewpoint, the main questions of low-frequency climate variability
are the following:
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(i) Can each of the characteristic frequencies of variability, such as the 50-year
AMO period and the 4-year ENSO period be understood as internal oscilla-
tions of the climate system? Can one trace the origin of these oscillations to
instabilities of the circulation due to nonlinear interactions? Is it possible to
identify the feedback mechanisms responsible for these instabilities?

(ii) How sensitive is the climate system to (not necessarily) small perturbations?
For example, in view of future climate changes, it is important to know
whether the present ocean circulation is close to undergoing a transition to
a different mean state and to which perturbations it will be most vulnerable. In
other words, how stable is the current climate system? Can rapid transitions,
such as the Dansgaard-Oeschger oscillations, be explained through instabili-
ties of the THC?

Many types of ocean models have been developed to tackle these problems and
identify the physics of both temporal variability and stability of the ocean cir-
culation and its effect on climate. Ocean models contain many parameters, for
example, the strength of the wind-stress forcing and the mixing coefficients of
heat and salt. To understand the physics of particular phenomena in the ocean
circulation, solutions of these models are required at different values of these pa-
rameters. In this way, the influence of key physical processes on the phenomena
can be monitored and causal chains can be described.

Time-dependent solutions at values of parameters considered in the ‘realistic’
range usually display a very complicated spatial-temporal behavior. Mean ocean
currents appear very sensitive to different types of perturbations. Through nonlin-
ear interactions of these perturbations, the energy is distributed over many degrees
of freedom which, in general, leads to complex behavior. In addition, either wind
- or buoyancy forcing of the circulation (or some of the parameters) may have
a random component, which usually adds irregularity to the already inherently
irregular flow. How does one analyze the physical processes leading to this com-
plexity?

1.4.3. Approach
In many studies, complex flows are analyzed with statistical techniques,

such as Empirical Orthogonal Function (EOF) analysis techniques and several
more sophisticated versions of these (Preisendorfer, 1988; Vautard et al., 1992;
Von Storch, 1995; Von Storch et al., 1995). The patterns found in this way are
associated with maximum variance of the flow in some norm. These techniques
have been extensively used in climate variability and physical oceanography but
the drawbacks are that additional modeling is needed to determine causal rela-
tionships between the responsible physical quantities. Only very recently have
techniques of nonlinear time series analysis (Kantz and Schreiber, 1997) found
application in climate research.

A second type of analysis of complex flows is to monitor integral quantities,
such as the volume averaged kinetic energy of the flow. These analyses have
been very useful to find a description of the interaction processes between mean
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flows and perturbations (Pedlosky, 1987). In many ocean circulation problems,
however, this type of analysis has not been performed routinely either because of
the complexity involved or because integral balances may not be well satisfied in
observations or ocean models.

A third way to proceed is to study how this complex behavior arises from sim-
pler situations at different values of the parameters. For example, in a highly
viscous ocean there is usually a unique sluggish flow. When the viscosity is de-
creased, the circulation becomes unstable through successive instabilities. Any
instability introduces extra degrees of freedom which can take up energy within
the flow. In general, more active degrees of freedom give more possibilities for
irregularity in the flow. To understand the role of the nonlinear processes in the
climate system is a tremendous task, knowing the trouble and effort it takes to
understand the behavior of fluids in laboratory situations. In the latter field, for
example, much understanding has been obtained by approaching problems using
a hierarchy of models. For each of the models within this hierarchy, one can then
follow the approach to complexity by changing parameters. The mathematical
theory underlying these types of studies in nonlinear models is that of dynamical
systems. The most outstanding advantage of this theory is its systematics, which
allows classification of behavior.

It is this last approach which is pursued in this book and followed to understand
(variability of) the ocean circulation and El Niño. A hierarchy of models is used˜
and with techniques of the theory of dynamical systems, the solution structures of
these models are analyzed. Central focus will be on equilibria of these models,
which may be either steady states or periodic orbits. It is aimed to provide suffi-
cient details of the models and parameter volumes investigated such that readers
will be able to reproduce many of the results provided. In chapter 2, the origin of
the different models is presented and the terminology used in the physics of the
ocean circulation is introduced. The theory of dynamical systems is introduced in
chapter 3 by using a simple example; this is followed by the more abstract theory.
Chapter 4 provides details on the numerical techniques needed to obtain results
for meaningful ocean and climate models. Application of the methodology starts
in chapter 5 with the wind-driven ocean circulation and in chapter 6 these meth-
ods are applied to study the thermohaline circulation. In chapter 7, one extension
into the coupled ocean/atmosphere climate system is described, focussing on the
physics of El Niño in the equatorial Pacific.˜
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1.5. Exercises on Chapter 1

(E1.1) Radiation equilibrium temperature

A black body with a temperature T emits an amount of radiation with a flux
density I (in Wm−2) according to

I = σT 4

where σ = 5.67 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant.

a. Assume that the Sun is a black body and that the average temperature of its
photosphere is about 6000 K. Calculate the flux density at the photosphere.

The average distance of the photosphere to the center of the Sun is
rpr = 7.0 × 108 m. The solar constant is the flux density at a distance d from
the Sun.

b. With re being the distance between the Earth and the Sun (re = 1.5× 1011

m), calculate Earth’s solar constant Σ0.

c. Consider the radiation from the Sun absorbed by the Earth and assume that
the Earth is a black body with a mean temperature TeTT . Show that

Σ0

4
(1− αp) = σT 4

eTT

where αp is Earth’s mean planetary albedo. Calculate TeTT for αp = 0.3. Why
is TeTT in reality much larger?

d. Variations in the solar constant Σ0 due to the 11-year Sunspot cycle are
about 0.2% (about 2 Wm−2) of the mean value. Calculate the peak-to-peak
changes in the equilibrium temperature TeTT due to this solar variability.

Further reading: Hartmann (1994), chapter 2.

(E1.2) Surface forcing

Consider a layer of ocean water (with heat capacity CpC = 4.281 × 103

Jkg−1K−1 and density ρ = 1.027 × 103 kgm−3) having a thickness of 50 m
and a surface area of 104 m2.

a. Calculate the amount of energy needed to warm this layer by 1 K.
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Assume that the downward heat flux from the atmosphere into the ocean over
the area is Qoa = 400 Wm−2.

b. How long does it take to raise the temperature of the layer by 1 K?

The mean wind speed U over the layer is 10 ms−1 and its direction is pure
zonal. The zonal wind stress τ is calculated from a so-called ‘bulkformula’ as

τ = CDC ρaU
2

where CDC ≈ 2 × 10−3 is a semi-empirical constant and ρa = 1.0 kgm−3 is
the density of air.

c. Calculate the magnitude of the wind stress (in Pa) over the layer.

d. Assume that the layer is initially motionless and that the wind stress
calculated in c. accelerates the water in the layer. Calculate the zonal flow
velocity in the layer after three hours.

Suppose finally that the initial salinity of the water is constant and equal
to S̄ = 35 ppt. The net downward freshwater flux over the area is
FSFF = 10−8ms−1.

e. How long does it take to change the salinity of the layer by 1 ppt?

Further reading: Gill (1982), chapter 2.

(E1.3) Gulf Stream

Warm western-boundary currents such as the Gulf Stream transport heat from
low-latitude regions towards polar regions and hence are important in the
climate system. The Gulf Stream is about 100 km wide and 1000 m deep and
has an average velocity of about 0.5 ms−1.

a. Provide an estimate for the volume flux of the Gulf Stream (in Sv).

To estimate the heat transport, a characteristic horizontal temperature differ-
ence associated with the northward and southward flowing water is needed.

b. Provide an estimate for this characteristic temperature difference (consider,
for example, Fig. 1.17a).
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c. Provide an estimate for the meridional heat transport (the heat capacity of
water is 4281 JK−1kg−1).

d. Why is this estimate different from that deduced from observations (as
provided in Fig. 1.15)?

Further reading: Hartmann (1994), chapter 7.

(E1.4) Heat transport

In Fig. 1.22, the observed zonally averaged meridional heat transport in the
three ocean basins and of the global ocean is plotted.

Figure 1.22. Zonally averaged meridional heat transport in 1015 W over the different ocean
basins and of all oceans together. The figure is slightly modified from the one in Hsiung (1985).

a. Using the fact that average deep temperatures in the North Atlantic are
about 4◦C, estimate the meridional heat transport of the zonally averaged
North Atlantic circulation (see, e.g. Fig. 1.13).

b. Why is the meridional heat transport in the South Atlantic Ocean equator-
ward while it is poleward in the South Pacific?

c. Why is the meridional heat transport in the Indian Ocean poleward?

Further reading: Hsiung (1985) and Ganachaud and Wunsch (2000).
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(E1.5) Climate variability: stochastic models

The different components of the climate system (ocean, atmosphere,
cryosphere) have very different adjustment time scales to perturbations. The
adjustment times in the atmosphere are typically a few weeks while those in
the ocean can vary between a few weeks (upper ocean) to thousand of years
(deep ocean). The relatively slow ocean component is hence forced by a
rapidly varying atmosphere.

A scalar forcing field, say ζ , is called a white noise forcing if its mean < ζ >
is zero and its autocorrelation c(t) = σ2δ(t) (where δ is the delta-distribution);
such a field has a flat power spectrum P (ω). More explicitly,

< ζ(t) > = lim
τ→∞

∫ τ/2

−

∫∫
τ/2

ζ(t) dt = 0

< c(η) > = < ζ(t)ζ(t+ η) >= σ2δ(η)

P (ω) =
∫ ∞
−∞

∫∫
c(t)eiωtdt = σ2

where τ is a typical averaging time, ω is the frequency and σ2 is the variance
of the forcing.

Suppose that we have a layer of water in which the temperature T is damped by
ocean-atmosphere interaction (with damping factor α) and forced by a white
noise heat flux ζ . To model the changes of the temperature T , a stochastic
model (a Langevin equation) of the form

dT

dt
= −αT + ζ

can be used (Hasselmann, 1976).

a. If C(η) indicates the autocorrelation of T , then derive that

dC

dη
= −αC

and determine the solution C(η) up to an integration constant C0.

b. Show that the powerspectrum of T is given by

P (ω) =
2C0CC α

ω2 + α2

c. Sketch and interpret the spectrum in the limits (i) ω � α and (ii) ω � α.

Further reading: Hasselmann (1976) and Gardiner (2002), chapter 4.
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(P1.1) Data visualization and analysis

Nowadays there are many tools available to visualize and analyse observa-
tions. It is important to get an impression of the patterns and time scales of
climate variability quickly using efficient software. There are three aspects to
this: (i) finding the data, (ii) visualizing the data and (iii) obtaining statistical
characteristics of the data.

For obtaining the data there are many sites available on the internet.
The IRI/LDEO (http://ingrid.ldeo.columbia.edu/) is probably the best
starting point for instrumental data as is the NOAA Paleoclimatogy site
(http://www.ngdc.noaa.gov/paleo/paleo.html) for paleoclimatic data. For
visualization, there are many programs available. Most used is the package
GRADS (http://grads.iges.org/grads/) because it is designed for plots of
climatic data and it is freely available. For analysis of the data, GRADS
provides also some tools, but for more in-depth statistical analysis, the
SSA-MTM toolkit (http://www.atmos.ucla.edu/tcd/ssa/) is a freely available
and recommended tool.

A website which integrates availability of data and analysis is the Climate
Explorer at the Royal Dutch Meteorological Institute (http://climexp.knmi.nl/)
designed by Geert Jan van Oldenborgh. In this exercise, some experience is
gained in using this tool. So direct your browser to the URL of the Climate
Explorer and login with your email address.

a. Select the NINO3 index (see section 3.1) from the Kaplan data set (starting
at 1858) and plot the anomalies with respect to the seasonal cycle.

b. Plot the autocorrelation function c(τ) of the NINO3 index. At which lag
does the first zero of c(τ) occur? How do you interpret this first zero crossing?

c. Plot the powerspectrum P (ω). At which period does the maximum power
occur? How does this depend on the sampling of the time series?

d. Make a running mean of the original NINO3 time series using different
windows. Can you discover any variability on lower frequencies than the
typical El Niño frequency?˜

e. Repeat items a-d for the time series of the North Atlantic Oscillation (and
any other you like).

Further reading: Chatfield (2004).
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Figure 1.23. Sketch of the flow conditions in the Gibraltar Strait with both mean temperature
(left) and salinity (right) profiles (the figure is taken from (OU-Staff, 1989)).

(P1.2) Mediterranean Outflow and Climate

In the present ocean, the densest water is produced in high-latitude marginal
seas and the deep ocean is filled with cold, polar and subpolar waters. There
are two important northern outflows (from the Norwegian-Greenland Sea and
the Labrador Sea) and there is at least one important southern outflow (from
the Weddell Sea). These northern and southern sources produce deep waters
that have different chemical characteristics and leave a distinctive imprint in
deep-sea sediments.

Another important source of deepwater is that produced in the Mediterranean
Sea. From here, warm and salty water that is very dense enters the Atlantic.
The density of the outflow water is such that it enters at about 1000 m depth.
The aim of this exercise is to learn about the influence of the Mediterranean
outflow on the Atlantic THC and consequently on the climate system.

Consider a flow over a sill (such as Gibraltar Strait) as sketched in Fig. 1.23.
Let the volume flux from the Mediterranean basin into the Atlantic be
indicated by Q (in Sv, 1 Sv = 106 m3s−1) The water west of the Strait has
a salinity Sa and east of the Strait (in the Mediterranean basin), salinity is
indicated by Sb.

The difference between evaporation E en precipitation P is about 1 m
year−1 for the Mediterranean basin; the latter has a surface area of about
A = 2.5× 1012 m2.

a. Show that
Q(Sa − Sb) = (E − P )AS0

where S0 = 35 is a reference salinity used to convert the freshwater flux to a
salinity flux.
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b. Estimate Sa and Sb from Fig. 1.23 and determine Q.

In a controversial article, R.G. Johnson (Johnsen, 1997) suggested to
build a dam in the Gibraltar Strait to prevent catastrophic climate
changes due to human activities. You can download the paper from
http://www.agu.org/sci soc/eosrjohnson.html. It nicely illustrates the com-
plexity of global warming, and therefore the difficulty of estimating its effects.

c. Read this paper and formulate the precise arguments why Johnson thinks
that building a dam in the Gibraltar Strait can prevent a next Ice Age.

Next read the article by S. Rahmstorf (Rahmstorf, 1998),
which you can download from http://www.pik-potsdam.de/ ste-
fan/Publications/Journals/gibraltar.html.

d. Describe the influence of Mediterranean outflow on the northern North
Atlantic ocean surface temperatures as deduced from the model study. Do
you think that building a dam in the Gibraltar Strait would have the effect that
Johnson suggested?

Further reading: Tomczak and Godfrey (1994), chapter 16.



Chapter 2

BACKGROUND MATERIAL

The beginning of a framework: mastering the language.
Etude No 5., H. Villa-Lobos
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It is assumed that the reader has an elementary knowledge of vector analysis,
differential equations and (geophysical) fluid dynamics. To make reading through
the chapters 5-7 more easy, some background material is included in this chap-
ter. The general equations of motion are presented in section 2.1; this serves
also to introduce the notation used in the book. There are many textbooks avail-
able where these equations are derived and discussed (Batchelor, 1974; Pedlosky,
1987; Cushman-Roisin, 1994). In geophysical fluid dynamics and dynamical
oceanography, many results are interpreted in terms of vorticity transport within
the flow. In the sections 2.2 and 2.3, the mechanisms of vorticity transport and
the concept of potential vorticity are illustrated by using simple examples. These
examples serve as a reference for the terminology used in later chapters. The
last piece of background material is elementary hydrodynamic stability theory. In
section 2.4, Joseph (1976) is followed in a general discussion on stability bounds.
Some more mathematical issues are placed in technical boxes and can be skipped
on first reading.

2.1. Basic Equations
Standard notation as used in the field of geophysical fluid dynamics (such as

in Pedlosky (1987)) is adopted. All dimensional dependent variables have a *
subscript. This is useful to distinguish dimensionless and dimensional equations
in later sections. The inner product is just indicated with a dot (.) and for the
vector product, the ∧ notation is used.

2.1.1. Coordinate free
Consider a flow of water within a bounded region V on Earth’s sphere, an ex-

ample shown in Fig. 2.1. The region rotates with the movement of the Earth,
having rotation vector Ω and angular frequency Ω =| Ω |. The equations of mo-
tion described from a reference frame moving along with the earth are (Pedlosky,
1987)

ρ∗

[
Dv∗
dt∗

+ 2Ω ∧ v∗

]
= −∇p∗ + ρ∗∇Φ + ρ∗FIF ∗ (2.1a)

Dρ∗
dt∗

+ ρ∗∇.v∗ = 0 (2.1b)

Here, D/dt∗ = ∂/∂t∗ + v∗.∇ is the material derivative. The vector v∗ is the
velocity field of the flow, p∗ is the pressure field, and ρ∗ is the density of the
water. The quantity Φ is the geopotential, where the dominant term is given by
the gravitational acceleration. In spherical coordinates −∇Φ = gir , with g the
acceleration due to gravity and ir the unit vector in radial-direction. The vector
FIF ∗ [ms−2] represents the accelerations due to random motions (mixing) and its
form will be discussed in section 2.1.3.

Although this set-up is general, an approximation which is made in nearly all
modelling studies is the Boussinesq approximation. In this approximation, only
the effect of density differences is considered in the volume (e.g., gravity) force,
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Δθ

Δφ

Ω

V

Figure 2.1. A sector flow domain V on Earth’s sphere, which is rotating with angular frequency
Ω =| Ω |.

whereas the effects of density variations are neglected in the continuity equation,
momentum equations and temperature and salinity equations. This can be justi-
fied rigorously in many cases and the reader is referred, for example, to Batchelor
(1974). Under this approximation, the flow is (to a good approximation) incom-
pressible and the density ρ∗ in all equations above, except in the vertical mo-
mentum equation, can be changed to a constant reference density ρ0. Under the
Boussinesq approximation, the equations (2.1) become

ρ0

[
Dv∗
dt∗

+ 2Ω ∧ v∗

]
= −∇p∗ + ρ∗∇Φ + ρ0FIF ∗ (2.2a)

∇.v∗ = 0 (2.2b)

Local conservation of heat and salt is formulated as

ρ0CpCC
DT∗TT
dt∗

= FTFF ∗ +QT∗ (2.3a)

ρ0
DS∗
dt∗

= FSFF ∗ +QS∗ (2.3b)

where T∗TT and S∗ indicate temperature and salinity of the water. The scalars
FTFF ∗ [Wm−3] and FSFF ∗ [kg m−3 s−1] represent the effect of random motion (dif-
fusion and mixing) on the local changes of heat and salt. The scalar quantities
QT∗ [Wm−3] and QS∗ [kg m−3 s−1] represent the internal sources and sinks of
heat and salt. The quantity CpC is the heat capacity of the liquid. The unknowns
in these equations are the three components of the velocity field v∗, the pressure
p∗, the density ρ∗, the temperature T∗TT and the salinity S∗, in total 7. Since there
are only six equations (2.2) and (2.3), an additional relation is necessary. This is
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the equation of state, which for liquids such as salt water is given by

ρ∗ = ρ0ρ(T∗TT , S∗, p∗) (2.4)

For ocean water, the standard equation of state can be found in Gill (1982). At
every (reasonable) temperature in the ocean, the density is nearly linear with the
salinity S∗ and only varies with pressure for large depth changes. In Fig. 2.2, the
density is plotted as a function of temperature for three depths and constant salin-
ity S∗ = 35. The dependence of the density on salinity ∂ρ∗/∂S∗ ≈ 0.77 [kg m−3]
for each depth and is slightly larger for colder temperatures and slightly smaller
under higher pressure.

2.1.2. Spherical coordinates
It is natural to use spherical coordinates on a sphere. In meteorology and phys-

ical oceanography positions in the flow domain are described in coordinates lon-
gitude, latitude and depth (Fig. 2.3a). Note that in the usual spherical coordinates
the polar angle ϑ = π/2 − θ is used. When converting the equations of motion
from many textbooks on fluid mechanics (Batchelor, 1974) to those below, this
has to be taken into account along with a velocity vector v∗ = (u∗, v∗, w∗) for
the velocity field in zonal, meridional and vertical (radial) direction.

In the coordinate system so defined, the Coriolis acceleration term is written
(see Fig. 2.3b), as

2Ω ∧ v∗ =

⎛
⎝
⎛⎛

2Ω(w∗ cos θ − v∗ sin θ)
2Ωu∗ sin θ
−2Ωu∗ cos θ

⎞
⎠
⎞⎞

(2.5)
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Figure 2.2. Density ρ∗ − 1000 [kgm−3] as a function of temperature T∗TT (in ◦C) for constant
salinity S∗ = 35 for three different depths (0, 1000 and 2000 m). Note that the range of tempera-
tures decreases with depth.
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Figure 2.3. (a) Coordinate system used on the sphere with radius r∗, longitude φ and latitude θ;
the point P is an arbitrary point on the sphere. (b) Illustration to help to determine the components
of the Coriolis acceleration.

and the equations (2.1), (2.3) and (2.4) in coordinates (φ, θ, r∗) become

Du∗
dt∗

+
u∗w∗
r∗

− u∗v∗
r∗

tan θ − 2Ω (v∗ sin θ − w∗ cos θ) =

− 1
ρ∗r∗ cos θ

∂p∗
∂φ

+ FφIF ∗ (2.6a)

Dv∗
dt∗

+
w∗v∗
r∗

+
u2
∗
r∗

tan θ + 2Ωu∗ sin θ =

− 1
ρ0r∗

∂p∗
∂θ

+ FθIF ∗ (2.6b)

Dw∗
dt∗
− u2

∗ + v2
∗

r∗
− 2Ωu∗ cos θ =

− 1
ρ0

∂p∗
∂r∗
− g + FrIF ∗ (2.6c)

∂w∗
∂r∗

+
2w∗
r∗

+
1

r∗ cos θ
(
∂(v∗ cos θ)

∂θ
+
∂u∗
∂φ

) = 0 (2.6d)

ρ0CpCC
DT∗TT
dt∗

= FTFF ∗ +QT∗ (2.6e)

ρ0
DS∗
dt∗

= FSFF ∗ +QS∗ (2.6f)

ρ∗ = ρ0ρ(T∗TT , S∗, p∗) (2.6g)

with the material derivative written out as

D

dt∗
=

∂

∂t∗
+

u∗
r∗ cos θ

∂

∂φ
+
v∗
r∗

∂

∂θ
+w∗

∂

∂r∗
(2.7)
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As the ocean depths are much smaller than the radius of the Earth, it is convenient
to define a reference radius r0 from the center of the Earth to the average height
of the ocean-atmosphere surface, and then define a depth coordinate

z∗ = r∗ − r0 (2.8)

To close the system of equations, the mixing terms (F) have to be expressed in
terms of the velocity field (FI∗FF ), the temperature (FT ∗FF ) and the salinity (FS∗FF ).

2.1.3. Dissipative processes
The representation of the dissipative processes in models of the large-scale

ocean circulation and climate is one of the stumbling blocks for substantial
progress. Anyone who has travelled at sea will have noticed the vigorous pro-
cesses at the sea surface, where waves are breaking on a highly turbulent surface
flow. Indeed, the ocean circulation is a turbulent flow and although the degree of
turbulence is certainly higher at the surface than in the deeper ocean, one a priori
cannot model the circulation as if it were a laminar flow.

This is also directly concluded from the values of parameters in a typical large-
scale ocean flow when using the expression of viscous (molecular) momentum
transfer of water (a Newtonian liquid),

FIF ∗ = ν∇2v∗ (2.9)

where ν is the kinematic viscosity of water (ν = 10−6 [m2s−1]) and ∇2 is the
Laplace operator. If U and L denote typical velocity and length scales of the flow,
then the ratio of inertial accelerations v∗.∇v∗ and frictional ones ν∇2v∗ is given
by the Reynolds number

Re =
U2/L

νU/L2
=
UL

ν
(2.10)

For flows on a moderate horizontal scale L = 100 [km] and U = 10−2 [ms−1], it
is found thatRe ≈ 109. On a larger scale, or for larger velocities, this value is even
larger. In nearly all laboratory situations, flows under the conditions represented
by these parameter values are turbulent.

In turbulent flows, the energy is spread over an enormous range of spatial
scales, many of which cannot be resolved in large-scale ocean models. Hence,
for each model, a pragmatic approach is needed to represent the effects of unre-
solved scales on the large-scale flow. The most simple of these approaches is to
model the effects as downgradient diffusion, which is also referred to as a first or-
der turbulence closure. The flux Φ∗ of any such scalar quantity φ∗ is then assumed
proportional to the gradient ∇φ∗, with proportionality constant K,

Φ∗ = −K∇ φ∗ (2.11)

Mixing coefficients for momentum are indicated by A, while those for heat and
salt will be indicated by KT and KS . This way of representing mixing of mo-
mentum and tracers in ocean models is usually referred to as Laplacian mixing,
since the divergence of the flux Φ∗ enters the equations.
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Many other approaches have been suggested and an overview is given in Large
et al. (1994). In many high-resolution ocean models (see section 5.8), a bihar-
monic operator representation of the divergence of Φ∗ is used for the repre-
sentation of horizontal mixing, because it has specific scale selective properties
(McWilliams and Chow, 1981; McWilliams, 1996). There have been many ef-
forts to represent the effect of unresolved scales of motion on the transport of
the tracers, such as temperature and salinity. For example, the effect of eddies
on tracer transport in low resolution (non-eddy resolving) models can be parame-
terized by additional advection and diffusion (Gent and McWilliams, 1990; Gent
et al., 1995). The latter parameterization provides mixing of tracers more along
constant density surfaces (isopycnals) than the simple representation (2.11).

One can imagine that with such a crude representation of mixing processes as
in (2.11), the values of mixing coefficients are not well known. In fact, values
used in the literature vary by orders of magnitude. Rough numbers can be ob-
tained through dimensional considerations, using the fact that K can be seen as
a product of a length scale and a velocity scale, but the problem is that in many
cases these relevant scales are not easily recognized. Because of the enormous
length scale differences between the horizontal and vertical directions, usually
different mixing coefficients (e.g., AH and AV for momentum) are taken (Large
et al., 2001).

In this way, the accelerations through dissipative processes are represented by

FIF ∗ = ∇.T∗TT (2.12)

where T∗TT is the part of the stress tensor representing shear forces. In the coordi-
nates (φ, θ, z∗), T∗TT can be written as

T∗TT = AH(∇H ⊗ v∗ + (∇H ⊗ v∗)T ) +AV (∇z ⊗ v∗ + (∇z ⊗ v∗)T ) (2.13)

where ∇H is the horizontal gradient operator, ∇z = (0, 0, ∂/∂z∗) and the super-
script T indicates transpose. The notation ⊗ is the dyadic product of the vectors
that is defined by

a⊗ b =

⎛
⎝
⎛⎛
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎞
⎠
⎞⎞

(2.14)

Similarly, the terms representing turbulent ‘diffusive’ transport of heat and salt are
written as

FTFF ∗ = ρ0CpCC (∇H .(KT
HK ∇HT∗TT ) +

∂

∂z∗
(KT

V

∂T∗TT
∂z∗

)) (2.15a)

FSFF ∗ = ρ0(∇H .(KS
HK ∇HS∗) +

∂

∂z∗
(KS

V

∂S∗
∂z∗

)) (2.15b)

2.1.4. Boundary conditions
The flow domain V is horizontally bounded by continents, vertically bounded

by an ocean floor and an ocean-atmosphere interface (Fig. 2.4). If the average
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depth of the water is given by d, then the specified bottom topography can be
specified as a function z∗ = −d+ hb(φ, θ). On this lower boundary, the velocity
is zero and there is no transport of heat and salt. The boundary conditions then
become

z∗ = −d+ hb(φ, θ) : n.v∗ = 0 (2.16a)

ti.v∗ = 0, i = 1, 2 (2.16b)

n.∇T∗TT = 0 (2.16c)

n.∇S∗ = 0 (2.16d)

where n is the outward normal at the bottom and t1 and t2 are the two tangent
vectors. The ocean-atmosphere interface is written as

z∗ = η∗(φ, θ, t∗) (2.17)

with the average position being at z∗ = 0. The pressure and shear stress are
continuous over the interface; the latter is modelled as a material surface.
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Figure 2.4. Sketch of the vertical structure of the flow domain. The downward heat flux is indi-
cated by Qoa, the wind stress by τ , and the freshwater flux by E − P .

If the atmospheric pressure just at the ocean-atmosphere interface is indicated
by pa(φ, θ, t∗), then the boundary conditions at z∗ = η∗(φ, θ, t∗) can be formu-
lated as

D

dt∗
(z∗ − η∗(φ, θ, t∗)) = 0 (2.18a)

ρ0AV r∗
∂

∂r∗
(
u∗
r∗

) +
ρ0AH
r∗ cos θ

∂w∗
∂φ

= τφ (2.18b)

ρ0AV r∗
∂

∂r∗
(
v∗
r∗

)− ρ0AH
r∗

∂w∗
∂θ

= τ θ (2.18c)

p∗ = pa(φ, θ, t∗) (2.18d)



Background material 45

where τφ [N/m2] and τ θ [N/m2] are the zonal and meridional components of
the shear stress generated by the wind. The mixing coefficients of momentum
(AV and AH ) now turn up in the representation of the shear stress in the liquid,
according to (2.13). Note that there is one condition less at the bottom boundary
than at the surface, because hb∗ is prescribed, whereas η∗ is a dependent quantity.
The boundary conditions for temperature and salinity at z∗ = η∗(φ, θ, t∗) are
given by

ρ0CpCC KT
V

∂T∗TT
∂z∗

= Qoa (2.19a)

KS
V

∂S∗
∂z∗

= (E − P )S0 (2.19b)

where E and P represent evaporation and precipitation, both in [ms−1], and S0

is a reference salinity needed to convert the freshwater flux into an equivalent salt
flux (Huang, 1993). The quantity Qoa is the downward heat flux in [Wm−2] at
the ocean-atmosphere surface.

On the continental boundaries of the domain, conditions of zero velocity (no-
slip) and no heat flux and no salt flux are usually prescribed but their formulation
will be presented for each particular application in later chapters.

2.1.5. Integral constraints
In the general model formulation above, several integral conditions can be de-

rived. Satisfying these conditions is important in numerical models to be dis-
cussed later on. Two obvious constraints arise through the notions of conserva-
tion of total heat and salt. When the temperature equation is integrated over a
fixed flow domain V , one obtains ∫

V

∫∫
ρ0CpCC (

∂T∗TT
∂t∗

+ v∗.∇T∗TT ) d3x∗ =

ρ0CpCC

∫
V

∫∫
(∇H .(KT

HK ∇HT∗TT ) +
∂

∂z∗
(KT

V

∂T∗TT
∂z∗

)) d3x∗ +
∫
V

∫∫
QT∗ d

3x∗

where d3x∗ = r2
0 cos θ dφ dθ dz∗ in spherical coordinates. Under the boundary

conditions of no-normal heat flux at the bottom and at the continental boundaries,
and zero normal velocities at all boundaries (which is a kinematic constraint in
confined flows), then using incompressibility, one can write v∗.∇T∗TT = v∗.∇T∗TT +
T∗TT ∇.v∗ = ∇.(v∗T∗TT ). Hence,∫

V

∫∫
∇.(v∗T∗TT ) d3x∗ =

∫
S

∫∫
n.v∗ T∗TT d2x∗ = 0

∫
V

∫∫ [
∇H .(KT

HK ∇HT∗TT ) +
∂

∂z∗
(KT

V

∂T∗TT
∂z∗

)
]
d3x∗ =

∫
S

∫∫
oa

Qoa
ρ0CpCC

d2x∗

where S is the total surface enclosing V , the subscript oa indicates the ocean-
atmosphere interface and d2x∗ = r2

0 cos θ dφ dθ. This leads to the integral con-
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straint ∫
V

∫∫
(
∂T∗TT
∂t∗
− QT∗
ρ0CpCC

) d3x∗ =
∫
S

∫∫
oa

Qoa
ρ0CpCC

d2x∗ (2.20)

which expresses total conservation of heat. In the special case of a steady state
and zero internal sources of heat, a consequence is that the surface integral of the
downward heat flux must be zero.

For the salt equation, a similar derivation leads to the integral constraint repre-
senting total salt conservation as∫

V

∫∫
(
∂S∗
∂t∗
− QS∗

ρ0
) d3x∗ =

∫
S

∫∫
oa

(E − P )S0 d
2x∗ (2.21)

Again in steady state and without internal sources of salt, the surface integral over
the net freshwater flux has to be zero. In this situation, the constraint is essential,
since the freshwater flux does not depend on salinity itself and hence, the salinity
is determined up to an additive constant. The constraint (2.21) provides the only
reasonable regularization.

Other integral constraints may be important. One of them, the mechanical en-
ergy balance, will for example be used in chapter 6. This balance is derived by
multiplying the momentum equations (2.2b) by v∗ and integrating the equations
over the domain, to give∫

V

∫∫
ρ0(v∗.

Dv∗
dt∗

+ v∗.(2Ω ∧ v∗)) d3x∗ =∫
V

∫∫
[−v∗.∇p∗ − w∗ρ∗g + ρ0v∗.∇T∗TT ] d3x∗

Using kinematic boundary conditions and the vector identity v∗.∇T∗TT =
∇.(T∗TT v∗)−∇⊗ v∗ : T∗TT , where : is the tensor direct product defined by

S : T =
∑
i=1,3

∑
j=1,3

Si,jSS Ti,jTT (2.22)

one can eventually derive the integral balance∫
V

∫∫
ρ0

2
∂(v∗.v∗)
∂t∗

d3x∗ = −
∫
V

∫∫
w∗ρ∗g d

3x∗ +

+ρ0(
∫
S

∫∫
v∗.(T∗TT n) d2x∗ −

∫
V

∫∫
∇⊗ v∗ : T∗TT d3x∗) (2.23)

The left hand side is the change in volume averaged kinetic energy. This quantity
is balanced by the buoyancy production (first term in the right-hand side), the
work of shear stress (e.g. wind) at the boundaries of the domain (second term in
the right-hand side) and the dissipation (third term in the right-hand side). Several
other constraints can be derived, for example those related to entropy production
in the system (Ozawa et al., 2003), but are not considered here.
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2.2. Vorticity transport
Vorticity is an important concept in dynamical oceanography. Because the

frame of reference from which flows are described is itself rotating, a distinction
is made between the planetary vorticity 2Ω and the relative vorticity ω∗ = ∇∧v∗.
The absolute vorticity ωa∗ is defined as ωa∗ = ω∗ + 2Ω.

The vorticity vector leads to two important concepts: the vortex line and the
vortex tube. At a fixed time t0, a curve in the fluid is a vortex line if, for each
point on the curve, the tangent vector is the vorticity vector ωa∗. If a vortex line is
parametrized by a curve σ : [a, b] ∈ R→ R

3 (Fig. 2.5), then at t∗ = t0,

σ′(s) = ωa∗(t0,σ(s)) (2.24)

where s ∈ [a, b]. A vortex tube is formed by vortex lines that go through a closed
curve (Fig. 2.5). If we take two closed curves C1 and C2CC enclosing a vortex tube
as in Fig. 2.5 then it is easy to prove the Helmholtz theorem (see Technical box
2.1)

Γ1 =
∫
C

∫∫
1

v∗.ds =
∫
C

∫∫
2

v∗.ds = Γ2 (2.25)

ω

C
1

C
2

a b

σ

σσ '
tangent vector

n

SS22

n

V

SS
11

S

Figure 2.5. Sketch of a vortex tube consisting of vortex lines, which pass through a closed curve
C1.

The quantity Γ is called the circulation of the velocity field around a closed
curve C and the integral is taken in an anti-clockwise direction. Through Stokes’
theorem, the circulation is directly related to the local vorticity through

Γ =
∫
C

∫∫
v∗.ds =

∫
S

∫∫
ω∗ . n dS (2.26)

where n is the outward normal to the surface S enclosed by the curve C . Hence,
if a vortex tube compresses (for example, through stretching), the area of a typical
surface S decreases and with constant circulation, the vorticity must increase.
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Similarly, if a vortex tube is expanded the area enclosed becomes larger and the
vorticity decreases. Although this shows that the vortex tube concept is useful, it
does not show the processes by which vorticity is transported through the flow.

Technical box 2.1:
Helmholtz theorem

Starting point of the proof of the theorem is that ∇.ω = ∇.∇ ∧ v = 0. If we
integrate this function over the volume V enclosed by the vortex tube (Fig. 2.5),
then we get

0 =
∫
V

∫∫
∇.ω dV =

∫
S

∫∫
ω.n dS

where S is the surface of the vortex tube and n the outward normal to the surface.
By definition of the vortex tube, the vorticity vector is tangential to the surface of
the vortex tube and hence ω.n = 0. The contributions to the integral come from
the surfaces enclosed by the curves C1 and C2CC and with help of Stokes’ theorem
the final result follows as

0 =
∫
S

∫∫
ω.n dS =

∫
S

∫∫
1

ω.n dS +
∫
S

∫∫
2

ω.n dS =
∫
C

∫∫
1

v.ds−
∫
C

∫∫
2

v.ds

where the minus sign arises through the different orientation of the normals.

To study vorticity transport, the local vorticity balance is needed and it can
be obtained by taking the curl of the momentum balance. Using the identity
v.∇v = 1

2 ∇v.v + ω ∧ v, the coordinate free form of the vorticity equa-
tion becomes

∂ωa∗
∂t∗

+∇∧ ((2Ω + ω∗) ∧ v∗) = ρ−2
∗ ∇ρ∗ ∧∇p∗ +∇∧FIF ∗ (2.27)

This equation can be reduced with help of the identities

∇.ω = 0

and
∇∧ (v ∧ ω) = ω.∇v − ω∇.v − v.∇ω

resulting in

∂ωa∗
∂t∗

= −v∗.∇ωa∗+ωa∗.∇v∗−ωa∗∇.v∗+ρ−2
∗ ∇ρ∗∧∇p∗+∇∧FIF ∗ (2.28)
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First term in the right hand side is the change in vorticity due to advection.
The second and third terms are associated with changes in vorticity due to vor-
tex stretching and tilting, the fourth term is associated with baroclinic vorticity
changes and the last term gives the dissipation of vorticity due to frictional pro-
cesses. From these processes, advection and diffusion (dissipation) do not need
no further explanation. However, the other vorticity changing processes are con-
sidered in more detail below by looking at specific examples.

2.2.1. Vortex stretching and vortex tilting
Consider in a local Cartesian coordinate system the situation where the absolute

vorticity vector ωa is parallel to the z-as, i.e. ωa = ω̄ (0, 0, 1)T , with ω̄ > 0. If
the velocity components are indicated by (u, v,w) then direct computation gives

ωa.∇v − ωa∇.v = (ω̄
∂u

∂z
, ω̄

∂v

∂z
, − ω̄(

∂u

∂x
+
∂v

∂y
))T (2.29)

If all other vorticity changing effects are absent, we see from (2.28) that the ten-
dency of the z-component of ωa is proportional to the horizontal divergence of the
velocity field in the plane orthogonal to the z-axis. If ∂u/∂x + ∂v/∂y < 0, then
there is a local convergence of mass. Consider a (local) vortex tube parallel to the
z-axis (Fig. 2.6a). This vortex tube is compressed and as a consequence of the
Helmholtz theorem (Technical Box 2.1), the vorticity in the z-direction increases,
which follows also directly from (2.29). This process of vorticity production is
called vortex stretching.

(a)

ω1

ω2

compression

convergence

(b)

z

x

u(z)

ω
1

vortex line at t = 0
vortex line at t > 0

Figure 2.6. (a) Sketch of the mechanism of vortex stretching. A vortex tube is compressed through
convergences in the flow. (b) Sketch to illustrate the mechanism of vortex tilting. A vortex line which
is parallel to the z-axis at t = 0 is deformed through vertical shear of the background flow. As a
consequence, it is tilted and generates a vorticity component in the x-direction.

From the first component of (2.29), it follows that the tendency of the x-
component of ωa is proportional to ω ∂u/∂z¯ . Consider a vortex line which is
initially parallel to the z-axis in a flow for which ∂u/∂z > 0. Because of the
vertical shear, the vortex line will tilt and gives a contribution to the tendency of
the vorticity component in the x-direction (Fig. 2.6b). This mechanism can also
produce vorticity in the y-direction when ∂v/∂z �= 0�� , and is called vortex tilting.



50 NONLINEAR PHYSICAL OCEANOGRAPHY

2.2.2. Baroclinic vorticity production
The vector ∇ρ ∧ ∇p in (2.28) is called the baroclinic vector. According to

(2.28), vorticity is produced if this vector is nonzero. When surfaces of constant
pressure (isobars) are also surfaces of constant density (isopycnals), then the pres-
sure p is a unique function of the density ρ, i.e. p = p(ρ). In this so-called
barotropic case, the baroclinic vector is zero and there is no baroclinic vorticity
production.

In order to show how vorticity is produced when ∇ρ ∧ ∇p �= 0�� , consider the
following example. For z ∈ [−1, 0], let the pressure be given by p(z) = −z and
for x ∈ [0, 1], the density be given by ρ = ρ0 − δz − γx, with δ > 0, γ > 0.
The surfaces of constant pressure (isobars) and constant density (isopycnals) are
sketched in Fig. 2.7. Let’s focus on two fluid elements which are at the same
height, but at different lateral positions x, say x1 and x2 (> x1). The fluid element

z

x

isopycnals isobars
x1

x2ρ pp

ρ pp

Figure 2.7. Sketch of baroclinic vorticity production. Two liquid elements at x1 and x2 have
different density, but are situated at the same isobar. Since density decreases downwards, the fluid
element at x1 will move downward and that at x2 will move upwards, inducing an anti-clockwise
rotation.

at x1 has a larger density than that at x2, whereas the same pressure holds at both
positions. The fluid element at x1 will therefore move downwards with respect to
that at x2. It introduces a vorticity component in the negative y-direction (anti-
clockwise), i.e., out of the plane of the paper. This also follows through direct
calculation from

∇ρ ∧∇p =

⎛
⎝
⎛⎛

0
−γ
0

⎞
⎠
⎞⎞

(2.30)

2.3. Potential Vorticity (PV)
Having considered the elementary concepts of vorticity change in a rotat-

ing (geophysical) flow, one may ask whether there are a priori constraints on
the change in vorticity. In non-rotating ideal (i.e., inviscid and incompressible)
barotropic flows, an example of such a constraint is the Kelvin theorem (Batch-
elor, 1974) which deals with the changes of the circulation within the flow. Al-
though the Kelvin theorem can be generalized for rotating flows, it appears that
there is a concept in rotating stratified flows, which gives stronger constraints on
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the flow, because it is a restriction on the evolution of a scalar property. This
property is called potential vorticity, which is introduced next in its most general
form.

2.3.1. The Ertel theorem
Consider any scalar quantity λ∗, which satisfies

Dλ∗
dt∗

= FλF ∗ (2.31)

then the potential vorticity Πλ∗ is defined as

Πλ∗ =
ω∗ + 2Ω

ρ∗
.∇λ∗ (2.32)

For every λ∗, there is a corresponding potential vorticity Πλ∗ and hence a context
is needed for this quantity.

Technical box 2.2:
Potential vorticity equation

Within this technical box all quantities are dimensional, but for clarity of nota-
tion, no ∗ subscript will be used. The ith component of D(∇λ)/dt can be written
as

(
D

dt
∇λ)i =

⎡
⎣ ∂
∂t

+
∑
j

vj
∂

∂xj

⎤
⎦ ∂λ

∂xi

If the inner product of this vector is taken with ωa/ρ, one obtains (with the nota-
tion ωi = (ωa)i),

ωa

ρ
.
D(∇λ)
dt

=
∑
i

ωi
ρ

⎡
⎣ ∂
∂t

+
∑
j

vj
∂

∂xj

⎤
⎦ ∂λ

∂xi
=

=
∑
i

ωi
ρ

∂

∂xi

⎡
⎣ ∂
∂t

+
∑
j

vj
∂

∂xj

⎤
⎦λ−∑

i

ωi
ρ

∑
j

∂λ

∂xj

∂vj
∂xi

=

=
∑
i

ωi
ρ

∂

∂xi

⎡
⎣ ∂
∂t

+
∑
j

vj
∂

∂xj

⎤
⎦λ−∑

j

∂λ

∂xj

∑
i

ωi
ρ

∂vj
∂xi

=

=
ωa

ρ
.∇Dλ

dt
−∇λ.ωa

ρ
.∇v
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which is identity A. Next, the vorticity equation (2.28) is written as

Dωa

dt
= ωa.∇v − ωa∇.v +

∇ρ ∧∇p
ρ2

+∇∧ FIF

Writing ∇.v = −ρ−1Dρ/dt (using the general continuity equation (2.1b)), di-
viding this expression by ρ, substituting it in the equation above and taking the
inner product of the result and ∇λ, one obtains

∇λ.(ρ−1D

dt
ωa −

ωa

ρ2

Dρ

dt
) = ∇λ.D

dt

ωa

ρ
=

∇λ. (ωa

ρ
.∇v +

∇ρ ∧∇p
ρ3

+
∇∧ FIF
ρ

)

which is identity B. Adding both identities A and B and using (2.31) it is found
that

DΠλ

dt
=

ωa

ρ
.∇FλF +∇λ. (∇ρ ∧∇p

ρ3
+
∇∧ FIF
ρ

)

In Technical box 2.2, the equation for the evolution of the potential vorticity
Πλ∗ is derived from the vorticity equation with the result

DΠλ∗
dt∗

=
ωa∗.∇FλF ∗

ρ∗
+∇λ∗. (

∇ρ∗ ∧∇p∗
ρ3∗

+
∇∧ FIF ∗
ρ∗

) (2.33)

Strong constraints on the flow appear in the following theorem due to Ertel
(Ertel, 1942). If the following conditions are all satisfied,

(i) The quantity λ∗ is a conserved quantity, i.e., FλF ∗ = 0,

(ii) Diffusion of momentum can be neglected, i.e., FIF ∗ = 0,

(iii) The quantity λ∗ = λ∗(ρ∗, p∗) is a function of only density and pressure,

then it follows from (2.33) that

DΠλ∗
dt

= 0 (2.34)

and hence the potential vorticity Πλ∗ is a conserved quantity. The example below
provides an application of the use of potential vorticity (or shortly PV) conserva-
tion.

2.3.2. PV conservation
Consider an isothermal, inviscid, and constant density flow with vertical length

scale d and horizontal length scale L in a horizontally unbounded rotating channel
(Ω = (0, 0, f/2)) bounded by a free surface z∗ = h∗(x, y, t) and bottom topog-
raphy z∗ = −d + hb(x, y). It can be shown that under the condition d/L � 1,
the relative height of a fluid element in the liquid, i.e.,

λ∗ =
z∗ − hb
H∗

; H∗ = h∗ + d− hb
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is a conserved quantity (see for example Pedlosky (1987), section 3.4). Hence,
in these types of flows all three conditions above are satisfied, and the potential
vorticity associated with λ∗ is

Πλ∗ =
ω∗ + 2Ω

ρ0
.∇z∗ − hb

H∗
≈ ζ∗ + f

ρ0H∗

where ζ∗ is the vertical component of the vorticity vector. The other two com-
ponents of the vorticity vector are small, since both the vertical velocity as well
as the vertical shear are small in these flows. Consider the flow over the bottom

Figure 2.8. Example of how the constraint of conservation of potential vorticity leads to deter-
mination of the relative vorticity of the flow. A water column of constant density moves from left to
right over bottom topography.

topography as sketched in Fig. 2.8 and assume that the flow is parallel upstream of
the topography and hence, ζ1∗ = 0. The upstream potential vorticity is thus given
by Π1∗ = f/(ρ∗H1). On passing over the topography, the liquid depth decreases,
since H2HH < H1. As potential vorticity is conserved, it follows that

ζ∗ + f

ρ0H2HH
=

f

ρ0H1
⇒ ζ∗ = −f(1− H2HH

H1
) < 0

and hence the column is starting to rotate in a clockwise direction when it moves
over the topography.

2.4. Stability
Let a solution (v̄, p̄, T̄ , S̄, ρ̄) of the governing equations (2.18) be determined

for a certain choice of parameters. A central question is then how sensitive this
solution is to perturbations. Perturbations may occur in the initial conditions but
also perturbations can be considered in the governing equations, the parameters
and boundary conditions. For example, we may pose the question whether the so-
lution changes essentially when a different representation of a particular process
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is incorporated in the governing equations. The above sentence already indicates
that the notions of sensitivity and ‘essential change’ have to be defined more ac-
curately. This is done through the concept of stability.

Intuitively, for a certain fixed set of governing equations, parameters and
boundary conditions, a flow is stable when initial perturbations to the flow de-
cay to zero in time. In the stability theory of fluid motions, this is made more
precise through the concept of asymptotic stability in the mean (Joseph, 1976).
For simplicity, consider a constant density steady flow with velocity field v̄ in a
fixed flow domain V . For a velocity perturbation ṽ on v̄, consider the evolution
of the volume averaged kinetic energy E of the perturbation, given by

E(t) =
∫
V

∫∫
1
2

ṽ2 d3x (2.35)

Note that the mechanical energy balance, as described in section 2.1.5 can be used
to derive the equations for the evolution of the perturbations.

The solution v̄ is said to be asymptotically stable in the mean if

lim
t→∞

E(t)
E(0)

= 0 (2.36)

where E(0) is the initial volume averaged kinetic energy of the perturbation. If
there exists a positive value δ such that (2.36) holds only when E(0) < δ, then
the basic state is said to be conditionally stable. If δ → ∞, then the basic state
is globally stable and if (2.36) is satisfied and dE(t)/dt < 0 holds for all t > 0,
then the basic state is said to be monotonically stable. Note that this definition of
stability does not imply that the perturbations should be small a priori.

Let one of the parameters in a particular model be indicated by R. According
to the notions above, a picture (Fig. 2.9) can be drawn of the different possibili-
ties. In region I, the basic state is monotonically stable; all perturbations, whatever
their amplitude, have a monotonically decaying kinetic energy. In region II, there
may be perturbations which initially grow (not necessarily exponentially), but the
energy eventually decays to zero for all initial amplitudes of the perturbations.
Region III is a region of conditional instability. If the initial amplitude of the
perturbations is small enough (E(0) < δ(R)) the perturbation energy decays to
zero, whereas if it larger than some particular value δ(R), the perturbation en-
ergy will increase. In the latter case, the perturbed state will evolve to a different
state than v̄ and the state v̄ is said to be (nonlinearly) unstable to finite amplitude
perturbations.

From Fig. 2.9, stability boundaries can be defined according to the evolution of
the perturbation kinetic energy E. When R < RG then the basic state is globally
stable and every perturbation decays to zero in time; RG is the global stability
limit and provides sufficient conditions for stability. If R < RE , the basic state
is monotonically stable; RE is called the energy stability limit. If RG < R <
RL, then the basic state is conditionally stable: small amplitude disturbances
decay whereas too large perturbations grow. Beyond the linear stability boundary
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Figure 2.9. Plot of the different stability regimes, with I: monotonic stability, II: global stability,
III: conditional stability and IV: instability. The control parameter is R and the values of RE , RG
and RL are the energy, global and linear stability boundaries, respectively. The curve δ(R) bounds
the region of conditional stability. Typical trajectories of the voluTT me averaged kinetic energy are
sketched to illustrate the different behavior in each domain.

RL, infinitesimally small perturbations will grow and this stability bound provides
sufficient conditions for instability. In summary, there are two cases of instability

(i) Subcritical instability: RG < R < RL, i.e., not globally stable.

(ii) Supercritical instability: R > RL, i.e., not linearly stable

Determination of the global and energy stability boundaries has to be done with
the full nonlinear equations and exercise (P2.1) is provided to obtain experience
with these calculations. Use is made of variational principles and many examples
are provided in Joseph (1976) and Straughan (2004). The linear stability boundary
is obtained by linearizing the evolution equations for the perturbations in their
amplitude, which is infinitesimally small. This linear stability problem leads to an
eigenvalue problem (see problem P2.2) of which several examples are shown in
later chapters and which, in general, also has to be solved numerically.
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2.5. Exercises on Chapter 2

(E2.1) Inertial motion

Consider a situation where the wind stress accelerates a horizontally un-
bounded layer of ocean water (having a constant density ρ0) up to a time t0
and then decreases instantaneously to zero. Our aim is to describe the motion
for t > t0 – when the layer is unforced – in a rectangular coordinate system.
We assume a linear friction formulation in the water, i.e., F xIF = −ru and
FyIF = −ru and consider solutions (u(t), v(t), w(t), p(t)) which are spatially
independent.

a. Show that the horizontal momentum equations (2.1a) reduce to

du

dt
= f0ff v − ru

dv

dt
= −f0ff u− rv

where f0ff is the local Coriolis parameter.

b. Determine the solutions (u(t), v(t)).

c. Sketch (plot) and describe the motion of the water over time.

Further reading: Cushman-Roisin (1994), chapter 6.

(E2.2) Taylor column

Consider a flow with velocity field v = (u, v,w) in a horizontally unbounded
layer of liquid with constant density ρ and thickness D. The layer rotates with
constant angular velocity Ω around the z-as.

a. What is the vorticity equation for this flow?

Consider variations in the flow on a timescale τ , with a characteristic velocity
U and on a horizontal length scale L.

b. Estimate the terms in the vorticity equation under a.

Let f = 2Ω. A special kind of flow appears in the limit τ >> 1/f and
ε = U/(fL) << 1.
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Figure 2.10. Sketch of the flow configuration in problem E2.2

c. What type of special flow develops?

d. A sphere with radius R, with R < L, is drawn with velocity U over the
bottom of the layer (see Fig. 2.10). After a while, a stationary flow appears
with ε << 1. Provide a sketch of the flow field.

Further reading: Batchelor (2000), chapter 7.

(E2.3) Stress tensor

The shear part of the stress tensor T∗TT is given in coordinate free form in
equation (2.13).

a. Determine T∗TT for a Cartesian coordinate system.

b. To what expression does T∗TT reduce in a Cartesian formulation in caseAH =
AV ?

(E2.4) Application of the Helmholz theorem

Consider a tornado as a thin vortex tube. Assume that the relative vorticity is
constant over the cross section of the tube.

a. Show that the vorticity increases when the cross section of the tube
decreases.
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b. At about 10 m from the center of a certain tornado, there are wind speeds
of 200 km/hour. What are the pressure variations when such a tornado passes
by?

(E2.5) Topographic Steering

For large-scale flows in the deep ocean and far away from the equator, the
relative vorticity can be neglected with respect to the planetary vorticity.

a. Show that for a constant density ocean, the potential vorticity of these flows
is given by

Π =
f

H

where H is the depth of the liquid column and f = 2Ω sin θ is the Coriolis
parameter.

Consider a flow with upstream zonal velocity field U over a seamount with
scale h0 and horizontal length scale L (see Fig. 2.11).

U

z y

x

L

hh0

H

Figure 2.11. Sketch of the flow configuration for problem E2.5

b. Describe the flow over the seamount in case of (i) L/h0 � 1 and (ii)
h0/H � 1.

Further reading: Pedlosky (1996), chapter 3.

(P2.1) Energy Stability Boundary

One of the important stability bounds is the energy stability boundary as de-
fined in section 2.4. To illustrate the computation of this stability boundary,
consider the dimensional Navier-Stokes equations for a nonrotating, incom-
pressible liquid in a bounded domain V . These are
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∂u
∂t

+ u.∇u = −1
ρ
∇p+ ν∇2u

∇.v = 0

on a domain with no-slip conditions at the boundary of V . Here, ρ and ν are
the constant density and kinematic viscosity of the liquid.

Assume that a steady state (U, P ) exists and that it is subjected to a perturba-
tion (ũ, p̃).

a. Determine the nonlinear evolution equations of this perturbation.

Define the perturbation kinetic energy E through

E =
1
2
< ũ.ũ >=

1
2

∫
V

∫∫
ũ.ũ d3x

b. Multiply the momentum equations under a. with ũ and integrate over V .
Show that the energy balance can be written as

dE
dt

= I − D

where I is the energy production through the Reynolds’ stresses and D is the
dissipation. Give the expressions for I and D.

Let the space of kinematically allowed velocity vectorfunctions ũ be indicated
byH. This space consist of vectorfunctions that are divergence free, and which
satisfy the kinematic boundary conditions. Consider now the problem

max
H

1
E
dE
dt

= max
H
I − D
E

and assume that this maximum exists and is equal to a scalar λE .

c. Show that E is monotonically decreasing for λE < 0.

The determination of the energy stability boundary hence boils down to the
solution of the variational problem in the space H. The divergence free con-
straint is taken into account through a Lagrange multiplier and the functional
J is defined as

J(v) = I − D − p∇.v
where v ∈ H and p is a Lagrange multiplier.
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d. Formulate the Euler-Lagrange equations for this functional and derive the
problem to determine λE .

Further reading: Straughan (2004), chapter 2.

(P2.2) Linear stability analysis

Consider again the Navier-Stokes equations as in (P2.1) now describing the
two-dimensional constant density flow between two horizontally unbounded
parallel plates. The plates are a distance H apart and the flow is driven by a
constant horizontal pressure gradient α.

a. Show that the two-dimensional Navier-Stokes equations for the horizontal
velocity u, the vertical velocity w and the pressure p can be written as

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν∇2u

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν∇2w

∂u

∂x
+
∂w

∂z
= 0

b. With no-slip boundary conditions at the walls, show that the steady parallel
flow solution ū = ū(z), w̄ = 0 is given by

ū(z) =
α

ρν
(z2 − zH)

Now assume perturbations u = ū+ ũ, w = w̃, p = p̄+ p̃.

c. Substitute these into the equations above and determine the evolution
equations for the perturbation fields.

Next, we linearize these equations assuming that the amplitude of the pertur-
bations is infinitesimally small such that quadratic terms in these amplitudes
can be neglected. Make the resulting equations dimensionless with scales H
for length, V = ū(H/2) for velocity, ρνV/H for pressure and H/V for time.
Next, eliminate the pressure and introduce the streamfunction ψ through

ũ =
∂ψ

∂z
, ṽ = −∂ψ

∂x

d. Show that the resulting equation governing ψ can be written as

∂∇2ψ

∂t
+ Ū

∂∇2ψ

∂x
− Ū ′′ ∂ψ

∂x
= R∇2∇2ψ
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where Ū = u/V¯ and R = HV/ν is the Reynolds number.

e. Formulate the boundary conditions for ψ.

Now consider the limit R→∞ and expand ψ into normal modes

ψ(x, z, t) = φ(z)ei(kx−ct)

where k is the wavenumber and c = cr + ici is the complex growth factor.

f. Show that the problem for φ becomes

φ′′ − k2φ− Ū ′′

Ū − cφ = 0

φ(0) = φ(1) = 0

Finally, multiply the equation for φ by its complex conjugate φ∗, integrate over
the layer, use the boundary conditions and show that

ci

∫ 1

0

∫∫
Ū ′′

| Ū − c |2 | φ |
2 dz = 0

g. Show that the steady state Ū is linearly stable.

Further reading: Drazin and Reid (2004), chapter 4.
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Transition phenomena which occur in model solutions as parameters are varied
can be analyzed in detail using concepts and techniques of the theory of dynami-
cal systems. Being a qualitative theory, its concepts are powerful and they provide
a strong link to the physics associated with the transition behavior. It is through
the latter that complexity in irregular flows can be understood. In section 3.1, the
qualitative theory is introduced through an elementary but oceanographically rel-
evant problem, dealing with different density-driven flows under similar forcing
conditions. Although there are many textbooks available on dynamical systems
theory, many of them are too mathematical to be readily accessible to oceanog-
raphers and other geoscientists. In the remainder of this chapter, an overview of
the more abstract qualitative theory is given with such a reader in mind. Hence,
quite elementary mathematics is used and where possible, links with the example
in section 3.1 are given.

3.1. An Elementary Problem
As was discussed in chapter 1, there is heat input at low latitudes and heat loss

at higher latitudes in the North Atlantic Ocean. This causes a density driven sur-
face flow from the equator to the poles because of sinking of the colder water
in the north (Fig. 3.1, left panel). On the other hand, there is substantial evapo-
ration at low latitudes which increases the salinity of the low-latitude water and
hence its density. If there was no meridional temperature gradient, an equatorward
density-driven surface flow would result, because water would sink near the equa-
tor (Fig. 3.1, right panel). The fact that the surface freshwater flux and heat flux
have opposing effects on the large scale ocean circulation raises the interesting
question: What happens if the circulation is driven by both surface fluxes?

coldwarm salt fresh

Equator Pole Equator Pole

Figure 3.1. Sketch of temperature (left panel) and salinity (right panel) driven (ocean) circulation
patterns in a single equator-to-pole basin.

3.1.1. The Stommel two-box model
In the model proposed by Stommel (1961), this problem is studied in its most

essential form, using two boxes having volumes VpVV and VeVV . These contain well-
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mixed water of temperature and salinity (TeTT ∗, Se∗) and (TpTT ∗, SpSS ∗), the subscripts
‘e’ and ‘p’ indicating the equatorial and polar box, respectively. The boxes are
connected at the surface by an overflow region and at the bottom by a capillary
tube. The flow rate Ψ∗ is directed from high to low pressure and is assumed to be
linearly related to the density difference of the liquid between the boxes, i.e.

Ψ∗ = γ
ρpρ ∗ − ρe∗

ρ0
(3.1)

where ρ0 is a reference density and γ [m3s−1] a hydraulic constant. The flow rate
is taken positive if the liquid is heavier in the polar box. The exchange of prop-
erties does not depend on the sign of Ψ∗, because it only matters that properties
from one box are transported to the other box. Because mass is conserved, the
pathway (either through the overflow, or through the capillary) is unimportant. A
linear equation of state is assumed of the form

ρ∗ = ρ0(1− αT (T∗TT − T0TT ) + αS(S∗ − S0)) (3.2)

where T0TT and S0 are reference values. The quantities αT and αS are the thermal
expansion and haline contraction coefficients, respectively.

Figure 3.2. Sketch of the two-box model set-up as in Stommel (1961). Two reservoirs contain
well-mixed water and are connected through an overflow and a capillary tube. The circulation is
driven by density gradients between the water in both boxes, which are caused by the exchange of
buoyancy at the surface. The sign of Ψ is positive when there is sinking in the polar box.

Exchange of heat and salt in each box due the surface forcing is modelled
through a relaxation to a prescribed surface temperature and salinity (T a, Sa)
with relaxation coefficients CT and CS . These coefficients are different for each
box and for each quantity considered (heat or salt). In this way, the balances of
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heat and salt in each box are given by (Stommel, 1961; Thual and McWilliams,
1992)

VpVV
dTpTT ∗
dt∗

= CTpCC (T apTT − TpTT ∗)+ | Ψ∗ | (TeTT ∗ − TpTT ∗) (3.3a)

VeVV
dTeTT ∗
dt∗

= CTeC (T aeTT − TeTT ∗)+ | Ψ∗ | (TpTT ∗ − TeTT ∗) (3.3b)

VpVV
dSpSS ∗
dt∗

= CSpCC (SapSS − SpSS ∗)+ | Ψ∗ | (Se∗ − SpSS ∗) (3.3c)

VeVV
dSe∗
dt∗

= CSeC (Sae − Se∗)+ | Ψ∗ | (SpSS ∗ − Se∗) (3.3d)

In the following we will restrict to the case of realistic forcing, for which T aeT −
T apTT > 0 and Sae − SapSS > 0. For simplicity, it is assumed that the relaxation times
for temperature to the surface forcing in both boxes is proportional to their volume
and hence CT

pCC /VpVV = CTeC /VeVV ≡ RT is constant. The same simplification is made
for salinity with RS = CSpCC /VpVV = CSeC /VeVV . When time, temperature, salinity and
flow rate are scaled with 1/RT , VeVV VpVV RT /(γαT (VeVV + VpVV )), VeVV VpVV RT /(γαS(VeVV +
VpVV )) and VeVV VpVV RT /((VeVV + VpVV ), the dimensionless equations become

dT

dt
= η1 − T (1+ | T − S |) (3.4a)

dS

dt
= η2 − S(η3+ | T − S |) (3.4b)

where T = TeTT −TpTT , S = Se−SpSS and Ψ = T −S is the dimensionless flow rate.
Three parameters appear in the equations (3.4) which are given by

η1 =
(T aeTT − T apTT ) γαT (VeVV + VpVV )

VeVV VpVV RT

η2 =
RS
RT

(Sae − SapSS ) γαS(VeVV + VpVV )
VeVV VpVV RT

(3.5)

η3 =
RS
RT

The model is a two-dimensional system of ordinary differential equations describ-
ing the evolution of the temperature and salinity difference between the boxes; it
contains three independent parameters ηi, i = 1, 2, 3. Here η1 is a measure of the
thermal forcing, η2 of the saline forcing and η3 is a ratio of adjustment time scales
to heat and salt perturbations at the surface.

Clearly, the equations (3.4) form a relatively simple mathematical model which
immediately attracts to proceed with analytical methods. However, imagine that
we had many more, say ten or more, of these boxes all coupled through exchanges
of heat and salt. This would model the horizontal and vertical structure of the
exchanges of these properties in more and more detail. A typical way to proceed
would then be to choose parameter values as ‘realistic’ as possible and compute
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the time evolution of the temperature and salinity in the boxes, starting from some
initial state. Such a time dependent solution of the model is called a trajectory.
Starting from the initial state (0,0) (T = 0, S = 0), a trajectory is shown in
Fig. 3.3a for the parameter values η1 = 3.0, η2 = 0.5 and η3 = 0.3. In this
case, the freshwater forcing is relatively small and the flow evolves to a steady
state with sinking in the north, since Ψ = T − S > 0. It turns out that for these
parameter values, whatever initial condition one takes, this same steady state is
always reached.

However, one usually likes to know sensitivity to changes in parameters. So
we fix η1 = 3.0 and η3 = 0.3 and plot three trajectories in Fig. 3.3b for the case
η2 = 1.0. The trajectories starting at the initial conditions (0, 0) and (2.5, 2.5)
approach a steady state with sinking in the north similar as in the case η2 = 0.5.
However, the trajectory from the initial condition (3.0, 3.0) approaches a steady
state with sinking in the south, since Ψ = T − S < 0. Apparently, there are
multiple steady states under the same forcing conditions in (3.4) if η2 is large
enough. But what is the limiting value of η2, where these multiple equilibria
just appear (we can guess already that it is somewhere between 0.5 and 1.0)?
This question motivates us to look at the steady equations and find their solutions
directly as functions of parameters.
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Figure 3.3. (a) Trajectory starting from the zero solution (T = S = 0) for the model (3.3) with
η3 = 0.3 , η1 = 3.0 and η2 = 0.5. (b) For η3 = 0.3 , η1 = 3.0 and η2 = 1.0, trajectories from
three different initial conditions lead to two different steady states. In the figure, the values of T are
drawn whereas the values of S are dashed.

3.1.2. Equilibrium solutions
For steady states, the time derivatives in (3.4) are zero which gives the solutions

T =
η1

1+ | Ψ | ; S =
η2

η3+ | Ψ |
(3.6)
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where Ψ has to be solved from the implicit equation

Ψ =
η1

1+ | Ψ | −
η2

η3+ | Ψ |
(3.7)

When η2 = 0, then S = 0 and hence Ψ = T > 0. The solution for Ψ follows
from a quadratic equation and its positive root gives the solution

T = −1
2

+

√
1
4

+ η1 ; S = 0 (3.8)

which is referred to as a TH state. The flow, with sinking in the northern box is
driven by the temperature difference between equator and pole with warm water
flowing through the overflow and cold water going through the tube (Fig. 3.2).

When η1 = 0, there is no heat forcing and hence T = 0. It follows that
Ψ = −S < 0 and hence a flow driven by the salinity gradient is obtained. The
solution is

T = 0 ; S = −1
2
η3 +

√
1
4
η2

3 + η2

which is referred to as a SA state.
Although the structure of the equilibrium solutions can be explicitly solved

(Thual and McWilliams, 1992), it is more illustrative to show some typical results.
With fixed η3 = 0.3, a plot of steady solutions T and S versus η2 are shown in
Fig. 3.4a for η1 = 0.25. This diagram, where a property of the solution (here T
or S) is plotted versus a parameter, is our first example of a bifurcation diagram.
There is a unique solution which is thermally driven for small η2 (in this case,
Ψ = T − S > 0), it is motionless at η2 = 0.1 (at the intersection of the T and
S curves) and becomes saline driven at larger η2. Hence, with increasing η2 the
solution changes from TH type to SA type.

The same diagram is shown for η1 = 3.0 in Fig. 3.4b. As the time-dependent
results for η1 = 3.0 in Fig. 3.3b already indicated, there are multiple steady so-
lutions over a certain interval in η2. Up to the point L1 in Fig. 3.4b, the solution
is of TH type and unique. Between the points L1 and L2, both TH and SA so-
lutions exist and for values of η2 beyond L2 only the SA solution exists. The
points L1 and L2 exactly bound the region of multiple equilibria. When the po-
sitions of these points are determined for additional values of η1, the area in the
(η1, η2) parameter plane where both TH and SA solutions occur is bounded by
two curves (Fig. 3.4c). To the right of the curve of points L1, there is a unique
northern sinking (TH) solution, whereas to the left of the curve of points L2, there
is a unique equatorial sinking (SA) solution. At the point Q both curves of saddle-
node bifurcations intersect. The diagram in Fig. 3.4c, where the boundaries of the
different solution regimes are plotted in a two-parameter plane, is a first example
of a regime diagram.

In summary, the most important result from the analysis of the model (3.4) is
that for some of the parameter values different steady states, with opposite circu-
lation directions, exist. Two points on the steady solution branches, indicated by
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Figure 3.4. (a) Plot of values of temperature (T) and salinity (S) for steady states of the model
(3.3) for different η2 with fixed η1 = 0.25 and η3 = 0.3. (b) Same as in (a) but for η1 = 3.0. (c)
Path of the points L1 and L2 in (b) in the (η1, η2) parameter plane. These paths intersect at the
point Q and connect to the curve η2 = η1η3 which defines the motionless flow, Ψ = 0, and extends
from Q to the origin.

L1 and L2 in Fig. 3.4b, play a central role since they bound the multiple equilibria
regime in parameter space. The regime diagram in Fig. 3.4c provides a complete
overview of where in the two-parameter plane these multiple equilibria occur.

3.1.3. Stability of steady solutions
If a particular steady state from the previous section is indicated by (T , S), a

next step is to consider the evolution of perturbations (T̃ , S̃) on this steady state,

T = T + T̃ (3.9a)

S = S + S̃ (3.9b)
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For the box model (3.4), we will now use the notationM for a smoothed version
of the modulus function,

M(Ψ) = [H(Ψ)−H(−Ψ)] Ψ

where H is a smoothed version of the Heaviside function. One expression which
is used frequently is, with ε� 1,

H(Ψ) =
1
2
(1 + tanh

Ψ
ε

) (3.10)

such that derivatives ofM exist. For the linear stability boundary, quadratic in-
teractions in the perturbations are neglected and using the expansion

M(Ψ + Ψ̃) =M(Ψ) +M′(Ψ)Ψ̃ + · · ·

leads to the evolution equations

dT̃

dt
= −

[
(1 +M(Ψ)) T̃ +M′(Ψ)T (T̃ − S̃)

]
(3.11a)

dS̃

dt
= −

[
(η3 +M(Ψ)) S̃ +M′(Ψ)S (T̃ − S̃)

]
(3.11b)

with Ψ̃ = T̃ − S̃. These equations admit solutions of the form

T̃ = T̂ eσt ; S̃ = Ŝ eσt (3.12)

where σ = σr + iσi is the complex growth factor. The real part σr monitors the
(exponential) growth rate of the perturbations. When σr < 0 for a particular per-
turbation (T̂ , Ŝ), this perturbation damps and when σr > 0 it will grow, leading
to instability of the steady state. Substituting these expressions into the equations
(3.11) gives an eigenvalue problem(
−(1 +M(Ψ) +M′(Ψ)T ) M′(Ψ)T

−M′(Ψ)S −(η3 +M(Ψ)−M′(Ψ))S

)(
T̂
Ŝ

)
= σ

(
T̂
Ŝ

)
(3.13)

The matrix in the left hand side of (3.13) is called the Jacobian matrix and will be
indicated by J .

In Fig. 3.5a, the solutions in Fig. 3.4b are replotted, now with Ψ on the vertical
axis. Along the branches, the signs (±) of both real eigenvalues σ of (3.13) are
shown. For values of η2 up to the point L2, the TH state is stable and similarly for
values beyond L1, the SA state is stable. On the branch of solutions connecting
the solutions at L1 and L2, one of the eigenvalues is positive. According to (3.12),
small perturbations will grow on this steady state and hence it is unstable. This
is demonstrated by computing the time evolution of the temperature and salinity
fields starting exactly (within computer precision) at a steady state on this branch
(point A, T = 2.80, S = 2.74) as plotted in Fig. 3.5b. The time-dependent state
diverges away from the unstable steady state and eventually the steady TH state
at point B is reached.
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Figure 3.5. (a) Plot of steady values of the flow Ψ for the model (3.3) for different η2 with fixed
η1 = 3.0 and η3 = 0.3. The ± signs indicate the sign of the (real) eigenvalues of the Jacobian
matrix of each steady solution; drawn (dashed) curves indicate stable (unstable) steady states. (b)
Evolution of the temperature and salinity fields for η1 = 3.0, η2 = 1.0 and η3 = 0.3 starting at the
steady state at point A (T = 2.80, S = 2.74).

With the analysis of the steady states and their linear stability in parameter
space, the trajectories computed for η2 = 1.0 in Fig. 3.3 can also be understood.
For η2 = 0.5, the system is in the unique stable TH regime according to Fig.3.4c.
For η2 = 1.0, the system is in the regime of overlapping stable TH states and
SA states and hence trajectories with two different initial conditions can approach
different steady states.

3.1.4. The presence of symmetry
An extension of the Stommel (1961) box model to include a southern polar

box (Fig. 3.6) has been studied by Welander (1986) and Thual and McWilliams
(1992). Denoting temperature and salinity in the northern and southern box as
(TnTT ∗, SnSS ∗) and (TsTT ∗, Ss∗), respectively, the equations are a direct extension of
(3.3) and given by

VsVV
dTsTT ∗
dt∗

= CTsC (T asTT − TsTT ∗)+ | Ψs∗ | (TeTT ∗ − TsTT ∗) (3.14a)

VeVV
dTeTT ∗
dt∗

= CTeC (T aeTT − TeTT ∗)+ | Ψs∗ | (TsTT ∗ − TeTT ∗)

+ | Ψn∗ | (TnTT ∗ − TeTT ∗) (3.14b)

VnVV
dTnTT ∗
dt∗

= CTnCC (T anTT − TnTT ∗)+ | Ψn∗ | (TeTT ∗ − TnTT ∗) (3.14c)

VsVV
dSs∗
dt∗

= CSsC (Sas − Ss∗)+ | Ψs∗ | (Se∗ − Ss∗) (3.14d)

VeVV
dSe∗
dt∗

= CSeC (Sae − Se∗)+ | Ψs∗ | (Ss∗ − Se∗)
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+ | Ψn∗ | (SnSS ∗ − Se∗) (3.14e)

VnVV
dSnSS ∗
dt∗

= CSnCC (SanSS − SnSS ∗)+ | Ψn∗ | (Se∗ − SnSS ∗) (3.14f)

with the flow rates

Figure 3.6. Sketch of the three-box set-up as in Welander (1986) and Thual and McTT Williams
(1992).

Ψs∗ = γ(αT (TeTT ∗ − TsTT ∗)− αS(Se∗ − Ss∗))
Ψn∗ = γ(αT (TeTT ∗ − TnTT ∗)− αS(Se∗ − SnSS ∗))

The sign of each Ψ∗ is positive if the surface circulation is from equator to pole.
Again with

CTsC /VsVV = CTeC /VeVV = CTnCC /VnVV = RT

CSsC /VsVV = CSeC /VeVV = CSnCC /VnVV = RS

and new variables

Θs∗ = TeTT ∗ − TsTT ∗ , Θn∗ = TeTT ∗ − TnTT ∗ , Σs∗ = Se∗ − Ss∗ , Σn∗ = Se∗ − SnSS ∗
the dimensionless form of the equations is derived by scaling Θ∗, Σ∗ and time with
VsVV RT /(2γαT ), 2VsVV RT /(2γαS) andR−1

T , respectively. For VsVV = VnVV = VeVV /2, one
then obtains (Thual and McWilliams, 1992)

dΘs

dt
= αs −Θs(1 +

3
4
| Ψs |)−

1
4
| Ψn | Θn (3.16a)

dΘn

dt
= αn −Θn(1 +

3
4
| Ψn |)−

1
4
| Ψs | Θs (3.16b)

dΣs

dt
= βs − Σs(η3 +

3
4
| Ψs |)−

1
4
| Ψn | Σn (3.16c)

dΣn

dt
= βnββ − Σn(η3 +

3
4
| Ψn |)−

1
4
| Ψs | Σs (3.16d)
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with η3 = RS/RT and

Ψs = Θs − Σs ; Ψn = Θn − Σn

αs =
2γαT
VsVV RT

(T aeTT − T asTT ) ; αn =
2γαT
VsVV RT

(T aeTT − T anTT )

βs =
RS
RT

2γαS
VsVV RT

(Sae − Sas ) ; βnββ =
RS
RT

2γαS
VsVV RT

(Sae − SanSS )

The forcing is symmetric with respect to the equator if αn = αs and βnββ = βs.
In this case, the equations possess a reflection symmetry meaning that north and
south are indistinguishable in the model. The symmetry can be represented by
interchanging Θn and Θs and simultaneously Σs and Σn in the equations (3.16);
this leaves them invariant.
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Figure 3.7. Branches of steady solutions for the 3-box model (3.16) with symmetric surface forc-
ing αs = αn = α = 1.5, βs = βn = β and η3 = 0.3. In the diagram, β is used as a control
parameter and along the vertical axis, Θn−Θs is plotted (which is proportional to the temperature
difference between the southern and northern box). It is zero when the solutions are symmetric with
respect to the equator.

The presence of the equatorial symmetry has a striking influence on the struc-
ture of the steady solutions and their stability. In Fig. 3.7, the bifurcation diagram
is plotted for fixed αs = αn = α = 1.5 using βs = βnββ = β as a control param-
eter. The difference Θn − Θs was chosen as a property of the solution because
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it is is zero for equatorially-symmetric solutions. The stability of the solutions is
again shown through the linestyle with drawn (dashed) branches indicating stable
(unstable) steady solutions; the short branch between L1 and L2 contains unstable
solutions.

For small β, there is only one symmetric solution with upwelling at the equator
and sinking at the poles (Fig. 3.8a) and hence it is of TH type. At the point labelled
P1PP , the TH solution becomes unstable and two asymmetric solutions – labelled
NPP and SPP – appear. The equatorial symmetry is apparently spontaneously
broken and asymmetric solutions appear under symmetric forcing conditions. For
these NPP and SPP solutions, shown in Fig. 3.8c and Fig. 3.8d, there is no longer
equatorial upwelling or downwelling but there is only downwelling at one of the
poles. At large β, only the SA solution exists with downwelling at the equator
(Fig. 3.8b). This solution becomes unstable for values of β below those at the
point P2PP leading also to the asymmetric NPP and SPP solutions. The branches
coming from both points P1PP and P2PP are connected through the two points L1 and
L2.

(a) (b)

(c) (d)

Figure 3.8. Sketch of the four different solutions within the 3-box model. (a) TH solution; (b) SA
solution; (c) NPP solution; (d) SPP solution.

3.1.5. Imperfections
In the three-box model (3.14), the equatorial symmetry is no longer present as

soon as αn �=�� αs or βnββ �=�� βs (or both). Let us consider the case βs = βnββ = β
with αn = αs(1 + ε) for ε > 0. Physically, this means that the equator-to-pole
temperature difference is slightly larger in the northern hemisphere than in the
southern hemisphere. Imagining only a thermally driven flow, this would induce a
preference for northern sinking. When ε = 0.01 the points P1 and P2PP , present for
ε = 0 in Fig. 3.7, no longer exist (Fig. 3.9a). The SPP branch becomes an isolated
branch and separates from the connected branch. The latter branch consists of a
connection between the symmetric branch of solutions and the NPP branch. With
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increasing ε, the isolated branch shrinks to one point and it has disappeared for
ε = 0.1 (Fig. 3.9b).

When Fig. 3.7a and Fig. 3.9 are compared, one sees that although the connec-
tion between the branches is broken, one can still understand the origin of the
solution branches in the asymmetric case from the equatorially-symmetric case.
The latter hence serves as a reference case, called the perfect case, because of
its higher symmetry. The equatorial asymmetry hence introduces imperfections1

which leads to isolated branches of steady states. The imposed asymmetry (in this
case mimicking T anTT < T asTT ) introduces a preference for the northern sinking (NPP)
state.
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Figure 3.9. (a) Branches of steady solutions for ε = 0.01 of the three-box model (3.14) with
αn = αs(1 + ε) and βs = βn = β and η3 = 0.3. (b) Same as (a), but for ε = 0.1. The stability of
the branches is not indicated.

3.2. Dynamical Systems: Fixed Points
The equations governing the evolution of salinity and temperature of the two-

box model (3.4) in section 3.1 are a special case of a general system of ordinary
differential equations (ODEs), which can be written as

dx
dt

= f(x, λ, t) (3.18)

where x is the state vector in the state space R
n, f is a smooth (sufficiently differ-

entiable) vector field, λ is a parameter in the control or parameter space R
p and t

denotes time. This equations (3.18) define a continuous time dynamical system,

1From a computational point of view (see chapter 4) it is very advantageous if branches of solutions are con-
nected because it is quite difficult to find isolated branches. Hence, from this simple example we see already
that it is advisable to start computations from the most symmetric model context, such that all branches are
connected. Once these are determined, the imperfections can be studied systematically.



76 NONLINEAR PHYSICAL OCEANOGRAPHY

which is called autonomous if the vector field f does not depend explicitly on
time; otherwise it is called non-autonomous. A trajectory of the dynamical sys-
tem, starting for example at x0, is a curve in the state space x(t) satisfying (3.18),
i.e., at each point of the curve the vector field is tangent to it.

Many introductory textbooks on bifurcation theory and its applications are
available (Guckenheimer and Holmes, 1990; Wiggins, 1990; Kuznetsov, 1995;
Nayfeh and Balachandran, 1995), but are quite mathematically oriented. In Stro-
gatz (1994), a nice introduction to bifurcation theory is given, with focus on ap-
plications in physics, biology and engineering. In the next sections, the basic
ingredients of the more abstract approach are sketched with much reference to the
example in section 3.1.

3.2.1. Elementary concepts
A solution x̄ of an autonomous dynamical system at a parameter value λ̄ is a

fixed point if
f(x̄, λ̄) = 0 (3.19)

and hence any trajectory with initial conditions at the fixed point will remain there
forever.

�
Example 3.1: The Stommel two-box model

The Stommel two-box model (3.4) can be written, with x1 = T, x2 = S, as the
two-dimensional system of ODEs,

dx1

dt
= η1 − x1(1 +M(x1 − x2))

dx2

dt
= η2 − x2(η3 +M(x1 − x2))

The state space is two-dimensional (n = 2), the parameter space is three-
dimensional (p(( = 3) and the dynamical system is autonomous because the right
hand side does not depend explicitly on t. Examples of trajectories were plot-
ted in Fig. 3.3b, one of them starting at x0 = (0, 0). Examples of fixed points
were given in the previous section, i.e., for η2 = 0 a fixed point is given by
x̄1 = −1/2 +

√√
1/4 + η1, x̄2 = 0.

�

In the analysis of the linear stability of a particular fixed point x̄ at λ̄, small
perturbations y are assumed to be present according to

x = x̄ + y (3.21)

and linearization of (3.18) around x̄ gives

dy
dt

= J(x̄, λ̄)y (3.22)
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where J is the Jacobian matrix given by

J =

⎡
⎢
⎡⎡
⎣⎢⎢

∂f1

∂x1
· · · ∂f1

∂xn
· · · · · · · · ·
∂fnff
∂x1

· · · ∂fnff
∂xn

⎤
⎥
⎤⎤
⎦⎥⎥ (3.23)

For example, for the Stommel two-box model the Jacobian matrix was given in
(3.13). The set of equations (3.22) has solutions y(t) = eσtŷ which, when substi-
tuted, leads to an eigenvalue problem for the complex growth factor σ = σr+ iσi,

σŷ = J(x̄, λ̄)ŷ (3.24)

A special role have those fixed points, for which σr �= 0�� for all eigenvalues σ, and
these are called hyperbolic fixed points. In Technical box 3.1, the local behavior
near fixed points in a two-dimensional system is given. The eigenvalues of the
Jacobian totally determine the local behavior of the trajectories near the fixed
points, except in nonhyperbolic cases (for example, at a center).

Technical box 3.1:
Stability of fixed points in R

2

Consider the two-dimensional linear system ẋ = Ax or written out as

dx

dt
= ax+ by (3.25a)

dy

dt
= cx+ dy (3.25b)

and assume that detA = ad− bc �= 0�� . The only fixed point of these equations is
x = y = 0. Its stability is determined by the eigenvalues of A; indicate these with
σ and τ . These can both be real or they can form a complex conjugate pair; in the
latter case σ = α + iβ, τ = α − iβ. From linear algebra, we use the fact that
there exists a nonsingular matrix T such that with the transformation x̃ = Tx, the
dynamical system is written as

˙̃x = TAT−1x = Bx̃

where B has the same eigenvalues as A.

The different cases are related to the different forms of the matrix B and can
be conveniently visualized by plotting the local trajectories (also called phase
portraits) near the fixed point (Fig. 3.10). The matrix B has one of the following
expressions:
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(i) Improper node I

B =
�
σ 0
0 τ

�

, σ < τ < 0 or 0 < σ < τ

In this case, we have solutions x(t) = C1exp(σt), y(t) = C2exp(τt). For
σ < τ < 0, the fixed point is stable and for 0 < σ < τ it is unstable. The
phase portrait for an example is plotted in Fig. 3.10a.

(ii) Improper node II

B =
�
σ 0
1 σ

�

, σ �= 0��

In this case, we have solutions x(t) = C1exp(σt), y(t) = (C2 + t)exp(σt)
and hence the fixed point is unstable if σ > 0 and stable when σ < 0. The
phase portrait for an example is plotted in Fig. 3.10b.

(iii) Proper node

B =
�
σ 0
0 σ

�

, σ �= 0��

In this case, we have solutions x(t) = C1exp(σt), y(t) = C2exp(σt) and
hence y = kx, where k = C2/C1; the fixed point is unstable if σ > 0 and
stable when σ < 0. The phase portrait for an example is plotted in Fig. 3.10c.

(iv) Focus

B =
�
α β
−β α

�

, α �= 0�� , β �= 0��

In this case, if we transform to polar coordinates x = r cos θ, y = r sin θ,
we have solutions r(t) = C1exp(αt), θ(t) = −βt + C2. When α > 0, the
fixed point is unstable while for α < 0, it is stable. The phase portrait for an
example is plotted in Fig. 3.10d.

(v) Center

B =
�

0 β
−β 0

�

, β �= 0��

In this case, if we again transform to polar coordinates x = r cos θ, y = r sin θ,
we have solutions r(t) = C1, θ(t) = −βt + C2. The fixed point is neither
stable nor unstable, and it is called neutrally stable. The phase portrait for an
example is plotted in Fig. 3.10e.

(vi) Saddle

B =
�
σ 0
0 τ

�

, σ < 0 < τ

In this case, we have solutions x(t) = C1exp(σt), y(t) = C2exp(τt) and
hence the fixed point is always unstable. The phase portrait for an example is
plotted in Fig. 3.10f.
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Figure 3.10. Overview of the different local phase portraits for a two-dimensional dy-
namical system. Here, a, b, c and d are entries of the matrix A and σ, τ are its
eigenvalues. The figures below were made with the Matlab package pplane6; see also
http://www.math.iupui.edu/∼// mtc/Chaos/phase.htm (a) stable improper node I; a = -4, b = -1, c
= -3, d = -2; σ = −1, τ = −5. (b) stable improper node II; a = -1, b = 0, c = 3, d = -1; σ = −1,
τ = −1. (c) stable proper node; a = -2, b = 0, c = 0, d = -2; σ = −2, τ = −2. (d) stable focus;
a = -2, b = -3, c = 3, d = -2; σ = −2 + 3i, τ = −2− 3i. (e) center; a = 0, b = 1, c = -1, d = 0;
σ = i, τ = −i. (f) saddle; a = 1, b = 2, c = 2, d = 1; σ = −1, τ = 3. (g) Different behavior of
local trajectories in the (detA, trA) plane.
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The different cases can be conveniently ordered in a diagram (Fig. 3.10g) of
the determinant of A versus the trace of A, where

detA = ad− bc = στ (3.26a)

trA = a+ c = σ + τ (3.26b)

The curve (trA)2 = 4 detA separates the nodes from the focus phase portraits.

Near a hyperbolic fixed point, the local solution structure of the linearized sys-
tem is the same as that of the nonlinear system. This is a consequence of the
so-called Hartman-Grobman theorem (Guckenheimer and Holmes, 1990). When
qualitative changes occur in the fixed point solutions of the dynamical system,
such as the changes in type or number of solutions, the dynamical system is said
to have undergone a bifurcation. This can only occur at nonhyperbolic points.
For example in Fig. 3.7, the number of solutions changes when the value of β
crosses the points P ; the same happened in Fig. 3.4b at the points L. In the state-
parameter space formed by (x, λ), locations at which bifurcations occur are called
bifurcation points. The points L in Fig. 3.4b and P in Fig. 3.7 are examples of
such bifurcation points. A bifurcation diagram is a graph in which the variation
of the solutions of a particular problem is displayed in the state-control parameter
space and Fig. 3.4b and Fig. 3.7 are notable examples. A bifurcation that needs at
least m parameters to occur is called a codimension-m bifurcation. As both the
bifurcation points L and the bifurcation points P occur as one parameter (η2 and
β, respectively) is varied, these are examples of codimension-1 bifurcations.

3.2.2. Codimension-1 bifurcations
Transition behavior in the structure of fixed points will occur near bifurcation

points. How this will happen depends on how eigenvalues of the Jacobian matrix
J will cross the imaginary axis as parameters are changed. When J has real co-
efficients, either real eigenvalues or complex conjugate pairs of eigenvalues cross
this axis. Hence, when a single parameter is involved, two different situations can
occur: a single real eigenvalue or a complex conjugate pair of eigenvalues can
cross the imaginary axis.

3.2.2.1 A single zero eigenvalue
The simplest case is a crossing of one real eigenvalue at a non-hyperbolic point

(x̄ = 0, λ̄ = 0) through variation of only one parameter. This, for example,
happens in Fig. 3.5 at the point L1, where one eigenvalue crosses the imaginary
axis. At L1, one eigenvalue in (3.11) is exactly zero (σ = 0); let the eigenvector
be indicated by v. General methods exists (see Technical box 3.2) which relate
the solution structure of the full equations to a single scalar equation (near this
bifurcation point) of the form

g(x, λ) = 0 (3.27)

where v = x v0 for some fixed vector v0. The equation (3.27), a single equation
for a scalar variable x, is called the reduced or bifurcation equation. The point
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x = 0 is a fixed point of g and, since it is a bifurcation point, its Jacobian matrix
must have a zero eigenvalue and hence gx = 0 where the subscript indicates
differentiation to x.

Technical box 3.2:
Reduction methods

A typical reduction technique is the Lyapunov-Schmidt method which is de-
scribed in detail in Golubitsky et al. (1988), page 25-35. One can decompose
the space R

n into a vector along the nullspace of J , say kerJ , and a remain-
der space M , i.e. R

n = ker(J)
⊕
M , where

⊕
indicates the direct product

of subspaces. Application of the implicit function theorem (Guckenheimer and
Holmes, 1990) on the projection of the equations on the space M , gives that for
v ∈ ker(J),w ∈ M , one can write w = W(v, λ). Under very mild conditions
on the vector field f it can be shown that there exists a mapping φ such that

f(v + W(v, λ), λ) = 0⇔ φ(v, λ) = 0

If v0 is a vector in ker J , then one can write v = xv0, with x ∈ R and the zeroes
of φ(v, λ) = 0 correspond to those of

g(x, λ) =< v0, φ(xv0, λ) >

where<,> is the standard inner product on R
n. In this way, bifurcation equations

can be derived for very general dynamical systems.

Within the theory, it can furthermore be proven that (Golubitsky et al., 1988):

(i) A finite number of coefficients in the Taylor series of g in (3.27) near the point
(x = 0, λ = 0) fully determines the solution structure when λ is locally varied.
Note that these coefficients are directly related to derivatives of g to x and λ
near the origin, since

g(x, λ) = g(0, 0) + gx(0, 0)x + gλ(0, 0)λ + gxx(0, 0)
x2

2
+ ...

(ii) All dynamical systems having a bifurcation equation with the same conditions
on the derivatives of g as a certain prototype system, called the normal form,
may be transformed (through a coordinate transformation) into this normal
form. These systems locally have thus the same solution structure as that of the
normal form. Techniques how to derive these normal forms are well described
in Guckenheimer and Holmes (1990).
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The above remarks indicate that normal forms play a central role in the classi-
fication of the changes in solution structure when parameters are changed. For
the one-parameter case in which non-hyperbolicity is induced by one single zero
eigenvalue, there are three important normal forms which arise in applications.

The first normal form is that of the fold or saddle-node bifurcation (also called
limit point or turning point). For δ ∈ {−1, 1}, it is given by

g(x, λ) = λ+ δx2 (3.28)

Indeed g(0, 0) = gx(0, 0) = 0, but the derivatives gλ(0, 0) and gxx(0, 0) are
nonzero. For δ = −1, steady solutions x̄ = ±

√√
λ only exist when λ > 0

(Fig. 3.11a). The stability of these states is determined by the sign of the ’Ja-
cobian’ gx = −2x and hence the solution x̄ =

√
λ is stable and the solution

x̄ = −
√
λ is unstable. For δ = 1, solutions x̄ = ±

√
−λ occur only for nega-

tive λ; the branch with positive (negative) x̄ is unstable (stable) (Fig. 3.11b). The
points L1 and L2 in Fig. 3.4b are examples of saddle-node bifurcations.

λ

x

(a)

λ

x

(b)

Figure 3.11. Bifurcation diagram of the saddle-node bifurcation (3.28) for (a) δ = −1 and (b)
δ = 1. A drawn (dashed) curve indicates stable (unstable) steady solutions.

The second normal form is that of the transcritical bifurcation which, again for
δ ∈ {−1, 1}, is given by

g(x, λ) = λx+ δx2 (3.29)

Again g(0, 0) = gx(0, 0) = 0, but now also gλ(0, 0) = 0. The first nonzero
derivative is the second order derivate gxx(0, 0). For δ = −1, steady solutions are
given by x̄ = 0 and x̄ = λ whereas for δ = 1, the steady solutions are x̄ = 0 and
x̄ = −λ. With Jacobian gx = 2δx + λ, the stability of each steady state is easily
determined and the solutions are shown in Fig. 3.12a and Fig. 3.12b for δ = −1
and δ = 1, respectively. In both cases, there is a simple exchange of stability
properties between two different steady states. Transcritical bifurcations did not
appear in the Stommel two-box model.

The third normal form has one additional zero derivative, i.e., gxx(0, 0) = 0 and
is that of the pitchfork bifurcation. The bifurcation equation is, for δ ∈ {−1, 1},

g(x, λ) = λx− δx3 (3.30)
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Figure 3.12. Bifurcation diagram of the transcritical bifurcation for (a) δ = −1 and for (b)
δ = 1. A drawn (dashed) curve indicates stable (unstable) steady solutions.
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Figure 3.13. Bifurcation diagram of the pitchfork bifurcation for (a) δ = −1 and (b) δ = 1. A
drawn (dashed) curve indicates stable (unstable) steady solutions.

Consider the case δ = 1. For λ < 0, there is only one steady solution (or fixed
point) x̄ = 0, but for λ > 0, three fixed points exist, i.e. x̄ = 0 and x̄ = ±

√
λ.

Hence, the number of fixed points changes as λ crosses zero. To determine the
stability of the fixed points, the eigenvalues σ of (3.24) with the Jacobian matrix
gx = λ − 3x2 must be considered at the fixed points. For x̄ = 0, it follows that
σ = λ, indicating that x̄ = 0 is stable for λ < 0 but unstable for λ > 0. At
both additional fixed points existing for λ > 0, it follows that σ = −2λ, showing
that these are both stable (Fig. 3.13b). This bifurcation is called a supercritical
pitchfork bifurcation since the symmetrically related nontrivial solutions exists
for λ > 0. The case δ = −1, a subcritical pitchfork bifurcation, is shown in
Fig. 3.13a. The points P in Fig. 3.7 are examples of pitchfork bifurcations.

3.2.2.2 A single complex conjugate pair of eigenvalues
Whereas in the previous bifurcations, the number of fixed points changed as a

parameter was varied, it is also possible that the character of the solution changes
from steady to oscillatory. The normal form of this type of bifurcation, called
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Poincare-Andronov-Hopf bifurcation, or simply´ Hopf bifurcation is given by

dx

dt
= λx− ωy − δx(x2 + y2) (3.31a)

dy

dt
= λy + ωx− δy(x2 + y2) (3.31b)

It can be easily checked that at λ = 0, the Jacobian matrix J of the zero state
has a pair of complex conjugate eigenvalues σ = ±iω. Using the transformation
x = r cos θ , y = r sin θ, (3.31) is transformed into

dr

dt
= λr − δr3 (3.32a)

dθ

dt
= ω (3.32b)
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Figure 3.14. Bifurcation diagrams of the Hopf bifurcation for (a) the subcritical case δ = −1
and (b) the supercritical case δ = 1. In the (r, λ) diagrams, a drawn (dashed) curve with r = 0
indicates a stable (unstable) steady state. A drawn (dashed) curve with r �= 0�� indicates a stable
(unstable) periodic orbit. The periodic orbits and steady states are also drawn in the (x, y, λ)
diagrams.

Comparing (3.32a) with (3.30), it can be seen that a pitchfork bifurcation oc-
curs at λ = 0 in the (r, λ) plane; consider again δ = 1. For λ < 0, only one stable
fixed point exists, which corresponds to a steady solution of the original equa-
tions (3.31). However, for λ > 0 the stable nontrivial fixed point is now a closed
trajectory with a period 2π/ω and this is a periodic solution of the original equa-
tions (3.31). Hence, a transition of steady behavior to periodic behavior occurs
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as λ crosses zero; a Hopf bifurcation occurs. The bifurcation diagram is shown
in Fig. 3.14a for the subcritical case (δ = −1); the supercritical case (δ = 1)
is shown in Fig. 3.14b. Hopf bifurcations did not occur in the Stommel two-box
model discussed in section 3.1.

The emergence of the periodic orbit can be seen explicitly by computing trajec-
tories of the equations (3.31) with δ = ω = 1 for a value of λ below (λ = −0.1)
the Hopf bifurcation and one above (λ = 0.1) the Hopf bifurcation. As initial
condition, the point (x, y) = (0, 2) is chosen. For λ = −0.1 (Fig. 3.15a), the tra-
jectory spirals in and finally ends up at the stable fixed point (0, 0). However, for
λ = 0.1 (Fig. 3.15b), it spirals to a periodic orbit with radius r = 1/

√
10 which

arises through the Hopf bifurcation. A trajectory starting at (0, 0.1) is also plotted
as the dashed curve in Fig. 3.15b and demonstrates that the origin (x, y) = (0, 0)
has become an unstable fixed point; also this trajectory spirals to the periodic
orbit.
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Figure 3.15. Trajectories of the equations (3.31) with ω = δ = 1 and (a) λ = −0.1 and (b)
λ = 0.1. Initial condition for both drawn trajectories in (a) and (b) is the point (0, 2); in (b) also
a trajectory starting at (0, 0.1) is shown as the dashed curve. Arrows indicate the direction of time
along the curves.

3.2.3. Imperfection theory
Normal forms play a central role in the theory of bifurcations and are the

most elementary equations exhibiting some type of bifurcation behavior. In the
codimension-1 case here, a normal form is expressed as a single bifurcation equa-
tion g(x, λ) = 0. One may ask what happens when g is slightly perturbed, for
example when small changes occur in the model under investigation. Does the so-
lution structure change and if yes, can one determine a priori how? The changes
in solution structure under perturbations of the vector field is usually referred to as
imperfection theory. An illustrative example is the imperfection of the pitchfork
bifurcation, with normal form (3.30). The latter normal form exhibits a reflection
symmetry with respect to x = 0, since g(−x, λ) = −g(x, λ). This symmetry
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property of the reduced equation is inherited from a symmetric model set-up, due
to geometrical symmetry or symmetry in the forcing conditions. For example, the
three-box model (3.16) has a reflection symmetry under equatorially-symmetric
forcing conditions.

Slight perturbations from symmetry in a particular model will also destroy the
symmetry in the reduced equation. For the three-box model (3.16), an example
was shown when the forcing was considered slightly asymmetric (αn > αs). This
asymmetry immediately shows up in the reduced equation which becomes

G(x, λ) = ε+ λx− x3 (3.33)

for some (small) ε. When ε = 0, a pitchfork bifurcation occurs at (x = 0, λ = 0),
but for ε �= 0�� , the pitchfork bifurcation is no longer present because the reflection
symmetry no longer exists. Bifurcation diagrams are sketched for both negative
and positive ε in Fig. 3.16 and show different reconnections of the branches. In
both cases, there is only one solution for negative λ (approximately given by x =
−ε/λ < 0 for small ε) and three solutions exist for large positive ε.
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Figure 3.16. Bifurcation diagrams for the reduced equation G(x, λ) = ε+λx−x3 for different
values of ε with (a) ε = −0.1, (b) ε = 0 and (c) ε = 0.1. A drawn (dashed) curve indicates stable
(unstable) steady solutions.

Another example is the imperfection of the transcritical bifurcation given by

G(x, λ) = ε+ λx+ x2 (3.34)

For ε = 0, a transcritical bifurcation occurs at (x = 0, λ = 0), but for ε �= 0�� ,
this bifurcation is no longer present. The different reconnections for this case are
shown in Fig. 3.17 both for positive and negative ε. For ε < 0, the stable and
unstable branches connect up, whereas for ε > 0 an unstable and stable branch
connect to give two saddle-node bifurcations. In the latter case, a window in λ
opens where no steady solutions exist.

More general theory for imperfections of bifurcations exists (Golubitsky et al.,
1988). In short, the concept needed is that of a k−parameter unfolding of g (al-
ready indicated by G above) which can be considered as a perturbation on g, i.e.,

G(x, λ, α1, ..., αk) = 0
G(x, λ, 0, ..., 0) = g(x, λ)
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Figure 3.17. Bifurcation diagrams for the reduced equation G(x, λ) = ε+λx+x2 for different
values of ε with (a) ε = −0.1, (b) ε = 0 and (c) ε = 0.1. A drawn (dashed) curve indicates stable
(unstable) steady solutions.

where the αk are additional parameters. For example in (3.33), k = 1, α1 = ε and
g(x, λ) = λx − x3. The theory provides a classification of bifurcation behavior
through the following results

(i) For each normal form, there is one unfolding – the universal unfolding – which
captures every solution structure for every possible perturbation of g.

(ii) This universal unfolding requires a minimum number of parameters, say indi-
cated by kmin.

For the saddle-node bifurcation, the universal unfolding is the normal form
itself and kmin = 0. This indicates that slight changes in the vector field will have
no effect on the local solution structure of the saddle-node bifurcation. For the
transcritical bifurcation, the universal unfolding is given by

G(x, λ, ε) = δx2 + λx+ ε (3.36)

with kmin = 1. This defines a one-parameter family of bifurcation diagrams with
parameter ε as shown for δ = 1 in Fig. 3.17.

For the pitchfork bifurcation, the universal unfolding is

G(x, λ, α, β) = λx− δx3 + αx+ β (3.37)

with kmin = 2, defining a two-parameter family of bifurcation diagrams. Whereas
in Fig. 3.16, the special case δ = 1, α = 0 and β = ε was presented, the more
general picture of different solutions in the (α, β)-plane is shown in Fig. 3.18
for δ = 1. For α = 0, indeed the changes occur from regime (1) to (2) when
β is varied, which corresponds to Fig. 3.16, but for α �= 0�� additional saddle-
node bifurcations may occur on the disconnected branches (regimes (3) and (4)
in Fig. 3.18). Although quite abstract, the existence of a classification scheme of
bifurcation behavior is a beautiful and powerful result.
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Figure 3.18. A two-parameter family of bifurcation diagrams of the unfolding G(x, λ, α, β) =
λx− δx3 + αx+ β of the pitchfork bifurcation for δ = 1 (Golubitsky et al., 1988).

3.2.4. Codimension-2 bifurcations
As we have seen, multiple stable steady states in a particular model can occur

due to a pitchfork, a transcritical or a saddle-node bifurcation, whereas a Hopf bi-
furcation may introduce temporal variability through the appearance of a periodic
orbit. These bifurcations occur when changing only one parameter in the system
and are associated with the crossing of only one real eigenvalue (or a pair of com-
plex conjugated eigenvalues) through the imaginary axis. There are several ways
in which more complicated bifurcations may arise. Only two examples are given
below for which also alternative representations of the dynamics are presented.

3.2.4.1 The cusp bifurcation
The first example is the cusp bifurcation, where higher-order derivatives in the

normal form become zero through variation of a second parameter. The normal
form of the cusp is given by

g(x, λ, α) = λ− αx− x3 (3.38)

for which gxx(0, 0) = 0, but gxxx(0, 0) �= 0�� . The different diagrams in the (α, λ)
plane are sketched in Fig. 3.19. Instead of sketching the different bifurcation
diagrams as in Fig. 3.18, now pictures of the function g are drawn as dotted curves.
Intersections with g = 0 provide steady states and their stability is indicated by
the arrows; if one of the arrows points away from the steady state, it is unstable.
Hence, the arrows indicate the directions of the one-dimensional trajectories.

In the region within the two curves C1 and C2CC , there are three equilibria of
which two are stable and one is unstable. On the curves C1 and C2CC , the function
g(x) just becomes tangent to the x-axis and two equilibria, instead of three, appear.
For λ = 0, three solutions exist if α < 0 and only one if α > 0. For α = λ = 0,
the dotted curve shows the function g(x) = −x3, which gives one fixed point, the
cusp point, of which the stability can only be decided after further analysis. The
point Q in Fig. 3.4c is an example of a cusp bifurcation.
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Figure 3.19. Sketch of the solution structure in the (λ,α) plane of the reduced equation g(x,λ) =
λ−αx−x3. Within the region bounded by C1 and C2, three solutions exist and outside this region
there is one solution; the origin is a cusp point (Kuznetsov, 1995).

3.2.4.2 The Bogdanov-Takens bifurcation
Another possibility is that additional eigenvalues of the Jacobian matrix cross

the imaginary axis. For example, when two parameters are varied within a dynam-
ical system, paths of different pitchfork bifurcations may intersect. An example is
the Bogdanov-Takens bifurcation whose normal form is given by

g1(x, y) = y (3.39a)

g2(x, y) = μ1 + μ2y + x2 + x y (3.39b)

In this case, two real eigenvalues of the Jacobian matrix

J =
(

0 1
2x̄+ ȳ x̄+ μ2

)
(3.40)

monitoring the stability of the trivial solution (x̄ = 0, ȳ = 0) simultaneously
cross the imaginary axis when μ2 crosses zero. The solution structure can be ana-
lyzed in quite detail, but this would go too far within this text (see Guckenheimer
and Holmes (1990)). The change in solution structure is plotted as a diagram
(Fig. 3.20) of the trajectories in the two-parameter plane (μ1, μ2). Intersections
of trajectories, or points where trajectories originate or disappear, indicate steady
states while closed curves indicate periodic orbits. In the region where μ1 < 0 and
μ2 < 0, there are two steady states of which one is stable (a focus, see Technical
Box 3.1) and one is unstable (a saddle). Along the line μ1 = 0, both equilib-
ria disappear through a saddle-node bifurcation and no steady states exist when
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Figure 3.20. Solution structure near a Bogdanov-Takens bifurcation (Guckenheimer and Holmes,
1990). This codimension-2 bifurcation is located at the origin and phase space trajectories (the
curves containing an arrow) are plotted to show the solution structure at nearby values of the
parameters. Closed curves are periodic orbits. At the line μ1 = 0, saddle-node bifurcations occur,
while along the curve μ1 = −μ2

2, Hopf bifurcations occur.

μ1 > 0. Hopf bifurcations occur along the curve described by μ1 = −μ2
2 leading

to periodic orbits left of this curve.

3.3. Periodic Solutions and their Stability
A solution of a general dynamical system is a periodic solution with period P

if it satisfies

dx
dt

= f(x, λ, t) (3.41a)

x(t+ P) = x(t) (3.41b)

such that x(t + τ) �=�� x(t) for 0 ≤ τ ≤ P. It will be useful to relate periodic
solutions to fixed points of a mapping; this is the subject of section 3.3.1. Next,
the stability of periodic orbits is considered (in section 3.3.2) through Floquet
analysis.

3.3.1. Poincaré section and Poincar´´ e map
To define a Poincare map, a hypersurface´ Σ in the state space R

n, for example a
line segment in two-dimensional state space or a plane in three-dimensional state
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space, is chosen such that the periodic orbit is not tangent to it for all time t, i.e.,
when

n.f �= 0�� (3.42)

Here, n is the normal to the hypersurface (Fig. 3.21) and f the right hand side
(the vector field) of (3.41a). This hypersurface is called a Poincaré section and it´

Σ
+

Q f

n

x( t )

Figure 3.21. Sketch of a one-sided Poincaré section. A periodic orbit is sketched which intersects´
the Poincare section at the point Q. The vector´ f is the tangent to the trajectory at Q and n is the
outward normal of Σ+ at Q.

is one-sided (notation Σ+) when the sign of n.f at the intersection of trajectories
and Σ are the same each time the surface is crossed.

In non-autonomous systems, the period P of the periodic orbit is usually ex-
plicitly known. In applications, this may be the period of the seasonal cycle, ap-
pearing for example, in a climate model with seasonal forcing. Remember that for
such a periodic solution, the vector field f is periodic with period P. This property
can be explicitly used to construct a Poincaré section, as shown in Fig. 3.22, by´
stroboscopically measuring the state variables at intervals P.

t t + P t + 2 P

x
2

x
1

Poincare section

Figure 3.22. Sketch of a one-sided Poincar´ section for a non-autonomous system.´



92 NONLINEAR PHYSICAL OCEANOGRAPHY

Let a periodic orbit intersect a one-sided Poincaré section´ Σ+ at successive
intersections indicated by {x1,x2,x3, · · ·} then the Poincaré map P : Σ+ → Σ+

is defined as
xk+1 = Pxk (3.43)

It immediately follows that if the Poincaré map has a fixed point, i.e.´ Pxk = xk,
then the dynamical system from which the map is derived has a periodic orbit.
Hence, once a Poincare section is found, periodic orbits can be directly related to´
fixed points of the Poincaré map on this section.´

�
Example 3.2: Poincaré section´

Consider the system of equations (3.31) for δ = 1 and ω �= 0�� , in particular its
formulation in polar coordinates (3.32),

dr

dt
= λr − r3

dθ

dt
= ω

At λ = 0, a Hopf bifurcation occurs and for λ > 0, a periodic orbit having a
period P = 2π/ω exists and is described by

r =
√
λ ; θ = ωt

A Poincare section can be chosen (for certain´ θ0) as

Σ+ = {(r, θ) ∈ R× [0, 2π) | θ = θ0}

In this case, the normal in polar coordinates is given by n = (0, 1) and (on the
periodic orbit) f = (0, ω) such that Σ+ is a one-sided Poincaré section if´ ω �=��
0. If we choose θ0 = π/2, then in Cartesian coordinates, the Poincaré section´
is parallel to the y−axis. For example, in Fig. 3.15 one could take the interval
y ∈ (0, 1] as a Poincare section.´

There are very few examples where a Poincaré map can be explicitly computed´
but in this example it is possible because explicit solutions exists of the trajectories
for all initial conditions (r0, θ0) at t = t0. Using the indefinite integral,∫

dx

α1x3 + α2x
=

1
2α2

ln | x2

α1x2 + α2
|

the closed form solution (r(t), θ(t)) is

r(t; t0) =
[
(

1
r2

0

− 1
λ

)e−2λ(t−t0) +
1
λ

]− 1
2

θ(t; t0) = ω(t− t0) + θ0
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A trajectory with initial conditions at (r0, θ0) intersects Σ+ at times tk = t0 +
2kπ/ω. As the time difference between subsequent intersections (needed for the
Poincare map) is´ 2π/ω, this gives

rk+1 = P (rk) =
[
(

1
r2
k

− 1
λ

)e
−4πλ
ω +

1
λ

]− 1
2

Fixed points of the Poincaré map P (r) are defined by P (r∗) = r∗ and a short
calculation gives indeed r∗ =

√
λ. This Poincare map is plotted as the dotted´

0
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0 0.5 1 1.5 2

P(r) r
k+1

r, r
k
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Figure 3.23. (a) Intersections rk of the two trajectories in Fig. 3.15b (for λ = 0.1 and ω = 1.0)
with the one-sided Poincar´ section´ r > 0, θ0 = π/2. Subsequent intersections are labelled with
k; the diamonds and triangles represent the intersections of the trajectories starting in (0,2) and
(0,0.1), respectively. (b) Plot of the Poincar´ maprr P (r) as in (3.22) together with the intersections
rk as in (a), but replotted as rk+1 versus rk. The fixed point of the Poincar´ map P (r) is at
r∗ =

√
λ = 0.3162.

curve in Fig. 3.23b for the case λ = 0.1, ω = 1 for which trajectories were plotted
in Fig. 3.15b. The intersections rk of the two trajectories with the Poincaré section´
defined by r > 0, θ0 = π/2 are plotted versus k — which monitors the subsequent
intersections — in Fig. 3.23a. They are replotted in Fig. 3.23b as rk+1 versus rk
and indeed move along the Poincaré map. With increasing´ k, the fixed point r∗ is
reached.

�

3.3.2. Floquet theory
To determine the stability of a periodic solution X(t) at λ = λ0, which satisfies

dX
dt

= f(X, λ0, t) (3.46)
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and has period P, we consider infinitesimally perturbations y such that

x(t) = X(t) + y(t) (3.47)

Substituting (3.47) into (3.41) and neglecting quadratic interactions in y, the evo-
lution equations for the perturbations are

dy
dt

= J(X(t), λ0, t)y (3.48)

where J is the Jacobian matrix, which now contains time-periodic coefficients.
Consider first the case of an autonomous system. The linear system of equa-

tions (3.48) has n independent solutions yj , j = 1, · · · , n which can be written
in matrix form as Y (t) = [y1, ...,yn], i.e.

dY

dt
= J(X(t), λ0)Y (3.49)

The matrix Y is called the fundamental solution. If we change variables τ = t+P
then Y (τ) is also a solution of (3.49) since J(X(τ − P), λ0) = J(X(τ), λ0).
Because the yj are linearly independent, Y (t + P) can be expressed into Y (t)
through

Y (t+ P) = ΦY (t) (3.50)

where Φ is a constant matrix, that is called the monodromy matrix. If one chooses
Y (0) = I , where I is the identity matrix, then Φ = Y (P).

The eigenvalues ρj of Φ are called Floquet multipliers. In the simplest case,
these are all different and, if Z is the matrix of eigenvectors, the eigenvalue prob-
lem can be written as

ΦZ = ZR (3.51)

where R is a diagonal matrix with the Floquet multipliers as entries. If we
multiply (3.50) and (3.51) from the left with Z−1 and introduce new variables
V = Z−1Y , we find from (3.50) that V (t+P) = RV (t). Written out in compo-
nents, this gives

vj(t+ P) = ρjvj(t)
vj(t+ 2P) = ρjvj(t+ P) = ρ2

jvj(t)
(3.52)

and more general
vj(t+NP) = ρNj vj(t) (3.53)

The last equation shows that, since the yj and hence the vj provide the direction
of the disturbances from the periodic orbit, the periodic orbit is stable when all
Floquet multipliers ρj are within the unit circle, i.e., | ρj |< 1 for all j = 1, · · · , n.

If a trajectory starts exactly at the periodic orbit it will stay on the orbit.
However, when a trajectory starts near the orbit, it may diverge from or con-
verge to the orbit which defines the stability of the orbit. The degree of diver-
gence/convergence is measured by the Floquet multipliers. Already from this
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view, it is clear that perturbations along the orbit do neither diverge nor converge
from the periodic orbit; hence for autonomous systems one of the Floquet multi-
pliers is unity. This can be easily proved, since when X(t) is a periodic solution
of the autonomous system, then for every τ also X(t + τ) is a periodic solution.
For small τ , define y(t) = X(t + τ) −X(t), then y(0) is an initial disturbance
along the orbit of the periodic solution X. For every integer N , then

y(t+NP) = X(t+NP+ τ)−X(t+NP) = X(t+ τ)−X(t) = y(t) (3.54)

and hence the Floquet multiplier for this disturbance is unity.
For non-autonomous systems, the stability of periodic orbits is determined in

the same way as for autonomous systems, by considering the Floquet multipliers,
through the construction of the monodromy matrix. The only difference with the
autonomous case is that a unit Floquet multiplier does not have to be present.

Technical box 3.3:
Unstable directions of a periodic

orbit

In many applications, one wants to determine the directions into which trajec-
tories diverge from/converge to a periodic orbit of period P. Multiplying (3.53)
for N = 1 by e−σj(t+P), where σj is a complex number, we obtain

e−σj (t+P)vj(t+ P) = ρje
−σj(t+P)vj(t)

If we define the σj (through the ρj) as ρj = eσjP , this becomes

e−σj(t+P)vj(t+ P) = e−σjtvj(t)

It follows that the vector e−σjtvj(t) is periodic with period P. The coefficients σj
are called the Floquet exponents and are determined from the Floquet multipliers
ρj (up to a multiple of 2kπi) through

σjσ =
ln | ρj | +2kπi

P ; k = 0, 1, 2, 3, ...

To determine the yj once the Floquet multipliers (and the corresponding eigen-
vectors in the matrixZ) are calculated, we substitute y(t) = e−σt vj(t) into (3.48)
and have to solve vj from

dvj
dt

= J(X(t), λ)vj + σjσ vj

with vj(0) = Z−1ej as initial condition; once this has been done, the yj = Zvj
are calculated.
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3.4. Bifurcations of Periodic Orbits
The bifurcation behavior of periodic orbits is rich and only a few interesting and

relevant examples will be given. Periodic orbits become unstable when Floquet
multipliers ρ cross the unit circle. In the most simple situation where there is only
one control parameter λ, there are three possible cases.

3.4.1. The cyclic-fold bifurcation
A case where a real Floquet multiplier ρ(λ) > 1 may occur in several situa-

tions which look similar to the codimension-one bifurcations of fixed points. In a
cyclic-fold bifurcation, the periodic orbit exists for λ < λ0, but it does not exist for
λ > λ0. This is similar to the structure of fixed point solutions near a saddle-node
bifurcation. The bifurcation diagram together with some trajectories are plotted
in Fig. 3.24. For λ1 < λ0, two periodic orbits (Fig. 3.24a) exist of which one is

λλ λ
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1 0

Hopf bifurcation

unstable steady statesuns

stable periodic orbit

unstable periodic orbit

λ
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stable periodic orbit

λ λ< 0

λ λ
0

>

no periodic orbit

(b)

Figure 3.24. (a) Typical bifurcation diagram of a cyclic-fold bifurcation, as seen as a limit point
on a branch of periodic solutions. (b) Sketch of orbits and trajectories for values of the control
parameter left and right of the cyclic-fold bifurcation.

stable (closed circles) and one is unstable (open circles). Trajectories are attracted
to the stable orbit and diverge from the unstable one (Fig. 3.24b). For λ2 > λ0, in
Fig. 3.24a, periodic orbits do not exist anymore.

3.4.2. The period-doubling bifurcation
Consider the case where a real Floquet multiplier ρ(λ) < −1. Once a Floquet

multiplier becomes −1, it follows from (3.53) that vj(t + NP) = (−1)Nvj(t).
Hence, after two periods of oscillation, the perturbation is returning to its original
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value indicating that this bifurcation introduces a subharmonic frequency (with
twice the period of the original orbit) into the behavior of the dynamical system.
This bifurcation is therefore called a period-doubling or flip bifurcation. The bi-

λ
0

λ λ

x

1 λ
2

Periodic orbits

period P

s u

period doubling bifurcation

period 2P

(a)

stable periodic orbit

λ λ
0

<

λ λ
0>

period P

stable periodic orbit
period 2P

(b)

Figure 3.25. (a) Typical bifurcation diagram of a period-doubling bifurcation at which a new
branch of periodic solutions arises. (b) Sketch of orbits and trajectories for values of the control
parameter left and right of the period-doubling bifurcation.

furcation diagram and some trajectories are sketched in Fig. 3.25. For values
λ < λ0, there is a stable periodic orbit of period P, whereas for λ > λ0 an-
other stable periodic orbit of period 2P arises, whereas the original orbit becomes
unstable.

Technical box 3.4:
Stability of fixed points of maps

The Poincare map is an example of a general class of maps defined by´

xk+1 = F(xk, λ) (3.55)

where λ is again a parameter and x a n-dimensional vector. A solution x̄ is a fixed
point of the map F if

x̄ = F(x̄, λ) (3.56)

To investigate the stability of this fixed point, we again look at perturbations
xk+1 = x̄ + yk+1. Substitution in (3.55) and linearization around x̄ leads to

yk+1 = Jyk (3.57)
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where J is the Jacobian matrix of F. Suppose the eigenvalues are real and can
be ordered as σ1 > σ2 > ... > σn, then there exists a matrix T such that with
zk = Tyk, the linearized system (3.57) transforms into

zk+1 =

⎛
⎝
⎛⎛
σ1 ... 0
0 σi 0
0 ... σn

⎞
⎠
⎞⎞

zk (3.58)

Hence, we have zjk = σjσ zjk−1 = σ2
jσ zjk−2 = ... = σkjσ zj0 and the fixed point is stable

if all eigenvalues σj satisfy | σj |< 1.

3.4.3. The Naimark-Sacker bifurcation
In this case, a complex conjugate pair of Floquet multipliers, say ρ = e±iω̃ ,

crosses the unit circle. The imaginary part of the pair of Floquet multipliers cor-
responds to a new frequency. In general, this frequency ω̃ is unrelated to the
frequency ω of the original periodic orbit. The frequencies are said to be incom-
mensurate if the equation

pω + qω̃ = 0 (3.59)

has no solutions for integer values of p and q. In this case, the trajectory moves
on a torus, where one frequency of the trajectory corresponds to the frequency of
the original periodic orbit. The second frequency originates from the destabilizing
perturbation. This bifurcation is called a Naimark-Sacker, or torus, bifurcation.
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Figure 3.26. (a) Typical bifurcation diagram of a Naimark-Sacker bifurcation, which destabi-
lizes a branch of periodic solutions. (b) Sketch of a trajectory on a torus, arising when the two
frequencies ω̃ and ω are incommensurate.

The bifurcation diagram and the motion on the torus are sketched in Fig. 3.26. In
a typical situation, a Naimark-Sacker bifurcation arises as a secondary bifurcation
(Fig. 3.26a), after a fixed point has become unstable at a Hopf bifurcation. In the
sketch of the trajectory in Fig. 3.26b, the motion associated with ω̃ is associated
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with motion normal to the axis of the torus, while the motion along its axis has
the original frequency ω.

�
Example 3.3: Floquet multipliers

Consider again the periodic orbit as in Example 3.2, which is now written as

x(t) =
√
λ cosωt

y(t) =
√
λ sinωt

for λ > 0 and ω �= 0�� . The Jacobian matrix at the periodic orbit can be obtained
from (3.31) and, for δ = 1, is given by

J(X(t), λ) =
(
λ− 3x2(t)− y2(t) −ω − 2x(t)y(t)
ω − 2x(t)y(t) λ− 3y2(t)− x2(t)

)

Next, to determine the monodromy matrix, the system dyj/dt = J(X(t), λ)yj
has to be solved for j = 1, 2 with y1(0) = (1, 0) and y2(0) = (0, 1) as initial
conditions. This has to be done numerically and the monodromy matrix Φ is
found from

Φ = (y1(
2π
ω

), y2(
2π
ω

))

The Floquet multipliers are determined as the two eigenvalues of the matrix Φ.
The first one (ρ1 = 1) is unity and the second one determines the stability of the
periodic orbit, and in this case it is within the unit circle (| ρ2 |< 1) for λ > 0.
The periodic orbit in Fig. 3.15b is therefore stable, as was already indicated by the
trajectories.

For this particular case there is also a quicker way to determine the stability of
the periodic orbits. This is done by looking at the stability of the fixed point of the
Poincare map (see Technical Box 3.4), which was explicitly computed in Exam-´
ple 3.2. The Jacobian of the Poincaré map will indicate whether intersections of´
trajectories drift away (if positive) or are attracted to (if negative) the fixed point
of the Poincare map. For the periodic orbit in Example 3.2, the stability can be´
determined from

dP

dr
|r=√λ=

d

dr

[
(

1
r2
− 1
λ

)e
−4πλ
ω +

1
λ

]− 1
2

|r=√√λ= e
−4πλ
ω (3.60)

The norm of the right hand side of this equation is smaller than unity for λ > 0
and hence the periodic orbit is stable.

�
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3.5. Global bifurcations

So far, only the changes in the local structure of the solutions was considered.
By varying a parameter, however, also changes in the global structure of the so-
lutions can occur. These changes may, for example, involve more than one fixed
point and/or periodic orbit and are associated with so-called global bifurcations.
Below we present only one type of global bifurcation, the homoclinic bifurcation,
and give an example of a simple dynamical system (the famous Lorenz model)
where it occurs.

3.5.1. Homoclinic orbits
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homoclinic orbit
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Figure 3.27. (a) Typical bifurcation diagram showing the origin of a homoclinic orbit. Along a
branch of stable periodic solutions, the period increases through the presence of a nearby unstable
steady state. At λ = λ0, a homoclinic bifurcation occurs and the periodic orbit ceases to exist. (b)
Sketch of the trajectories near a homoclinic bifurcation, showing the presence of a homoclinic orbit
at λ = λ0.

As an example of a global bifurcation, the interaction between an unstable fixed
point and a periodic orbit is considered (Fig. 3.27). Note that this behavior can
only occur in three- or higher dimensional dynamical systems. For a parameter λ1,
both fixed point and orbit are well separated but as the parameter λ is increased,
both they interact and have influence on the trajectories. The period of the or-
bit becomes longer when λ approaches λ0 and at λ0 the period becomes infinity
(Fig. 3.27a). The trajectory along the unstable direction of the steady state ap-
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proaches the same steady state again along a stable direction in infinite time; this
trajectory is called a homoclinic orbit. For values of λ > λ0, the periodic orbit has
disappeared and the unstable steady state remains (Fig. 3.27b). The presence of
homoclinic orbits can lead to very complicated, and even often chaotic, behavior.

In Wiggins (1990), it is shown that the linear stability properties of the unstable
fixed point, together with the symmetry properties of the equations, are crucial to
the type of behavior near the homoclinic bifurcation. Considering the eigenvalues
σ of the Jacobian matrix at the unstable fixed point, there are basically two cases:
(i) the first three eigenvalues σ of the linear stability problem are real, the first one
is positive (σU > 0) and in absolute value larger than the second and third (σS)
eigenvalue (σU > −σS); (ii) the first two eigenvalues form a complex conjugate
pair with negative real part (σSr ) < 0) and the third eigenvalue is real and positive
(σU > 0).

In both cases, the fixed point is unstable to only one real mode (and hence one
direction in state space), but stable to all others. If the unstable steady state is
pictured within a plane in Fig. 3.28, then the stable directions can be sketched
as occurring in that plane and the unstable direction as perpendicular to it. In
that case, the homoclinic orbit connects the unstable direction with one of the
stable directions. The different cases are distinguished by how the attraction in
the stable directions occur. In the first case, the behavior of the system is akin
to the Lorenz (1963) system (Fig. 3.28a) and in the second case (Fig. 3.28b), it
displays so-called Shilnikov-type phenomena (Shilnikov, 1965).

(a) (b)

Figure 3.28. Sketch of the two cases of homoclinic bifurcation. In panel (a), there are two stable
attracting directions in the plane and one expanding direction perpendicular to it. Both expansion
and attraction are exponential, characteristic of the Lorenz case. In panel (b), the attraction is
oscillatory whereas the expansion is exponential, characteristic of the Shilnikov case.

3.5.2. The Lorenz (1963) dynamical system

The occurrence of homoclinic orbits is not limited to the case above and can
even occur in the absence of a periodic orbit. A notable example of the latter is in
the well-known Lorenz model (Lorenz, 1963), described by the three-dimensional
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system of equations

dx

dt
= −α(x− y) (3.61a)

dy

dt
= ρx− y − xz (3.61b)

dz

dt
= xy − βz (3.61c)

with fixed α = 10, β = 8/3 and using ρ as a control parameter. The Jacobian
matrix is easily determined as

J =

⎛
⎝
⎛⎛
−α α 0
ρ− z −1 −x
y x −β

⎞
⎠
⎞⎞

(3.62)

For 0 < ρ < 1 there is a unique steady state given by x = y = z = 0, which
is stable since all eigenvalues of J are real and have negative real parts (indicated
by the minus signs in Fig. 3.29a). At ρ = 1, the trivial state loses stability at a
pitchfork bifurcation and two new steady states (C1 and C2CC ) given by

x = y =
√
β(ρ− 1), z = ρ− 1 (3.63a)

x = y = −
√
β(ρ− 1), z = ρ− 1 (3.63b)

appear, which are stable. At about ρ = 1.35, two of the three real eigenvalues
monitoring the stability of the nontrivial steady states coalesce and form a com-
plex conjugate pair (indicated by the signs within an ellipse in Fig. 3.29a). As a
result, the trajectories spiral into these steady states, while there is one direction
(associated with the real positive eigenvalue) in which trajectories diverge from
the trivial steady state as is shown in Fig. 3.29b. With increasing ρ, the trajecto-
ries from the unstable direction of the trivial steady state make wider turns and
finally a homoclinic orbit appears near ρ ≈ 15, as such a trajectory connects back
to the trivial state along an attracting direction (Fig. 3.29b).

3.6. Resonance phenomena: frequency locking

An important phenomenon which often occurs in periodically forced systems
is frequency locking. This phenomenon can be described as the existence of peri-
odic orbits with a frequency, which is a rational multiple of the externally imposed
frequency. Hence, response frequency and forcing frequency are commensurate.
Remember from section 3.2.1 that for non-autonomous systems, a Poincaré sec-
tion is easily constructed and hence the periodic orbits can be studied through a
Poincaré map.

A typical example of a map where frequency locking occurs is the circle map
given by

xn+1 = P (xn) = xn + Ω− K

2π
sin 2πxn (mod 1) (3.64)
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Figure 3.29. (a) Bifurcation diagram of the Lorenz system up to the point, where a homoclinic
orbit exists. (b) Sketch of trajectories in state space illustrating the origin of the homoclinic orbit.

on the interval [0, 1). Here, mod 1 indicates that if xn becomes larger than 1 or
smaller than 0, its value is adjusted by adding or subtracting unity to get a value
within the unit interval. Ω ∈ [0, 1) can be considered the forcing frequency and
the control parameter K is a measure of the nonlinearity of the system. When
K = 0, the iterates move over a distance Ω in every step.

The rotation number W measures the average movement of iterates over the
interval and is defined as

W = lim
n→∞

xn − x0

n
(3.65)

In this definition, the value of xn is considered without themod 1 function. Hence,
for K = 0 it follows that W = Ω. Examples of the iterates are shown in Fig. 3.30
for K = 0.1 and several values of Ω (Ω = 0.05, Ω = 1/3 and Ω = 0.5) with the
rotation numbers W provided in the caption. If the rotation number is irrational,
the orbit just fills up the whole interval and there is no periodic motion related
to Ω. This can be seen in Fig. 3.30a, where the first 500 iterates are plotted for
Ω = 0.05. However, for some values of Ω, periodic orbits occur. For example, a
period-3 orbit appears for Ω = 1/3 (Fig. 3.30b) and a period-2 orbit appears for
Ω = 1/2 (Fig. 3.30c). What is remarkable is that these periodic orbits do occur
also for irrational values of Ω, for example, for K = 0.95,Ω = 1/2 − 1/(10π)
(Fig. 3.30d). Apparently, these iterates are frequency locked to the period-2 orbits.

To look for frequency locked regions, one varies Ω for fixedK and searches for
rational rotation numbers W . The result for the circle map is shown in Fig. 3.31
and shows tongues, so called Arnold’ tongues, in which the rotation number W is
rational. Note that all the results in Fig. 3.30 are consistent with this picture. To
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Figure 3.30. Iterates xn versus n for the circle map and several values of Ω for fixed K = 0.1.
(a) Ω = 0.05,W = 4.72 × 10−2, (b) Ω = 1/3, W = 1/3, (c) Ω = 1/2,W = 1/2. In panel
(d) the iterates for K = 0.95,Ω = 1/2 − 1/(10π) are plotted. For this case, the rotation number
W = 1/2.

Figure 3.31. Plot of regions of rational rotation number in the Ω − K plane displaying the
Arnold tongues (Bak et al. (1985)) for the circle map. Note that the value of Ω at the wedge starting
at Ω = 0, K = 0 ends up at Ω = K/(2π) = 0.239 for K = 1.5.
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see how these Arnold’ tongues arise, consider the interval in Ω for which W = 0.
From the definition (3.65), one obtains xn = x0, ∀n > 1 and there is a fixed point
of the mapping P in (3.64). Hence,

x1 = x0 + Ω− K

2π
sin 2πx0 = x0 (3.66)

By taking different x0, for example x0 = 0.5 and x0 = 1.0, it is observed that
this fixed point only occurs when −K/(2π) < Ω < K/(2π). Hence, within this
wedge the rotation number W = 0 and this is exactly the wedge near Ω = 0 in
Fig. 3.31. Similar calculations can be made for the other tongues. If one plots

Figure 3.32. Plot of the regions of rational rotation number for K = 1 showing the Devil’s
staircase (Bak et al. (1985)).

the intervals of Ω against the rational values of the rotation number for fixed K, a
peculiar structure arises of a staircase where over certain intervals, W is constant.
Such a staircase, which is the famous Devil’s staircase (Bak et al., 1985), is plot-
ted for K = 1 in Fig. 3.32. In the interval Ω for which W = 1/2 periodic motion
occurs with a period which is commensurate with the forcing frequency Ω. Non-
linear resonances between both forcing and internal frequency hence cause the
synchronization of the resulting signal to multiples of the forcing frequency. The
reader is referred to the beautiful book of Pikovsky et al. (2001) for an extensive
discussion of these synchronization phenomena.

The type of dynamical behavior discussed in this chapter forms only the surface
of the deep ocean of rich dynamics displayed by maps and differential equations.
While much more is known, the different behavior sketched above give sufficient
background to understand the phenomena as presented in later chapters. In the
last section of this chapter, the question is addressed what we learn from this
bifurcation behavior with respect to the physics of the phenomena under study.
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3.7. Physics of Bifurcation Behavior

There is quite a nice connection between the physical understanding of the
time-evolution of a system and the mathematical understanding of the trajectories
in the associated dynamical system. The systematics of the theory of dynami-
cal systems is therefore very helpful to understand physical mechanisms, since a
classification of qualitative type of behavior is provided.

Note that in models of geophysical flows, one does not easily escape from the
notion of bifurcation behavior. At very large viscosity (or friction), these flows are
usually very sluggish and, in most cases, unique steady flows exist. When friction
or diffusion is decreased in these models eventually the flow in the ‘realistic’
parameter regime is very complex. In this case, bifurcation behavior will always
have occurred in the interval over which the friction or diffusion parameter has
been varied.

3.7.1. Physical constraints

Inspection of the model equations which represent dominant balances of mo-
mentum, heat, freshwater and maybe other properties in the physical system may
already a priori indicate what type of bifurcations can be expected. Usually, these
models contain a number of parameters and a modeler will pick a few of them as
control parameters, the choice being related to the question which is aimed to be
answered.

There are a few issues which are important during first inspection.

(i) Symmetry. When symmetry is present in the model equations, a restriction
will be put on the type of codimension-1 bifurcations which can occur. For
example, consider the presence of a reflection symmetry in the physical model,
such as that in the three-box model (3.14). Through the reduction process
as sketched in Technical box 3.2, such a symmetry will be inherited by the
reduced equation and for the normal form of any bifurcation, there will be a
requirement

g(−x, λ) = −g(x, λ)

Hence, when a bifurcation occurs as a parameter λ is varied, one expects
pitchfork bifurcations rather than transcritical bifurcations, because the normal
form of the latter does not satisfy the requirement above. This is only a very
elementary example of the constraints put on bifurcation diagrams through
symmetry. An enormous amount of literature exists on this subject and inter-
ested readers are referred to Golubitsky et al. (1988). For systems of equations
which have no symmetry, transcritical, Hopf and saddle-node bifurcations are
expected to occur.

(ii) Special solutions. Of particular importance are solutions which remain a so-
lution for all values of a particular control parameter λ. Sometimes this oc-
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curs in a subtle way; examples will be shown in later chapters of so-called
flux-corrected ocean/atmosphere models where such a solution is constructed.
Note that when bifurcations occur from these solutions, the requirement on the
reduced equation will be

g(0, λ) = 0

for every value of λ. This excludes the occurrence of saddle-node bifurcations
on this branch of solutions, as inspection of (3.28) confirms.

Many more of these examples, which demonstrate that a priori information on the
solution structure can be derive, exist

3.7.2. Qualitative versus quantitative sensitivity

From the very brief overview of the theory of the behavior of dynamical sys-
tems as described in the previous sections, it has become clear that bifurcations
are the most interesting points from the physical point of view, because these mark
boundary of intervals of different qualitative behavior of trajectories. For exam-
ple, the picture where trajectories are attracted to a single steady state may change
at a Hopf bifurcation into a picture where trajectories are attracted to a periodic
orbit. When changing a parameter, the state of the physical system suddenly be-
comes quite different. There is qualitative sensitivity near a bifurcation point and
the system is in a different regime on either side of the bifurcation.

When a system has more than one control parameter, say μ, the boundaries
between different regimes are marked by paths of bifurcation points in the (λ, μ)
plane. For example, a path of a supercritical Hopf bifurcations in a two-parameter
plane separates the regimes of steady and periodic behavior in that plane. An-
other example of such a regime diagram is Fig. 3.4c, where the different regimes
(regimes of unique steady solutions versus a regime of multiple equilibria) are
bounded by paths of saddle-node bifurcations.

Knowing regime diagrams and bifurcation diagrams in several control param-
eters leads to an overview of possible behavior of trajectories in the model and
the sensitivity to changes in parameters. The regime diagrams are particularly
important in models of physical systems for which parameters are poorly known.
Ocean and climate models are an example of these type of models since they, for
example, lack an adequate description of mixing processes. This introduces sub-
stantial uncertainty into the representation of subgrid-scale processes, reflected in
uncertain values of mixing coefficients.

Basically, there are two types of sensitivities of model behavior to parameters:
qualitative sensitivity and quantitative sensitivity. These concepts are explained
with help of Fig. 3.33. In Fig. 3.33a, there are two back-to-back saddle-node
bifurcations on a single branch of solutions. Suppose first that the parameter λ
is slowly varied from zero to more positive values. Between the changes in λ,
enough time is provided to let the system equilibrate to steady state. In this way,
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the state will remain close to that of the branch C1 when λ is increased up to
λ = λ1. For larger values of λ, there will a sudden transition to a state on the
branch C2, since this is the only steady state and the state will remain near C2

for larger values of λ. When the same procedure is followed with decreasing λ,
the state of the system will remain close to C2 until the value of λ2, where a
sudden jump occurs to a state on C1. Hence, transitions will occur at different
values of the control parameter depending on its direction of change and this is
characteristic of hysteresis behavior. Apart from this hysteresis, one also knows
that the solutions on the stable branches, within the region of multiple equilibria
(λ2 < λ < λ1) are sensitive to finite amplitude perturbations. For example, a
perturbation exists such that there is a transition from a stable state on C1 to one
on C2CC .
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Figure 3.33. (a) A sketch of a typical bifurcation diagram, similar to that in Fig. 3.4a, displaying
hysteresis behavior. (b) Sketch of possible changes in the bifurcation diagram as a second parameter
μ is changed with μ2 < μ0 < μ1.

In many ocean modeling studies, sensitivity of solutions is studied to parame-
ters, for example parameters in parameterizations of mixing and effects of topog-
raphy, to name a few. In many cases, a parameter value is changed by a specific
amount, the model is rerun and the changes in behavior are monitored. An ex-
ample of the changes in bifurcation diagram with the secondary parameter μ is
shown in Fig. 3.33b. Suppose, the original bifurcation diagram corresponds to
that of μ = μ0 and the two other diagrams are for μ1 and μ2, with μ2 < μ0 < μ1.
The qualitative features of the bifurcation diagram are unchanged in case μ = μ1,
but these features are totally different for μ = μ2. In the latter case, no multiple
equilibria occur anymore over the whole range of λ. Hence, there is qualitative
sensitivity to a decrease of μ, since a different regime is entered. However, the
system is not qualitatively sensitive to an increase in μ, since the same transition
behavior with λ is still possible at μ = μ1. Only the values of λ at which these
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transitions occur are quantitatively changed (shifted) and consequently there is
only quantitative sensitivity.

It is difficult to obtain a correct overview of this sensitivity by computation of
only a few trajectories of a model. Imagine that the value of λ is chosen such that
for μ = μ0, multiple equilibria occur (λ3 in Fig. 3.33b). In the first trajectory, the
model has been integrated to the steady solution marked A1. When the model is
then run for μ = μ2, one will monitor only modest changes in model behavior
when it evolves towards the state A2. Hence, one easily will conclude that the
effect represented by μ is not important, although a big qualitative change in the
bifurcation diagram has occurred. Whereas the solution A2 is globally stable
(section 2.3) to finite amplitude perturbations, the state A1 is only conditionally
stable.

As a second case, consider the value λ4, which is also in the region of multiple
equilibria for μ = μ0 and the stateB1 is obtained. When the model is now rerun at
μ = μ1, one will find a totally different state, because λ4 is not longer in the region
of multiple equilibria. Hence, one will easily attribute an enormous importance
to the change in the physical effect representing an increase in μ, whereas no
qualitative changes have occurred in the bifurcation diagram. Only computation
of full bifurcation diagrams will give correct information on the sensitivity of a
particular physical process on the solutions of a particular system.

3.7.3. Instability mechanisms

At bifurcation points, something special is happening and this has a meaning
in physical terms. Of course, precise interpretation depends on the model under
study, but a general approach can be followed as explained in the next subsections
for the codimension-1 bifurcations.

3.7.3.1 Saddle-node bifurcation

Consider a fixed point depending on the value of a particular parameter λ, for
example as in the Stommel two-box model in section 3.1 and assume that this
steady solution is linearly stable. This means that a trajectory nearby the steady
state will be attracted towards this state and that for t → ∞, the exact steady
physical balances of the model are satisfied. As λ is increased, a saddle-node
bifurcation is encountered, which is, for example, found through numerical com-
putation. Could we have argued from the physics that this bifurcation would be
located at a specific of λ? This question turns out to be difficult to answer in
general. However, in many applications, the governing equations are representa-
tions of balances (of mass, momentum or energy) of physical quantities. Hence,
we may look at an alternative problem: What happens to these balances, when a
saddle-node bifurcation appears? When a saddle-node bifurcation is encountered
at λ0, this implies that the steady balances in the model cannot be satisfied for val-
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Figure 3.34. Sketch of a situation of a saddle-node bifurcation, illustrating the approach to de-
termine its physical meaning.

ues of λ beyond λ0. One can look at which balances fail to be satisfied (most) by
computing (for a solution (x1, λ1)) the tangent (ẋ, λ̇) on the branch of solutions,
say parameterized by s, and determine the state (x2, λ2) by (Fig. 3.34)

x2 = x1 + ds ẋ (3.67a)

λ2 = λ1 + ds λ̇ (3.67b)

for a small value of ds (Fig. 3.34). The state (x2, λ2) is not a steady solution and
one can compute the non-zero residual

dx
dt

= f(x2, λ2) �=�� 0 (3.68)

when substituting this solution back into the equations. The tendencies in the left-
hand side now indicate which components of the solution vector will drift away
from the state (x2, λ2). This can give useful information on the balances which are
difficult to satisfy in steady state for λ > λ2. Balances may be difficult to satisfy
near the boundaries or integral conditions can no longer be satisfied. This can
guide physical arguments explaining the existence of the saddle-node bifurcation.

3.7.3.2 Transcricital and pitchfork bifurcation

If a transcritical bifurcation occurs at λ = λ0, this means that a stable solution
exchanges stability with some other solution. This may occur, for example, when
there is no internal symmetry in the particular model under study and a solution
for all values of λ exists. Hence, there is a smooth modification of solutions when
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a parameter is varied and the question is why there is a difference in preference
of both solutions just at λ = λ0. The same question applies to the supercritical
pitchfork bifurcation, where, in general, a stable symmetric solution is replaced
by asymmetric, but symmetry related, stable solutions.

The method to analyze this problem is to look at the eigenvectors of the linear
stability problem just at bifurcation. Left of λ0, all eigenvalues of the trivial state
are in the left half of the complex plane. At λ0 one of them moves through the
imaginary axis and the spatial pattern of the corresponding eigenvector is impor-
tant. It means that the steady solution becomes unstable to that particular pattern.
One can either start a time integration with an initial condition into this direction
or alternatively look at the perturbation equations for integral quantities, such as
the mechanical energy balances. However, a more mechanistic description of the
instability mechanism can be attempted in the following way.

To show that a steady state becomes unstable to a particular disturbance, one
must describe the causal chain of how this disturbance is amplified through its
interaction with the steady state. A mechanistic understanding of the physics of
this process can be obtained by dividing the instability process into two virtual
stages, an initiation stage and a growth stage. During the initiation stage, a pertur-
bation is assumed to be present in the system and the causal chain is described of
how the perturbation changes the steady state. During the growth stage, a descrip-
tion is provided how the changes in the steady state have feedback on the original
perturbation leading to its amplification (Fig. 3.35). Although it is in general not

perturbation modification of
the basic state

initiation stage

perturbation
transport
quantities

growth stage

Figure 3.35. Sketch of the initiation and growth stages of an instability.
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straightforward to obtain such a description, several examples will be shown in
later chapters.

3.7.3.3 Hopf bifurcation

Finally at a Hopf bifurcation, a steady solution becomes unstable to an oscil-
latory perturbation. The pattern of the most unstable oscillatory mode can be
determined from the solution of the linear stability problem (3.24) which leads to
an eigenvalue problem with eigenvector(s) ŷ and complex growth factor σ. The
corresponding complex eigenfunction ŷ = ŷR + iŷI provides the disturbance
structure Φ(t) with angular frequency σi and growth rate σr to which the steady
state may become unstable, i.e.

Φ(t) = eσrt [ŷR cos(σit)− ŷI sin(σit)] (3.69)

The evolution of this perturbation can be followed by looking, near the Hopf bi-
furcation, at Φ(−π2σi

) = ŷI and then at Φ(0) = ŷR. An attempt can be made to
understand the instability mechanism using these different phases of the perturba-
tions along similar lines as in Fig. 3.35. In most cases, the propagation mecha-
nism of the oscillation can be determined, but it is more difficult to determine the
growth of the perturbations over one period of the oscillation.

As a bridge to the next chapter, we can pose the question here whether knowing
what happens at particular bifurcation points is useful to understand the physics
of the behavior where one is interested in. When bifurcations occur at parameter
values far from those values thought as being ’realistic’ to represent the physical
system, what do physical explanations near bifurcation points mean? The answer
to this question will depend strongly on the application at hand and on the extent to
which one is able to compute the different bifurcation diagrams. But first, one has
to be able to compute bifurcation diagrams on meaningful models of the ocean,
atmosphere and climate. This problem is addressed in the next chapter.
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3.8. Exercises on Chapter 3

(E3.1) The Rooth three-box model

One of the shortcomings of the Stommel two-box model (section 3.1) is that
it only describes flow in the northern hemisphere. In a box model designed by
Rooth (1982), the flow is driven by a north-south density difference, caused by
freshwater fluxes HS and HNH only.

Figure 3.36. Overview of the three-box model suggested by Rooth (1982)

Assume that the temperature is constant and only salinity varies in the boxes.
It follows then that

q = k(S3 − S1)

where k is a transport coefficient.

a. Formulate the equations describing the evolution of the salinity in the boxes.

b. Determine the steady states of the model.

c. Show that the strength of the overturning circulation only depends on the
freshwater flux HN . What is the physical explanation for this?

Further reading: Rooth (1982) and Marotzke (2000).

(E3.2) Intersection of saddle-node bifurcations

The point Q in Fig. 3.4c is located at the boundary of the multiple equilibria
regime and the unique regime in the (η1, η2) plane.



114 NONLINEAR PHYSICAL OCEANOGRAPHY

a. Show that Q has to be on the curve of motionless solutions (Hint: consider
the sign of Ψ at each saddle-node bifurcation L).

b. Show that the coordinates of Q in the (η1, η2) are given by

Q = (
η3

1− η3
,

η2
3

1− η3
)

c. What type of codimension-2 bifurcation occurs at Q?

Further reading: Thual and McWilliams (1992).

(E3.3) Imperfection of the transcritical bifurcation

The bifurcation equation for the imperfect transcritical bifurcation is given by

g(x, λ) = ε+ λx+ x2

a. Determine all solutions of this equation for both ε > 0 and ε < 0.

b. Determine the values of λ at the saddle-node bifurcations for ε > 0.

Further reading: Iooss and Joseph (1997), chapter 2.

(E3.4) Floquet multipliers

The equation describing the motion of a pendulum with a periodically excited
support may be written as a nonlinear Mathieu equation

θ′′ + (α2 + β cos t) sin θ = 0

where θ is the angle with the vertical and β ≥ 0. Note that for β = 0, the
nonlinear pendulum equations are obtained.

a. Write the Mathieu equation as a three-dimensional first order system of
equations for θ, θ′, φ, with φ′ = 1.

b. Show that for all values of β, there exist two periodic orbits, (0, 0, φ(t))
and (π, 0, φ(t)).

Let α �=�� n/2, n = 0, 1, 2, ....

c. Show with Floquet theory that for β = 0, the orbit (0, 0, φ(t)) is stable,
while the orbit (π, 0, φ(t)) is unstable.

Further reading: Guckenheimer and Holmes (1990), chapter 3.
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(E3.5) Circle map

For the circle map as in section 3.6

P (xn) = xn+1 + Ω− K

2π
sin 2πxn (mod1)

consider the interval in Ω for which W = 1/2 (see Fig. 3.31).

a. From the definition of W , show that in this interval

x2 = x0 + 1

Let Ω = 1/2 + ΔΩ.

b. Show that by applying P twice that the ΔΩ interval for which W = 1/2 is
determined by

ΔΩ = ±πK
2

2

c. Check these values of ΔΩ in Fig. 3.31 for K = 0.1.

Further reading: Pikovsky et al. (2001), chapter 2.

(P3.1) The Van der Pol equation

In this exercise, we study the Van der Pol equation

θ′′ + (δ + ε(θ2 − 1))θ′ + θ = 0

a. With x1 = θ and x2 = θ′, write this equation as a first order system.

b. Show that the equations are invariant under the transformation

x1 → −x1, x2 → −x2

c. Compute the steady state of this equation and, for fixed δ, determine
the value of ε at the first Hopf bifurcation. Determine the period P of the
oscillation at the Hopf bifurcation.

Choose δ = 0. An approximation of the periodic orbit near the Hopf bifurca-
tion can be obtained by the so-called Method of Averaging. We seek solutions
of the form

x1(t) = a(t) cos(t+ ψ(t))
x2(t) = −a(t) sin(t+ ψ(t))
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This type of solution is motivated by the fact that near the Hopf bifurcation,
the solution has this form with a(t) and ψ(t) being constants.

d. If we write F (x1, x2) = (1− x2
1)x2, show that

da

dt
= −ε sin(t+ ψ)F (a cos(t+ ψ),−a sin(t+ ψ))

dψ

dt
= − ε

a
cos(t+ ψ)F (a cos(t+ ψ),−a sin(t+ ψ))

With ε � 1, we introduce a ‘slow’ time scale τ = εt and expand the solution
as

a(t; τ) = ā(τ) + εa1(t; τ) +O(ε2)
ψ(t; τ) = ψ̄(τ) + εψ1(t; τ) +O(ε2)

e. Substitute these expansions into the equations for a(t) and ψ(t), integrate
over the period of the oscillation P and show that

dā

dτ
= ε

ā

8
(4− ā2)

dψ̄

dτ
= 0

f. Show that the periodic orbit is stable for ε > 0.

Further reading: Sanders and Verhulst (1985).

(P3.2) Center manifold

Consider the Lorenz (1963) system of equations,

dx

dt
= −α(x− y)

dy

dt
= ρx− y − xz

dz

dt
= xy − βz

In this exercise, we are going to investigate the behavior of the system near
the pitchfork bifurcation at ρ = 1 in more detail.

a. Determine the eigenvalues and eigenvectors of the Jacobian matrix for
ρ = 1.

Write the eigenvectors q1, q2 and q3 as Q = [q1, q2, q3].
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b. Transform coordinates through (u, v, w)T = Q(x, y, z)T and derive the
nonlinear dynamical system in (u, v, w).

In the u-direction, the linearized equations show no attraction to or repulsion
from the steady state and in the v- and w− direction, trajectories are attracted
to the steady state. There exists a so-called ‘center manifold’ of the form

(v(u), w(u))T = (h1(u), h2(u))T

on which the essential dynamics takes place. This manifold is tangent to the
attracting directions at the bifurcation and hence h1(0) = h2(0) = h′1(0) =
h′2(0) = 0.

c. Expand the functions h1 and h2 into polynomials in u, and substitute these
into the equations for (u, v,w). Derive that in the center manifold, the dynam-
ics is governed by the reduced equation

du

dt
= −γu3

and determine γ.

Further reading: Guckenheimer and Holmes (1990), chapter 3.



 

 

 

 

 



Chapter 4

NUMERICAL TECHNIQUES

For progress, certain skills are necessary.
Recuerdos d’Alhambra, F. Tarrega
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If one wants to use the systematic methodology of chapter 3 on meaningful
ocean and climate models, one must be able to determine at least the codimension-
1 bifurcation points. As will become clear in this chapter, the detail of the dynam-
ical behavior which can be analyzed depends on the dimension, say N , of the
dynamical system. For systems of ordinary differential equations of small dimen-
sion (N < 10), the origin of very complex spatial and temporal dynamics can be
investigated. For example, codimension-2 bifurcations can be determined numeri-
cally by software packages such as CONTENT (Kuznetsov, 1995) (available from
http://ftp.cwi.nl/CONTENT/), DSTOOL (Guckenheimer and Kim, 1991) (avail-
able from http://www.cam.cornell.edu/guckenheimer/dstool.html) and MAT-
CONT (available from http://allserv.rug.ac.be/∼ajdhooge/research.html)

For somewhat larger dimensional models, with dimensions up to N =
100, also software is available to perform analysis of the bifurcation be-
havior of the model, but the detail of analysis becomes already less. One
highly recommended code is AUTO (Doedel, 1980) which is available from
http://indy.cs.concordia.ca/auto/. In the very clear manual, the many capabili-
ties of this program are described. For news on these packages, see for example
http://www.amsta.leeds.ac.uk/Applied/news.dir/bifurcation.html.

For systems of partial differential equations, such as arising from ocean
models (typically N = 105), two public domain packages is avail-
able. First package is the code PDECONT, described in Lust et al.
(1998) and Lust and Roose (2000), which can be obtained through
http://www.cs.kuleuven.ac.be/∼kurt/r PDEcont.html. The package LOCA is de-
veloped by Andy Salinger at Sandia National Laboratories and is available
through http://www.cs.sandia.gov/loca/.

In this chapter, numerical techniques to apply bifurcation analysis to large-
dimensional dynamical systems will be described. Doedel and Tuckermann
(2000) provide an overview of the many techniques around. The aim here is
to sketch the methods available in the code (BOOM) which has been devel-
oped in Utrecht over the years and will be further developed in Fort Collins (see
http://fractal.atmos.colostate.edu). It simultaneously provides a background on
the computational approaches used in subsequent chapters and hopefully a good
entrance to the literature for readers interested to pursue this subject further.

The starting point is a given set of partial differential equations which can be
written in operator form as

M∂u
∂t

+ Lu +N (u) = F (4.1)

where L, M are linear operators, N is a nonlinear operator, u is the vector of
dependent quantities and F contains the forcing of the system. To get a well-
posed problem, appropriate boundary conditions have to be added to this set of
equations. A typical problem will be given in section 4.1 and this problem also
serves as a testcase for illustrating the methods.
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The computational approach can be divided into three separate parts. First a
discrete representation of the model equations has to be obtained through some
kind of discretization procedure (Fig. 4.1). An overview of discretization meth-
ods is not provided here. Instead, a specific example will be considered using
only one finite difference technique (section 4.2). Having a discrete form of the

Discretisation
Techniques of
numerical bifurcation
theory

Continuous equations Basic linear algebra

Bifurcation diagram

Figure 4.1. Sketch of the scheme of the computational work involved to compute bifurcation
diagrams.

equations, in many cases the model can now be treated as a set of ordinary dif-
ferential equations with or without algebraic constraints. The second part of the
computational work is to apply specific techniques of numerical bifurcation the-
ory (Fig. 4.1). These are the same techniques which are used in the packages for
the smaller dimensional systems, such as AUTO, MATCONT and CONTENT.

For the example problem, the scheme below will be followed in subsequent
sections. Note that this is a similar scheme as was used to analyze the Stommel
(1961) two-box model in section 3.1.

(i) Determine the fixed points ū of the system of equations when parameters are
changed, i.e., solve the problem

Lū +N (ū) = F (4.2)

This will be done using continuation methods which are presented in section
4.2. Their description follows closely texts in Seydel (1994) and Nayfeh and
Balachandran (1995).

(ii) When one is able to compute a branch of steady solutions in a control param-
eter, one wants to know whether a bifurcation point has been crossed, whether
other branches exist and if yes, how they can be reached. Practical techniques
to do so are provided in section 4.3.
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(iii) If a steady state is computed, one wants to assess its linear stability. With
u = ū + ũ, linearizing (4.1) around ū and separating ũ = û eσt gives an
eigenvalue problem of the form

(L+NuNN (u))û = −σMû (4.3)

where NuNN is the derivative of the operator N with respect to u. The solution
of these eigenvalue problems is discussed in section 4.4

(iv) Finally, one wants to compute trajectories of the model under investigation, ei-
ther in the regime where bifurcation behavior is known to occur, or to compute
periodic orbits. As a spin-off of the methodology above, the use of implicit
time-dependent methods will be discussed in section 4.5

As it will turn out, an important part of the computational work is the solution
of large linear systems of equations. The success of the latter methods mainly de-
termines the dimension of the dynamical system which can be handled. Whereas
for small dimensional dynamical systems robust so-called direct techniques (sec-
tion 4.6) can be used, for giant dimensional systems one must turn to sophisticated
(and non-robust) iterative solvers. Section 4.7 provides an introduction into these
techniques. In section 4.8, the whole scheme will be applied to the example prob-
lem described below.

4.1. An Example Problem

The Rayleigh-Bénard problem discussed in this section has been used as a test-´
problem during a workshop on ”Application of Continuation Methods in Fluid
Mechanics” in 1998 (Henry and Bergeon, 2000). It is a relatively simple problem,
and hence techniques can be easily illustrated. The physics of the problem is also
very transparent, making it a nice prototype system to use here. A third advantage
of the problem is that it introduces the fluid mechanics of buoyancy driven flows
which are the central topic within chapter 6.

4.1.1. Introduction

The Rayleigh-Bénard problem is one of the ‘classics’ in fluid dynamics and´
one in the area of cellular convection. It is motivated by results from a (conceptu-
ally) simple experiment (Fig. 4.2). A rectangular container is filled with a viscous
liquid such as silicone oil. Air is situated above the upper surface of the liquid and
the temperature far from the air-liquid interface is nearly constant. When the ini-
tially motionless liquid is heated from below, the liquid remains motionless below
a critical value of the vertical temperature gradient. In this case, the heat trans-
fer through the layer is only by heat conduction. When the temperature gradient
slightly exceeds the critical value, the liquid is set into motion and after a while
the flow organizes itself into cellular patterns (Fig. 4.3).
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Figure 4.2. Sketch of the experimental set-up; the liquid is situated on the (heated) silicon block
and separated from the (cooled) sapphire block by a small air gap (Koschmieder and Switzer, 1992).

Figure 4.3. Example of a flow pattern consisting of cellular rolls (also called roll cells) arising
in a liquid layer heated from below (Koschmieder, 1993).

The motion of the liquid can also be detected by measuring the horizontally
averaged vertical heat flux. A measure for the increase of heat transport due to
convection is the Nusselt number Nu. This dimensionless scalar is the ratio of
the heat transfer due to combined conduction and convection and the heat trans-
fer due to conduction only; hence Nu = 1 in case there is no convection. In
Fig. 4.4, Nu is plotted as a function of the vertical temperature difference over
the layer. The onset of convection in the liquid is shown by the increase of Nu
above unity. From the experimental data, one can guess that some bifurcation
is involved where the steady motionless state becomes unstable and new cellular
type of solutions stabilize. From the symmetry properties of the flow — one can
imagine to rotate the container over 180◦ and get the same experimental results —
a pitchfork bifurcation is anticipated. One of the relevant problems with respect
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to the experiment is to determine the vertical temperature gradient associated with
this bifurcation point.

Figure 4.4. Plot of the Nusselt number Nu as a function of the vertical temperature difference
ΔT ; Nu = 1 if the heat transport is by conduction only and when Nu > 1 there is convection in
the liquid; ΔTcTT is the critical temperature gradient (Chandrasekhar, 1961).

4.1.2. Model

The equations governing the flow follow from the equations (2.2), for Ω = 0,
and are

ρ0

[
∂v∗
∂t∗

+ v∗.∇v∗

]
= −∇p∗ + μ∇2v∗ − ρ∗ge3 (4.4a)

∇ · v∗ = 0 (4.4b)

ρ0CpCC

[
∂T∗TT
∂t∗

+ v∗.∇T∗TT
]

= λT∇2T∗TT (4.4c)

In these equations, (x∗, y∗, z∗) are the Cartesian coordinates of a point in the liq-
uid layer, t∗ denotes time, v∗ = (u∗, v∗, w∗) is the velocity vector, p∗ denotes
pressure, e3 the unit vector in z-direction and T∗TT is the temperature. The quan-
tities ρ0, g, CpCC , μ and λT are the reference density, the acceleration due to grav-
ity, the heat capacity, the dynamic viscosity and the thermal conductivity, respec-
tively. The thermal diffusivity κ and kinematic viscosity ν are given by ν = μ/ρ0,
κ = λT /(ρ0CpCC ) and all these quantities will be assumed constant. A linear equa-
tion of state

ρ∗ = ρ0(1− αT (T∗TT − T0TT )) (4.5)

is assumed, where αT is the thermal compressibility coefficient and T0TT a refer-
ence temperature. The lower boundary of the liquid is considered to be a very
good conducting boundary on which the temperature is constant TBT , and no-slip
conditions apply. On the lateral walls (at x∗ = 0, Lx and y∗ = 0, Ly) no-flux and
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Figure 4.5. Sketch of the model set-up and boundary conditions of the Rayleigh-Bénard problem.´

no-slip conditions are prescribed. Let the non-deforming gas-liquid interface be
located at z∗ = d, then the boundary conditions become (Fig. 4.5)

z∗ = d :
∂u∗
∂z∗

=
∂v∗
∂z∗

= w∗ = 0 ; λT
∂T∗TT
∂z∗

= h(TAT − T∗TT ) (4.6a)

z∗ = 0 : T∗TT = TBT ; u∗ = v∗ = w∗ = 0 (4.6b)

x∗ = 0, Lx : u∗ = v∗ = w∗ =
∂T∗TT
∂x∗

= 0 (4.6c)

y∗ = 0, Ly : u∗ = v∗ = w∗ =
∂T∗TT
∂y∗

= 0 (4.6d)

where h is an interfacial heat transfer coefficient and TAT is the temperature of the
gas far from the interface.

4.1.3. Motionless solution

For v̄∗ = 0, there is a steady state given by

T̄∗TT (z∗) = TBT − βz∗ ; β =
h(TBT − TAT )
λT + hd

(4.7)

The quantity β is the vertical temperature gradient over the layer. The correspond-
ing pressure distribution is readily determined from (4.4a) and if one chooses
T0TT = TAT , this gives

p̄∗(z∗) = p0 + ρ0g([αT (TBT − TAT )− 1]z∗ −
αTβ

2
z2
∗) (4.8)

This motionless solution is characterized by only conductive heat transfer and is
easily realized in laboratory experiments. Note that such a motionless solution
exists for all values of the vertical temperature difference ΔT = βd. Hence,
according to theory presented in section 3.7, we would not expect saddle-node
bifurcations to occur on the branch of motionless solutions.
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4.1.4. Dimensionless equations

The equations and boundary conditions are next non-dimensionalized using
scales κ/d for velocity, d2/κ for time and d for length. Moreover, a dimensionless
temperature T is introduced through T∗TT = (TBT − TAT )T + TAT and a dimension-
less pressure p through p∗ = p0 + p(μκ/d2). This leads to the non-dimensional
problem

Pr−1

[
∂v
∂t

+ v.∇v
]

= −∇p+∇2v +Ra T e3 (4.9a)

∇ · v = 0 (4.9b)
∂T

∂t
+ v.∇T = ∇2T (4.9c)

with boundary conditions

z = 1 :
∂u

∂z
=
∂v

∂z
= w = 0;

∂T

∂z
= −Bi T (4.10a)

z = 0 : T = 1 ; u = v = w = 0 (4.10b)

x = 0, Ax : u = v = w =
∂T

∂x
= 0 (4.10c)

y = 0, Ay : u = v = w =
∂T

∂y
= 0 (4.10d)

In the equations (4.9)-(4.10), the dimensionless parameters Pr (Prandtl), Ra
(Rayleigh), Ax, Ay (Aspect ratios) and Bi (Biot) appear which are defined as

Ra =
αT g(TBT − TAT )d3

νκ
; Pr =

ν

κ
; Bi =

hd

λT
Ax = Lx/d; Ay = Ly/d (4.11)

and hence there are five parameters in this system of equations. This number re-
duces to four in the two-dimensional case since one of the aspect ratios disappears.

The dimensionless motionless solution is given by

ū = v̄ = w̄ = 0 ; T̄ (z) = 1− z Bi

Bi+ 1
(4.12a)

p̄(z) = Ra

[
z − Bi

(1 +Bi)
z2

2

]
(4.12b)

and this is a solution for all values of Ra and Bi which makes it an ideal starting
point for the computations below.

4.2. Computation of Steady Solutions

In this section, the methods to determine steady state solutions in parameter
space are presented. The example problem from the previous section is used in
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section 4.2.1 to illustrate the discretization methods. In section 4.2.2 the so-called
continuation methods, used to follow branches of steady states, are described.

4.2.1. Discretization

For the example problem, many type of discretization methods have been used,
e.g., finite differences, finite elements and spectral methods. To illustrate the use
of finite differences, consider the two-dimensional case in the example problem
above, i.e., restricting to solutions v = (u, 0, w), and p and T , which are in-
dependent of y. A staggered grid is used, with u,w at boundaries and p, T at
center points of the grid cells (see Fig. 4.6a). The horizontal momentum equation

p, T

p, T

w

w

w

uu

u

p, T

w

x x

z

z

0 1

0

1

2

z

x
2 (a)

u i,j

T i,j T i+1,j
T i-1,jj

u i-1,j 4 71

5

3

2

6

i,j-1
w

wi,j

T
i,j-1

Ti,j+1

(b)

Figure 4.6. (a) Sketch of the staggered grid, with points i = 0, ..., I and j = 0, ..., J in the
x, z-direction, respectively. (b) Local stencil around the point Ti,jTT .

is enforced at u−points, the vertical momentum equation at w−points and the
continuity and temperature equation at center (p, T(( ) points.

For the discretization, it is efficient to define the discrete operators on a local
stencil and subsequently assemble the operators over the whole domain. This
is particularly useful when the nonlinear interactions in a model are at most
quadratic, such as in the Navier-Stokes equations. In the latter case, the nonlinear
operator N in (4.1) can be written as N (u)u. For each variable, a local stencil is
defined such as in Fig. 4.6b for the temperature point Ti,jTT . As an example, con-
sider the discretization of the horizontal diffusion operator, which is linear, using
central differences. In this case, at point (i, j)

∂2T

∂x2
≈ TiTT +1,j + TiTT −1,j − 2Ti,jTT

Δx2 (4.13)

According to the stensil (Fig. 4.6b), one now defines local operators
LTTi,j [1, · · · , 7]. The first superscript in LTT indicates which equation is handled
(in this case the temperature equation). The second superscript indicates by which
unknown the coefficient has to be multiplied to get the right equations (in this case
again the temperature). The index [∗] refers to the stencil points and hence

LTTi,j [1] =
1

Δx2 (4.14a)
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LTTi,j [7] =
1

Δx2 (4.14b)

LTTi,j [4] = − 2
Δx2 (4.14c)

with all other LTTi,j [∗] being zero. The local operator is then built up as

7∑
l=1

LTTi,j [l]T [l] (4.15)

where T [l] refers to the stensil location around (i, j) with T [1] = TiTT −1,j and
T [5] = Ti,jTT +1.

Next consider the nonlinear horizontal advection term for heat, which is dis-
cretized at T− points as

∂(uT )
∂x

= ui,j
TiTT +1,j + Ti,jTT

2Δx
− ui−1,j

Ti,jTT + TiTT −1,j

2Δx
(4.16)

This term is a part of the nonlinear operator in the T− equation associated with
the operator N in (4.1). One defines a local nonlinear operator N TT

i,jN [1, · · · , 7] as

NTT
i,jNN [1] = −ui−1,j

2Δx
(4.17a)

NTT
i,jNN [7] =

ui,j
2Δx

(4.17b)

NTT
i,jNN [4] =

ui,j − ui−1,j

2Δx
(4.17c)

with other stensil coefficients zero. The discretized equations of the local nonlin-
ear operator are then build up according to

7∑
l=1

NTT
i,jNN [l]T [l] (4.18)

In this way, it is relatively easy to include boundary conditions. For example,
imagine the implementation of a no-flux condition (∂T/∂x = 0) for the tempera-
ture at x = 0. Using central differences, this becomes

∂T

∂x
= 0⇒ T0TT ,j = T1TT ,j

If the total stensil coefficient is indicated byATT = LTT +NTT , then the bound-
ary condition can be accounted for by correcting the stensil coefficient ATT

1,j [4]
as

ÃTT1,j [4] = ATT1,j [4] +ATT1,j [1]

and thereafter setting ATT1,j [1] = 0.
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The boundary condition T = 1 for the temperature at z = 0 is discretized as

1
2
(Ti,TT 0 + Ti,TT 1) = 1⇒ Ti,TT 0 = 2− Ti,TT 1

This can be accounted for by correcting the stensil coefficient ATT
i,1 [4] as

ÃTTi,1 [4] = ATTi,1 [4] −ATTi,1 [3]

by including a forcing term, F T
i,FF 1 = 2 ATTi,1 [3], and by setting ATTi,1 [3] = 0 there-

after. Assembly of the total operators can be accomplished by one big loop over
the grid points and the stencil points.

To determine the linear stability of a steady state, we see from (4.3) that not
only the discretized operator N is needed, but also its derivative NuNN around a
certain solution (ū, w̄, p̄, T̄ ). For the horizontal advection operator in (4.16), this
derivative becomes

∂(ūT¯ )
∂x

+
∂(uT̄ )
∂x

(4.19)

When discretized with central differences, the coefficients for the first term are
similar to those in the operator N TT

i,jN in (4.17) but with u substituted by ū. For the
second term, an additional operator N TU

i,jN is needed, which is defined by

NTU
i,jNN [1] = − T̄iTT −1,j + T̄i,jTT

2Δx
(4.20a)

NTU
i,jNN [4] =

T̄iTT +1,j + T̄i,jTT

2Δx
(4.20b)

such that the term from this operator in the Jacobian matrix is built up as

7∑
l=1

[
NTT
i,jNN [l]T [l] +NTU

i,jNN [l]u[l]
]

(4.21)

where again T [l] and u[l] refer to stensil point values, i.e., u[4] = ui,j . Corrections
due to boundary conditions and assembly of the matrices can be accomplished in
the same way for the other operators in (4.22).

The discretized equations can thus be written as a nonlinear system of ordinary
differential equations with algebraic constraints which has the form

MN
∂x
∂t

+ LNx +NNNN (x) = FNF (4.22)

where x indicates the total N -dimensional vector of unknowns. The operators
depend on parameters and their subscript N indicates that they are discrete equiv-
alents of the continuous operators. In the two-dimensional example problem, x is
given by

x = (u0,0, w0,0, p0,0, T0TT ,0, u1,0, ..., TIT −1,J , uI,J , wI,J , pI,J , TI,JT )T (4.23)

and N = 4 (I + 1) (J + 1).
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4.2.2. Pseudo-arclength continuation

To determine steady solutions of (4.22), we need to solve the set of nonlinear
algebraic equations

Φ(x, λ) = LNx +NNNN (x)−FNF = 0 (4.24)

where λ indicates a control parameter which appears in the operators LN and/or
NNNN and/or FNF . For example, in the example problem this is the parameter Ra,
since this parameter represents the vertical temperature gradient.

For reasons which will be made clear below, it is advantageous to parametrize
branches of solutions with an arclength parameter s as sketched in Fig. 4.7. A
branch γ of steady solutions (x(s), λ(s)), s ∈ [sa, sb] is a smooth one-parameter
family of solutions of (4.24). Since an extra degree of freedom is introduced by
the arclength s, a normalization condition of the form

Σ(x(s), λ(s), s) = 0 (4.25)

is needed to close the system of equations. We thus end up to solve a system
of nonlinear algebraic equations of dimension N + 1 for the N + 1 unknowns
(x(s), λ(s)). But where to start and how to choose the normalization?

λ
s

(s )γ
0  

|x |

s
0

tionpitchfork bifurca

Newton-Raphson process

a bs

γ

Euler guess

ss

.

Figure 4.7. Sketch of the parametrization of branches of steady solutions by an arclength param-
eter s and the tangent γ̇ along the branch in a typical bifurcation diagram.
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In the more specialized literature (Seydel, 1994), several alternatives are de-
scribed. In the example problem, and in many others, we know already a steady
solution of the system (the motionless solution). In many applications, some triv-
ial state can always be found, for example, under zero forcing conditions. With re-
spect to the normalization issue, we consider the geometry of the problem. Aim is
to determine the range of a curve γ : I ⊆ R→ R

N+1, with γ(s) = (x(s), λ(s))
such that (4.24) is satisfied. Assuming that we now know, at some point s0, a
solution (x0, λ0), then the tangent space of the curve at s = s0 is spanned by the
vector γ̇(s0) = (ẋ(s0), λ̇(s0))T (Fig. 4.7). It is advantageous (the reason being
the solution method in the next section) to take a normalization of the length of
the tangent,

ẋT0 ẋ0 + λ̇2
0 = 1 (4.26)

In some applications, the initial tangent is analytically available. For example, in
the example problem we know that the motionless solution is a solution for all
values of Ra and hence with λ = Ra, we find ẋ0 = 0 and λ̇0 = 1.

A more general way of computing the tangent is the following. By differenti-
ating Φ(γ(s)) = 0 to s we find

[Φx Φλ]γ̇(s) =
( ∂Φ1

∂x1
. . . ∂Φ1

∂xN
∂Φ1
∂λ

∂Φ1
∂xN

. . . ∂ΦN
∂xN

∂ΦN
∂λ

)
γ̇(s) = 0 (4.27)

If (x0, λ0) is not a bifurcation point, then dim(ker([Φx Φλ])) = 1 and therefore
[Φx Φλ] has rank N . Hence, we can determine γ̇(s0) as the null space of the
N(N + 1) matrix [Φx Φλ].

First, the matrix [Φx Φλ] is triangulated into the form⎛
⎝
⎛⎛
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

⎞
⎠
⎞⎞

(4.28)

where this matrix (a ∗ indicates a possible nonzero element) is shown for N = 3.
The last row cannot be entirely zero, and therefore the (permuted) tangent vector
v = (ẋ0, λ̇0) can be computed by solving

⎛
⎜
⎛⎛
⎝⎜⎜
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

⎞
⎟
⎞⎞
⎠⎟⎟v =

⎛
⎜
⎛⎛
⎝⎜⎜

0
0
0
1

⎞
⎟
⎞⎞
⎠⎟⎟ (4.29)

and its length is normalized as in (4.26).

Once x0, λ0, ẋ0 and λ̇0 are determined. a further point on the same branch can
be calculated by taking

Σ(x, λ, s) = ẋT0 (x− x0) + λ̇0(λ− λ0)− (s− s0) (4.30)
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and solve the total system of equations (4.24) and (4.30) given a prescribed step
length Δs = s − s0. In this form, the continuation method is called a pseudo-
arclength method (Keller, 1977). The name derives from the fact that (4.30) is
an approximation to (4.26). The advantage of this method is that the Jacobian of
the extended system (4.24) and (4.30) is non-singular at saddle-node bifurcations,
whereas the Jacobian Φx is singular. Hence, one can easily follow a branch around
a saddle-node bifurcation (Keller, 1977).

4.2.3. The Euler-Newton method

To solve the equations (4.24) and (4.30), an Euler predictor/Newton correc-
tor algorithm is applied. The Newton-Raphson technique is a robust technique
to solve for zeroes of nonlinear equations. It is best illustrated through its one-
dimensional form, aiming to compute a zero of the scalar equation (with a func-
tion f : R→ R)

f(x) = 0 (4.31)

Here, one starts from an initial guess x0 and computes the tangent of the function
at the point f(x0), i.e., this line is given by y = f ′(x0)(x − x0)− f(x0). A next

y

x

y = f= f(x)

x
0

x
1

tangent line at (x  , f(x  ))
00

Figure 4.8. Sketch of the Newton-Raphson technique to determine a zero of a function f : R→ R

using iterates x0, x1, · · · according to (4.32).

iterate is computed by the intersection of this tangent and the x-axis (Fig. 4.8),
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which gives x1 = x0 − f(x0)/f ′(x0). The general iterative technique becomes

xk+1 = xk − f(xk)
f ′(xk)

⇒ f ′(xk)(xk+1 − xk) = −f(xk) (4.32)

where k is the Newton-Raphson iteration index. If at some k, | xk+1 − xk |
becomes smaller than some tolerance then, under fairly mild conditions, it can be
shown that a zero of f(x) has been found (Atkinson, 1976)).

The Newton-Raphson technique can be easily generalized to nonlinear systems
of equations and hence to solve (4.24) and (4.30). Let the steady state which is
already known be indicated by x0, then a good guess for the next steady state is
the Euler predictor given by

x1 = x0 + Δs ẋ0 (4.33a)

λ1 = λ0 + Δs λ̇0 (4.33b)

where again the dot indicates differentiation to s. Once xk, ẋk, λk and λ̇k are
calculated the equations (4.24) and (4.30) are linearized around this solution, i.e.,

xk+1 = xk + Δxk+1 (4.34a)

λk+1 = λk + Δλk+1 (4.34b)

In every Newton-Raphson iteration, the solutions (Δxk+1,Δλk+1) are deter-
mined by solving the linear system(

Φx(xk, λk) Φλ(xk, λk)
ẋT0 λ̇0

) (
Δxk+1

Δλk+1

)
=

=
(

−Φ(xk, λk)
Δs− ẋT0 (xk − x0)− λ̇0(λk − λ0)

)
(4.35)

which is just the generalization of (4.32) to N−dimensions. Hence, within each
iteration, a linear system of equations has to be solved. If the Newton-Raphson
process has converged up to a desired accuracy, a new steady state has been found.

One can split the solution of (4.35) into two steps in which only linear systems
with Φx are solved. Let r = −Φ(xk, λk) and rN+1 = Δs − ẋT0 (xk − x0) −
λ̇0(λk − λ0), then if z1 and z2 are solved from

Φx(xk, λk)z1 = r (4.36a)

Φx(xk, λk)z2 = Φλ(xk, λk) (4.36b)

then the solution (Δxk+1,Δλk+1) is found from

Δλk+1 =
rN+1 − ẋT0 z1

λ̇0 − ẋT0 z2

(4.37a)

Δxk+1 = z1 −Δλk+1z2 (4.37b)
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One of the problems involved is the determination of the Jacobian matrix Φx

and the derivative vector Φλ. One can do this in, at least, four ways: (i) ‘by hand’,
(ii) symbolically using Mathematica or Maple, (iii) use automatic differentiation
software which provides the code for the Jacobian matrix Φx from that of the
right hand side Φ — an example of such a program is ADIFOR (http://www-
unix.mcs.anl.gov/autodiff/ADIFOR/) — or (iv) compute it numerically by finite
differences through

∂Φk

∂xl
≈ Φk(xl + ε)− Φk(xl)

ε
(4.38)

for k = 1, ..,N ; l = 1, ...,N and small ε. My experience is that it is usually
faster to do it ‘by hand’, but if one is really handy with the symbolic manipulation
programs or automatic differentiation codes, ... , one should do this.

4.3. Detection and Switching

In the previous section, a method has been described to perform steady state
continuation in a single parameter. Suppose, we have computed the points on a
branch of steady solutions as indicated in Fig. 4.9 by varying a parameter λ. In
this case, the method would just pass the pitchfork bifurcation point P (Fig. 4.9).
How do we determine that this bifurcation has occurred?

One way to do this is to solve the eigenvalue problem associated with the sta-
bility of the steady state at each point. We know that for a pitchfork bifurcation,
a single real eigenvalue must cross the imaginary axis and by monitoring this
eigenvalue, the pitchfork bifurcation can be detected. In many applications, how-
ever, the solution of the eigenvalue problem is computationally expensive. Hence,
simpler and cheaper indicator functions may be desired and some of these are
described below.

4.3.1. Detection of bifurcations

To determine simple codimension-1 bifurcation points (transcritical, pitchfork
and saddle-node bifurcations), the determinant of the Jacobian matrix (det Φx)
can be monitored. For many large dimensional problems this determinant is ex-
pensive to compute and other alternatives must be considered. In Seydel (1994), a
family of test functions τpqττ is obtained as follows: let Φpq

x be the Jacobian matrix
Φx in which the pth row is replaced by the qth unit vector. If we solve the linear
system

Φpq
x v = ep (4.39)

for v, where ep is the pth unit vector, then it can be shown (Seydel, 1994) that

τpqττ = eTp Φxv = eTp (Φpq
x )−1ep (4.40)

changes sign when Φx is singular. In principle, the choices of q and p are ar-
bitrary as long as Φpq

x is nonsingular. Of course, for any solution method, it is
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Figure 4.9. Example of computations of steady states versus a parameter λ on a branch passing
through a pitchfork bifurcation P .

advantageous that Φpq
x and Φx have the same matrix structure. However, in spe-

cific problems, not all values of q and p can be chosen and it is advisable to make a
choice based on the knowledge of the properties of the solutions (e.g., symmetry)
of the particular problem.

Saddle-node bifurcations can be easily detected by following λ̇ along a branch,
where the dot indicates differentiation to the arclength parameter s. For Hopf
bifurcation points, also more sophisticated methods exist (Kuznetsov, 1995), but
usually these points are determined by solving the linear stability problem which
is discussed in the next section. In this case, a complex conjugate pair of eigen-
values σ = σr + i σi crosses the imaginary axis and a zero of the function σr(λ)
has to be calculated to obtain the location of the Hopf bifurcation.

Once a change in sign is found in one of these scalar quantities (e.g., λ̇,detΦx,
τpqττ or σr(λ)) between two points along a branch, say sa and sb, a secant process
can be used to locate the zero of each function exactly. In more detail, let either
function be indicated by f(s) then a zero of f(s) is determined by

sl+1 = sl − f(sl)
sl − sl−1

f(sl)− f(sl−1)
(4.41a)

s0 = sa ; s1 = sb (4.41b)

When sa �= 0�� , the stopping criterion on the iteration can be chosen as

| sl+1 − sl |
sa

< ε

where ε must be chosen according to the desired accuracy. In some cases, a
larger ε must be taken because the matrix Φx may become nearly singular during



136 NONLINEAR PHYSICAL OCEANOGRAPHY

the iteration. It is recommended to check a postiori that the value of f(s) is
substantially smaller than the value of this function at both sa and sb.

4.3.2. Branch switching

If, for example, detΦx changes sign but λ̇ does not, a simple bifurcation point
(transcritical or pitchfork) is detected. Subsequently, a branch switch process can
be started to locate solutions on the nearby branch. In Fig. 4.10, this situation
is sketched near a pitchfork bifurcation. Let Φ̂x be the Jacobian matrix at the
bifurcation point (x∗, λ∗) just after the secant iteration (see the previous section)
has converged. Furthermore, let the tangent along the already known branch in
s = sa be indicated by (ẋ0, λ̇0).

λ

|x |

(x , λ )^ ^ angent atta
riginal branchor

new tangent

λ*λλ

x ,( λ )
0 0

. .

Figure 4.10. Example of branch switching near a pitchfork bifurcation.

First, the null vector φ of Φ̂x is calculated, for example by inverse iteration
(Atkinson, 1976); the latter method is described in Technical box 4.1. Next, a
vector (x̂, λ̂) is constructed which is orthogonal to (ẋ0, λ̇0) by solving(

Φ̂x Φ̂λ

ẋT0 λ̇0

)(
x̂
λ̂

)
=
(

0
0

)
(4.42)

The solution of this problem is easily determined to be

λ̂ =
−ẋT0 φ

λ̇0 − ẋT0 z
; x̂ = φ− λ̂z
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where z is the solution of Φ̂xz = Φ̂λ. To determine a point on the new branch
(Fig. 4.10), the Newton process is started with Euler - predictor

x1 = x∗ ±Δs x̂ ; λ1 = λ∗ + Δs λ̂ (4.43)

The ± indicates that points can be found on either side of the known branch.
When a point on a new branch is found, the pseudo-arclength procedure is again
used to compute additional points on this branch.

Technical box 4.1:
Inverse iteration

One of most powerful tools to determine eigenvectors of a matrix once an
eigenvalue is approximately known is inverse iteration. Let A be an n× n matrix
with eigenvalues λ1, ..., λn and assume λ is an approximation to one of the eigen-
values λk. The method starts with an initial guess z0 and successively the vectors
zm+1 and wm+1 are calculated from

(A− λI)wm+1 = zm ; zm+1 =
wm+1

‖wm+1‖

for m = 0, 1, · · ·, where I is the identity matrix. For this method, one can show
that zm → xk, where Axk = λkxk (see Atkinson (1976), p548). There are
optimal choices for the starting vector in some situations, but starting from z0 =
(1, ..., 1)T works well in most cases.

If one already anticipates a pitchfork bifurcation, one can also determine the
other branch by a technique which makes use of the imperfections of the pitchfork
as described in section 3.2.3. Suppose, two points A and B on a branch are com-
puted where the stability is different (Fig. 4.11a) or where some τpqτ from (4.40)
changes sign. Now one knows that there is an internal symmetry of the system
associated with a pitchfork bifurcation. By introducing an additional parameter
ps which breaks the symmetry (for example, introducing some asymmetric com-
ponent in the forcing), the pitchfork no longer exists for small ps (see section
3.2.3). One continues a few steps into this parameter from point A up to ps = ε.
Then, a point C on the bifurcation diagram as in Fig. 4.11b is obtained. Next,
the parameter λ is increased up to the value of λ at point B; in this way point D
is reached (Fig. 4.11b). As a last step, ps is continued back to zero and point E
is obtained (Fig. 4.11c). By following the branch back (from point E) in λ, the
pitchfork bifurcation is easily found as the point where λ̇ changes sign.
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Figure 4.11. Example of how knowledge of imperfections can be used to locate bifurcation points.
The control parameter in the horizontal is λ. (a) Symmetric situation with computed points A and
B, where a sign switch in one of the indicator functions has been detected. (b) The imperfect
pitchfork bifurcation is created by adding artificial asymmetry into the set of equations using a
parameter ps. Point A is followed up to point C in ps. As a next step, one continues from A to D
for a value of λ approximately up to the value at B. (c) Finally, symmetry is restored, point D is
followed up to E and the pitchfork can be found as the point where λ̇ changes sign.

4.3.3. Finding isolated branches
In many applications, there exist branches of steady state solutions that are dis-

connected from the branch containing a trivial starting solution; these branches are
the so-called isolated branches. An example of such an isolated branch can be seen
in Fig. 3.9a, where it arises through an imperfection of the pitchfork bifurcations
in the three-box model. One can already anticipate that in a dynamical system in
which there is no symmetry, it is likely that isolated branches are present.

There are at least four methods to compute these isolated branches but it is
never guaranteed that one will find all branches with either of these methods. Two
of those are more or less ‘trial and error’ while in the latter two, a more systematic
approach is followed.
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(i) Transient integration.
In this approach, a set of initial conditions is chosen and a transient computa-
tion is started, for example by using an implicit method as described in section
4.5. If one is lucky, a trajectory starting at one of the initial conditions is at-
tracted to a stable steady state on the isolated branch. Once found (Fig. 4.12a),
one can continue tracing this branch using the pseudo-arclength continuation
method.

(ii) Isolated Newton-Raphson search.
One can also start a Newton-Raphson process uncoupled from the pseudo-
arclength continuation from several chosen starting points. Since the conver-
gence of the Newton-Raphson process is only good when one is near the steady
state, this method may not work very well, but again, if one is very lucky an
isolated branch might be found (Fig. 4.12b).

(iii) Two-parameter continuation.
In many cases, a second parameter can be varied such that the isolated branch
targeted connects to an already known branch. An important example is the
case in which the dynamical system has a reflection symmetry at one particular
value of a second parameter and a pitchfork bifurcation occurs. Once such a
connection is present, the isolated branch can be computed by restoring the
second parameter to its original value (Fig. 4.12c).

(iv) Residue continuation.
This method is a special case of a two-parameter continuation where one starts
with a guess of the solution on the isolated branch, say indicated by xG, at
some value of a parameter λ. Because this is no steady solution, it follows that

f(xG, λ) = rG �= 0�� (4.44)

where rG is the nonzero residue. One now defines a second (so-called ‘homo-
topy’) parameter α and considers the problem

f(x, λ) − (1− α)rG = 0 (4.45)

For α = 0, the solution is given by xG (by construction) and hence this is
the starting point of the pseudo-arclength continuation. By tracing the steady
solution branch from α = 0 to α = 1, we may eventually find an isolated
branch (Fig. 4.12d).

4.4. Linear Stability Problem
Suppose a stationary solution x̄ at a certain value of λ has been determined.

Then its linear stability is investigated by considering perturbations x = x̄ + x̃.
When substituted into the general equations (4.22), and omitting quadratic terms
in the perturbations quantities, one gets

M∂x̃
∂t

+ Lx̃ +NxNN (x̄)x̃ = 0 (4.46)
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Figure 4.12. Illustrations of the computation of isolated branches using four different methods.
(a) Transient integration; the open circles indicate the initial conditions and the arrows the direction
of the trajectories. Note that only stable steady states can be reached. (b) Isolated Newton-Raphson
search; the open circles indicate the starting points. The two large arrows indicate a possible
divergence of the Newton-Raphson process. (c) Two-parameter continuation; a pitchfork occurs
for μ0 < μ < μ1. (d) Residue continuation, where α is the ‘homotopy’ parameter.

where the subscript N in (4.22) has been omitted for clarity and NxNN (x̄) is the
Jacobian matrix at x̄. These equations admit solutions of the form x̃ = x̂ eσt. The
linear stability problem of a particular steady state leads, after discretization, to a
generalized matrix eigenvalue problem of the form

Ax = σBx (4.47)

with A = L + NxNN (x̄) and B = −M. The matrix B may be singular; in the
example problem, time derivatives are absent in the continuity equation and hence
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zeroes on the diagonal of B appear. The pair (A,B) is called a matrix pensil and
some properties of the spectrum of matrix pensils are given in Technical box 4.2.

Technical box 4.2:
Eigenvalues of (matrix) pensils

LetA andB be two n×nmatrices, then the set of matrices of the formA−σB
is called a pensil. The eigenvalues of the pensil belong to the set σ(A,B) defined
by

σ(A,B) = {z ∈ C | det(A− zB) = 0}
When B is non-singular, the generalized eigenvalue problem is equivalent to an
ordinary eigenvalue problem

B−1Ax = σx

When B is singular, which occurs in many applications, complications arise. The
set σ(A,B) may consists of a finite number of eigenvalues, no eigenvalue may
exist or infinitely many may occur. In Golub and Van Loan (1983), two examples
of the latter situations are given.

A =
(

1 2
0 3

)
; B =

(
0 1
0 0

)
⇒ σ(A,B) = ∅

A =
(

1 2
0 0

)
; B =

(
1 0
0 0

)
⇒ σ(A,B) = C

The traditional (robust) method to solve these generalized eigenvalue problems
by which all eigenvalues and, if desired, all eigenvectors can be computed is the
QZ-method. Details of this method are described in section 7.7 of Golub and
Van Loan (1983) and its understanding requires quite some background in numer-
ical linear algebra. The code of this method is available in standard numerical
libraries such as NAG (http://www.nag.com/) and IMSL (http://www.imsl.com/).
In studies of bifurcation behavior, as seen in chapter 3, the first few bifurcation
points only involve a small number of eigenvalues and one is only interested to
compute the eigenvectors with eigenvalues closest to the imaginary axis (the so-
called ‘most dangerous’ modes). Fortunately, special methods are available to
perform these type of computations and two of them are discussed below.

4.4.1. The simultaneous iteration method
This method belongs to the class of generalized power methods. As a prepara-

tion to apply the method, a complex mapping of the form (Fig. 4.13)

σ = b+ a
μ− 1
μ+ 1

(4.49)
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is applied, with b ∈ C, a ∈ R
+. This transforms the eigenvalue problem (4.47)

into

Ex = D−1Cx = μx (4.50)

where C = −(A+ (a− b)B) and D = A− (a+ b)B.

σ plane

Re

Im

planeμ

| μ | = 1

Figure 4.13. Sketch of the complex mapping (4.49) for a = 1 and b = 0.

By the mapping (4.49), the most dangerous modes (those closest to the imag-
inary axis) of the original problem (4.47) are mapped onto the most dominant
modes (those with largest norm) of the problem (4.50). This can be seen by writ-
ing σ − b = x+ iy and μ = p+ iq which gives the relations

p =
a2 − x2 − y2

(x− a)2 + y2
; q =

2ay
(x− a)2 + y2

(4.51)

On the problem (4.50), the Simultaneous Iteration Techniques (SIT) described by
Steward and Jennings (1981) is applied. With this method a few, say m, eigenval-
ues with largest norm are determined. The method proceeds in two steps:

(i) The filtering step

First step is to start with m initial vectors uj , j = 1, . . . ,m; the notation

U0 = [u1, . . . ,um] (4.52)

is used for the N × m matrix U 0. During the filtering stage of the SIT, for
l = 1, · · · , L the product

U l = EU l−1 (4.53)

is computed by solving the linear systems (note that E = D−1C)

DU l = CU l−1 (4.54)



Numerical techniques 143

Let Λ denote the diagonal matrix with the eigenvalues ordered according to
their norm and Q the corresponding eigenvectors, i.e.,

Λ =

⎛
⎝
⎛⎛
μ1 0 0
0 . . . 0
0 0 μN

⎞
⎠
⎞⎞

;Q = [q1, . . . ,qN ] (4.55)

with Eqi = μiqi. Using the m×m matrix Ca and the (N −m)×m matrix
CbCC , one can decompose

U = U0 = QaCaCC +QbCbCC (4.56)

where the N × m matrix Qa contains the first m columns of Q and Qb the
remainder of the columns of Q. After one step (4.54) we obtain

V U1 = E(QaCaCC +QbCbCC ) = QaΛaCaCC +QbΛbCbCC (4.57)

where Λa is the N × m matrix of the first m columns of Λ and Λb consists
of the remaining columns. Hence, after each filtering step the components
of the starting vectors in the direction of the dominant eigenvectors increase
most in amplitude. As already mentioned, infinite (numerically very large)
eigenvalues can occur in generalized eigenvalue problems. Hence, during the
filtering stage directions into these (undesired) eigenvectors gain in amplitude.
One way to avoid this problem is to apply inverse iteration (see Technical box
4.1) on the matrix E−1 since singular vectors of E−1 correspond to infinite
eigenvalues of E.

After a certain number of filtering steps L, usually 5 to 10, a reorientation step
is performed to obtain a better approximation to the eigensolution of (4.50).

(ii) The reorientation step
First, the m×m matrices

F = UTU ; G = UTV (4.58)

where U = UL−1 and V = EU are computed. Subsequently, the matrix H is
solved from

FH = G→ H = F−1G (4.59)

For simplicity, consider the case L = 1. The eigenvalues of the matrix H are
an approximation of the eigenvalues of E, because

FH = UTUH = UT [QaCaCC +QbCbCC ]H
G = UTV = UT (QaΛaCaCC +QbΛbCbCC ) (4.60)

As the matrix UTQa is nonsingular, we obtain from (4.59), when we omit the
part associated with Λb from (4.60), a low dimensional m×m eigenvalue prob-
lem from which approximations to the first m eigenvalues can be computed,
i.e.,

CaCC H = ΛaCaCC (4.61)
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In applications, the eigenvalue problem

HP = PΛa → P = C−1
aC (4.62)

is solved and a next approximation to the eigenvectors is then found from the
first m columns of the matrix W given by

W = V P = QaΛa +QbΛbCbCC C−1
aC (4.63)

The accuracy of the approximation of the eigensolution after reorientation k is
determined by substituting the eigenvalues and eigenvectors back into the original
eigenvalue problem (4.47), computing the residue and dividing it by the L2 norm
of the corresponding eigenvector. The stopping criterion is that this residue is
smaller than some prescribed accuracy. In most cases, this process converges
within a few (about 10) reorientations. When converged, the eigenvalues of the
original problem are computed by the complex mapping (4.49).

4.4.2. The Jacobi-Davidson QZ-method
With the Jacobi-Davidson QZ-method (JDQZ) method, one can compute sev-

eral, say m, eigenvalues and (optionally) eigenvectors of the generalized eigen-
value problem

βAq = αBq (4.64)

near a specified target τ ∈ C. Here A,B can be matrices with complex entries
and α and β are complex numbers and the pair (α, β) is called an eigenvalue
with corresponding eigenvector q. The method is described in detail elsewhere
(Sleijpen and Van der Vorst, 1996; Van Dorsselaer, 1997) but in a very general
way, which makes it hard to understand because of the technicalities. Instead,
here an attempt is made to describe the method in a simpler way, by going in
detail through the first two steps of the algorithm.

Technical box 4.3:
Schur decompositions of a

matrix

The Schur decomposition of a matrix is one of the many decompositions known
in linear algebra. Let A be an n × n real matrix, then there exists an orthogonal
n× n matrix Q (with QTQ = QQT = I) such that

QTAQ = R =

⎛
⎜
⎛⎛
⎜⎜⎜⎝⎜⎜
R11 R12 · R1m

0 R22 · R2m
...

...
. . .

...
0 0 · Rmm

⎞
⎟
⎞⎞
⎟⎟⎟⎠⎟⎟
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where each Rii is either a 1×1 matrix or a 2×2 matrix, the latter having complex
conjugate eigenvalues. This result shows that any real matrix is orthogonally simi-
lar to an upper quasi-triangular matrix. There is also a complex form of the Schur
decomposition (see Golub and Van Loan (1983), p192). A partial generalized
Schur decomposition of a matrix pensil (A,B) is given by

AQ = ZS ; BQ = ZT

where Q and Z are N ×m orthogonal matrices and S and T are m × m upper
triangular matrices.

Suppose we want to compute only specific eigenvalues near the imaginary axis,
and hence we set the target τ = 0; in the general method, τ can be chosen as
desired. The JDQZ method then proceeds in two steps:

(i) The Jacobi-Davidson step
As a first step in the JDQZ method, a decomposition of the matrix pensil
(A,B) into a partial generalized Schur form (see Technical box 4.3) is com-
puted. These computations are outlined below and the end result is

AQ1 = Z1S1 ; BQ1 = Z1T1TT (4.65)

where Q1 and Z1 are normalized N × 1 matrices (in this case vectors) and
S1 and T1TT are 1 × 1 matrices (in this case scalars). We can therefore write
Q1 = q1 and Z1 = z1. The vector q1 is an eigenvector of the problem (4.64)
with eigenvalue α/β = S1/T1TT , since

βAq1 = βz1S1 = z1αT1TT = αBq1 (4.66)

The vector q1 is called the first generalized Schur vector and it is computed
with the so-called Jacobi-Davidson method, as follows.

Let v1 be an initial guess for the vector q1, then we compute w1 = Av1 and
scale both v1 and w1 such that their norm is unity. These vectors define the
initial search space V = [v1] and the initial test space W = [w1]. A new
approximation of the eigenvector q̃1 = uv1 and of the eigenvalue (α̃, β̃) are
found through the projected eigenvalue problem

β̃w∗1Av1u = α̃w∗1Bv1u (4.67)

where w∗1 is the adjoint (transposed and complex conjugated) vector of w1.
This is a scalar eigenvalue problem which is easily solved. The eigenvalue
(α̃, β̃) closest to the target τ = 0 is selected (with ‘eigenvector’ u) and q̃1 =
uv1 is the first approximate to the eigenvector q1. The residual r = β̃Aq̃1 −
αB˜ q̃1 is computed next.

In general, ‖r‖ will be larger than a given tolerance and the spaces V and W
have to be extended to get sufficiently accurate approximations to q1. Thereto,
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first the vector z̃1 = Aq̃1 is computed and normalized. Next, the vector v2 is
chosen such that

(I − z̃1z̃∗1)(β̃A− αB˜ )(I − q̃1q̃∗1)v2 = −r (4.68)

where I is the N ×N identity matrix. Note that always (I − xx∗)x = 0 for
every normalized vector x and hence v2 is orthogonal to q̃1. This is a linear
system of equations which has to be solved for the vector v2. Once done, this
vector is orthogonalized with respect to v1 and added to the basis V . Next, the
space W is extended with the vector w2 = Av2, orthogonalized with respect
to w1.

With the new basis V = [v1,v2] and W = [w1,w2] the projected eigenvalue
problem now becomes

β̃W ∗AV u = αW˜ ∗BV u (4.69)

with u now being a 2 × 1 vector. The traditional QZ method (Golub and
Van Loan, 1983) can be used to solve this eigenvalue problem and again the
eigensolution with the eigenvalue (α̃, β̃) closest to the target τ is chosen and
a next approximation q̃1 = V u follows. One can now imagine how the basis
is extended each step, the projected eigenvalue problem is solved until ‖r‖
is small enough and the final eigenvector q1 is determined. Note that when
Q1 = q1 is determined, also Z1 = z1 can be directly solved from (4.65).

(ii) The extension step
Once the first Schur vector has been obtained, the next problem is to compute
the extended partial generalized Schur form

AQ2 = Z2ZZ S2 ; BQ2 = Z2ZZ T2TT (4.70)

where Q2 = [q1,q2] and Z2 = [z1, z2] are normalized N × 2 matrices and
S2, T2TT are yet unknown 2 × 2 matrices. When the small eigenvalue problem
βS2x = αT2TT x is considered and the (two) eigenvalues (α, β) are determined,
then the (first two) eigenvectors of (4.64) are found from Q2x since

βAQ2x = βZ2ZZ S2x = Z2ZZ αT2TT x = βBQ2x (4.71)

As one eigenvector Q1 = q1 is already known, the next step is to determine
the vector q2. Write (4.70) as

A (Q1 q2 ) = (Z1 z2 )
(
S1 s
0 α

)
(4.72a)

B (Q1 q2 ) = (Z1 z2 )
(
T1TT t
0 β

)
(4.72b)

Eliminating Q1 leads to

βAq2 − αBq2 = Z1(βs− αt)



Numerical techniques 147

Applying the operator (I−Z1Z
∗
1 ) to both sides, it can be shown that the vector

q2, which is made orthogonal to q1, can be obtained from the generalized
eigenvalue problem

(I − Z1Z
∗
1 )(βA− αB)(I −Q1Q

∗
1)q2 = 0 (4.73)

Again, this is a similar problem as before (for q1) and it can again be solved
by the Jacobi-Davidson method. In this way, two eigenvalues (one related
to q1 and the other to q2) near the specified target are found. Hence, in the
method, the matrices T2TT and S2 are actually not explicitly computed. One can
now imagine how the next partial Schur decomposition is constructed and how
finally m eigenvalues close to the specified target τ are computed.

The software for the JDQZ method is available through
http://www.math.uu.nl/∼// people/bomhof/jd.html∼ . A short (but clear) manual
is available with the code. This manual is needed, because there are several
technical details involved and several choices have to be made for certain
parameters, such as the target τ and the dimensions of the search and test spaces.

4.5. Implicit Time Integration
In many ocean models, there is an explicit time marching procedure, which can

be represented by, using (4.22),

MNxn+1 =MNxn + Δt G(xn) (4.74)

where GN = FNF − (LN + NNNN ). Explicit schemes allow relatively easy imple-
mentation of all kinds of physical processes and details of boundary conditions,
but suffer from a substantial drawback. The time step is limited because of nu-
merical amplification of truncation errors (through well-known stability criteria)
rather than by the changes in the actual solution (Roache, 1976). This limitation is
even more restrictive as the spatial resolution increases. These properties are ex-
tremely undesirable, for example, in model studies of changes in the thermohaline
circulation where integration times of at least a few thousand years are desired.

A nice spin-off of continuation methods is the immediate availability of implicit
time integration schemes. Using a time step Δt, and a time index n, this scheme
becomes for ω ∈ [0, 1],

MN
xn+1 − xn

Δt
+ (1− ω)F(xn) + ωF(xn+1) = 0 (4.75)

For ω = 1/2 and ω = 1, these are the Crank-Nicholson method and backward
Euler method, respectively (Atkinson, 1976).

The equations for xn+1 are solved by the Newton-Raphson technique and lead
to the same type of numerical problems as that for the steady state computation. It
is well-known that the second-order Crank-Nicholson scheme is unconditionally
stable for linear equations. This does not mean that one can take any time step,
as this quantity is still limited by two factors. One of these factors is accuracy:
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although the scheme is second-order accurate in time, large discretization errors
occur when too large time steps are used. A second limitation on the time step is
the convergence domain of the Newton-Raphson process, which does not neces-
sarily converge for every chosen time step. For many applications, however, much
larger time steps (up to a factor 100 or 1000) can be taken than in similar explicit
models.

4.6. Linear System Solvers: Direct Methods
As has become clear from the previous sections, the basic problem to overcome

in the computation of the steady states for large-dimensional dynamical systems
— as well as in the linear stability problem — is the solution of large linear sys-
tems of equations. Depending on the sparsity of the matrices involved, different
methods are available to solve this basic problem of linear algebra efficiently. In
this and the next section, such an N × N matrix is indicated by A and the right
hand side of the algebraic system of equations is indicated by b. Hence, the prob-
lem is to solve the vector x from the equations

Ax = b (4.76)

Two types of methods can be distinguished: direct methods and iterative methods.
If most of the coefficients of the matrix A are nonzero, the matrix is referred to as
a dense matrix. In this case, memory constraints will soon limit the dimension N
of the system of equations which can be solved, since the whole matrix has to be
stored. For sparse matrices, where most of the matrix elements are zero, systems
of much higher dimension may be solved and several methods are available to
perform this efficiently. The most common direct methods will be described in
this section while the iterative methods are presented in section 4.7.

4.6.1. Basic principle
The basic method which probably everyone has learned in high school is based

on successive elimination of unknowns and is called Gaussian elimination. The
idea is to reduce the system Ax = b to an equivalent system Ux = g, where U
is an upper triangular matrix. The algorithm consists of the following steps; it is
illustrated by the 3× 3 problem

⎛
⎝
⎛⎛
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠
⎞⎞⎛
⎝
⎛⎛
x1

x2

x3

⎞
⎠
⎞⎞

=

⎛
⎝
⎛⎛
b1
b2
b3

⎞
⎠
⎞⎞

(4.77)

which is indicated by by A(1)x = b(1).
Assume a(1)

11 �= 0�� and define the row multipliers

m21 =
a

(1)
21

a
(1)
11

; m31 =
a

(1)
31

a
(1)
11

(4.78)
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These multipliers are used to eliminate the x1 coefficients in the rows 2 and 3, by
defining

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j , i = 2, 3 ; j = 1, 2, 3

b
(2)
i = b

(1)
i −mi1b

(1)
1 , i = 2, 3

At the end of this step, the following system results⎛
⎜
⎛⎛
⎝⎜⎜ a

(1)
11 a

(1)
12 a

(1)
13

0 a
(2)
22 a

(2)
23

0 a
(2)
32 a

(2)
33

⎞
⎟
⎞⎞
⎠⎟⎟
⎛
⎝
⎛⎛
x1

x2

x3

⎞
⎠
⎞⎞

=

⎛
⎜
⎛⎛
⎝⎜⎜ b

(1)
1

b
(2)
2

b
(2)
3

⎞
⎟
⎞⎞
⎠⎟⎟ (4.80)

This step is repeated once more. Assume a(2)
22 �= 0�� , define the multiplier m32 as

below and eliminate the coefficient of x2 in the third row through

m32 =
a

(2)
32

a
(2)
22

a
(3)
ij = a

(2)
ij −m32a

(2)
2,j , i = 3 ; j = 2, 3 (4.81)

b
(3)
3 = b

(2)
3 −m32b

(2)
2

to give the problem⎛
⎜
⎛⎛
⎝⎜⎜ a

(1)
11 a

(1)
12 a

(1)
13

0 a
(2)
22 a

(2)
23

0 0 a
(3)
33

⎞
⎟
⎞⎞
⎠⎟⎟
⎛
⎝
⎛⎛
x1

x2

x3

⎞
⎠
⎞⎞

=

⎛
⎜
⎛⎛
⎝⎜⎜ b

(1)
1

b
(2)
2

b
(3)
3

⎞
⎟
⎞⎞
⎠⎟⎟ (4.82)

which is finally of the form Ux = g, where U is upper triangular. The latter
system is easy to solve by back substitution, since

x3 =
b
(3)
3

a
(3)
33

x2 =
b
(2)
2 − a

(2)
23 x3

a
(2)
22

x1 =
b
(1)
1 − a

(1)
12 x2 − a(1)

13 x3

a
(1)
11

which completes the Gaussian elimination process.
If we collect the multipliers mi,j in a lower triangular matrix L, then one can

easily verify that

L U =

⎛
⎝
⎛⎛

1 0 0
m21 1 0
m31 m32 1

⎞
⎠
⎞⎞ ⎛

⎜
⎛⎛
⎝⎜⎜ a

(1)
11 a

(1)
12 a

(1)
13

0 a
(2)
22 a

(2)
23

0 0 a
(3)
33

⎞
⎟
⎞⎞
⎠⎟⎟ = A (4.84)
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and hence the elimination process has introduced a decomposition of the original
matrix A. From this decomposition, the determinant of the matrix A, det(A), can
be computed as

det(A) = det(L) det(U) = det(U) = a
(1)
11 a

(2)
22 a

(3)
33 (4.85)

At each stage of the elimination process, it is assumed that the diagonal element
a

(k)
kk �= 0�� . In practice, such an element may not be zero exactly but it may be very

small. In these cases, problems may arise because of amplification of round-off
errors and the accuracy of the final solution is deteriorated.

4.6.2. Pivoting
The solution to the problem mentioned at the end of the previous section is

a pivoting strategy, which can be either partial (only rows are interchanged) or
complete (rows and columns are interchanged). The partial pivoting strategy is
illustrated with the example in the previous section. When a

(2)
22 = 0, m32 in

(4.81) cannot be defined. In the second column, one searches now for the largest
element in the remaining rows to be eliminated (in this case only row 3). Assume
that a(2)

32 �= 0�� , then row 2 and row 3 are interchanged. This gives the system⎛
⎜
⎛⎛
⎝⎜⎜ a

(1)
11 a

(1)
12 a

(1)
13

0 a
(2)
32 a

(2)
33

0 a
(2)
22 a

(2)
23

⎞
⎟
⎞⎞
⎠⎟⎟
⎛
⎝
⎛⎛
x1

x3

x2

⎞
⎠
⎞⎞

=

⎛
⎜
⎛⎛
⎝⎜⎜ b

(1)
1

b
(2)
3

b
(2)
2

⎞
⎟
⎞⎞
⎠⎟⎟ (4.86)

On this system, the last elimination step can be performed in the same way as
above and the system can be solved. The decomposition is now changed into
LU = PA, where P is a permutation matrix monitoring the row interchanges,
i.e., in the example above

P =

⎛
⎝
⎛⎛

1 0 0
0 0 1
0 1 0

⎞
⎠
⎞⎞

(4.87)

In this elementary form the algorithm is, for example, presented in Atkinson
(1976).

With complete pivoting, one searches also the other columns for largest ele-
ments and interchanges rows and columns to put that element on the diagonal. In
practise, only partial pivoting is used, because it appears just as good as complete
pivoting and it is cheaper. Many variants of the code are available as FORTRAN90
routines (for example in the NAG and/or IMSL libraries).

The classical Gaussian elimination technique is quite expensive and its memory
usage and CPU time increase withN 3, with N being the dimension of the matrix.
There are special cases where more efficient methods are possible. When the
matrix has a band structure, such as often arises from discretization of partial
differential equations, the computational costs and the amount of memory needed
can be decreased substantially. For an overview of alternative direct methods, for
example frontal methods, see Duff et al. (1986).
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4.7. Linear System Solvers: Iterative Methods
Iterative methods are techniques which allow the solution of very large sys-

tems of sparse linear equations, such as those arising from the discretization of
partial differential equations. The disadvantage of these techniques is that they
are not robust and their performance is very application dependent. In this sec-
tion, the basics of these iterative techniques is given which will give the reader an
introduction into the literature on the subject.

4.7.1. Relaxation methods
The class of most simple methods are those for which iteratively one or more

components are modified with the aim to annihilate components of the residual
vector r = b−Ax. Nearly all these methods are based on a decomposition of the
matrix of the form

A = D − E − F (4.88)

where D is the diagonal of A,−E its strict lower part and−F its strict upper part.
All methods start with an initial vector x0 and differ in the rules for annihilation
of components of the residual vector. If we indicate the different iterates of the
solution vector by xk, then the most important methods are given by

Jacobi
Dxk+1 = (E + F )xk + b (4.89)

Gauss-Seidel
(D − E)xk+1 = Fxk + b (4.90)

Successive overrelaxation

(D − ωE)xk+1 = (ωF + (1− ω))xk + ωb (4.91)

In this procedure, ω is called a relaxation factor.

All these methods have a nice geometrical representation, which is best illus-
trated for the case N = 2. In this case, the intersection point of two lines in the
plane1 is sought as sketched in Fig. 4.14. An illustrative example are the equations

3x+ y = 4 (4.92a)

x+ 2y = 3 (4.92b)

where the iterative process is started from the initial condition (3, 4). When start-
ing from an initial point (x0, y0), the Gauss-Seidel method moves the iterate

1When N = 3, the coefficients in the set of equations represents the normals of three planes of which the
intersection point is sought.
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(xk, yk) into directions parallel to the coordinate axes. This is done by deter-
mining the intersections with lines parallel to coordinate axes and the actual lines
defined by the set of equations. In Fig. 4.14a and Fig. 4.14b, the same system of
equations is solved with matrices

A1 =
(

3 1
1 2

)
and A2 =

(
1 2
3 1

)

in the Gauss-Seidel method, respectively. The way in which the equations are
ordered is important for the Gauss-Seidel method since for A1 the method is con-
vergent, while for A2 the iterates diverge.

(a) (b)

Figure 4.14. Sketch of the (a) convergence and (b) divergence of the Gauss-Seidel method for a
simple two-dimensional system of equations (4.92). Iterates are numbered and in (a), the matrix A1

is used, whereas in (b) the matrix A2 is used.

As is seen from the list of methods (4.89), (4.90) and (4.91), they all are of the
form

xk+1 = Gxk + f (4.93)

with different iteration matrices G. The performance of these methods depends
on the properties of G and in particular on the spectral radius ρ(G), which is the
eigenvalue of G with maximum norm. Hence, if the set of eigenvalues of G is
indicated by σ(G), then

ρ(G) = max
λ∈σ(G)

| λ | (4.94)

and a method is guaranteed to converge when ρ(G) < 1. For many problems this
is the case, but convergence may be very slow because ρ(G) ≈ 1.

4.7.2. Projection techniques
The general idea behind the projection methods is to obtain an approximation

of the solution x of the system of n linear equations Ax = b in a relatively small
dimensional subspace K ⊂ R

n. If m is the dimension of K, then m constraints
(defining equations) are necessary to generate this space. The residual is thereto
required to be orthogonal tom linear independent vectors; the latter vectors define
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also a m-dimensional subspace L. With a starting vector x0 and hence an initial
residue r0 = b − Ax0, the problem is formulated as (Fig. 4.15): find x = x0 +
c, c ∈ K such that

< b−Ax,w >=< r0 −Ac,w >= 0 , ∀ w ∈ L (4.95)

Figure 4.15. Sketch of the geometry of a general projection method; here r1 = r0 −Ac.

Once the spaces K and L are chosen, the approximation c can be found in the
following way (for simplicity, the case m = 2 is described). Let V = [v1,v2] be
a basis of K and W = [w1,w2] a basis of L, where V and W are N ×2 matrices.
Then with y = (y1, y2) ∈ R

2, the representation of c is given by

c = y1v1 + y2v2 = V y (4.96)

and the orthogonality constraints (4.95) become

< r0 − y1Av1 − y2Av2,w1 >= 0 (4.97a)

< r0 − y1Av1 − y2Av2,w2 >= 0 (4.97b)

which can be rewritten in matrix form as

W TAV y = W T r0 (4.98)

where W T is the 2×N transpose matrix of W . The matrix W TAV is only 2× 2
and can be easily inverted when it is nonsingular. Hence the solution c is found as

y = (W TAV )−1W T r0 ; c = V y (4.99)

In the above projection method, the subspaces still have an arbitrary form. Effi-
cient techniques are obtained if one chooses a Krylov subspace Km(A, v) for the
m-dimensional space K. Such a space is of the form

KmKK (A,v) = [v, Av, A2v, · · · , Am−1v] (4.100)
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Particular projection methods arise by the choice K = L = Km(A, r0) in which
simultaneously the Krylov space is built up during the iteration process. Although
there is a multitude of these methods (Saad, 1996), we will focus on only two of
these methods, i.e., GMRES and BICGSTAB.

4.7.2.1 The GMRES technique
In this method, one successively builds a basis of the Krylov subspace

KmKK (A, r0) and simultaneously solves a small system of equations to find an
approximation of the solution x within this subspace. The mathematics of this
method will be described below, again for a small value of m = 2.

(i) Subspace generation

Using the starting vector x0, the residual vector r0 is computed and its L2-
norm is indicated by β = ‖r0‖2. The basic vector of the Krylov subspace
is

v1 =
r0

β

which has unit L2 norm. The next vector v2 of the subspace is determined
through the so-called Arnoldi procedure as follows

h11 = < v1, Av1 >

w1 = Av1 − h11v1 (4.101a)

h21 = ‖w1‖2
v2 = w1/h21 (4.101b)

Indeed, the vector v2 increases the span of the subspace in the direction of the
vector Av1 and moreover the vectors v1 and v2 are orthogonal, which is easily
seen through

< v1,v2 >=< v1,
1
h21

(Av1 − h11v1) >= 0 (4.102)

It is illustrative to go through another Arnoldi step to construct v3

h12 =< v1, Av2 > ; h22 =< v2, Av2 >

w2 = Av2 − h12v1 − h22v2 (4.103a)

h32 = ‖w2‖2
v3 =

w2

h32
(4.103b)

which again increases the span of the subspace in the direction of A2v1 and
v3 is orthogonal to both v1 and v2 and has unit norm. It is now clear how the
following vector v4 of the Krylov subspace is constructed.
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(ii) The projected problem

The equations (4.101) and (4.103) can be rewritten as

Av1 = h11v1 + w1 = h11v1 + h21v2 (4.104a)

Av2 = h12v1 + h22v2 + h32v3 (4.104b)

If H2HH denotes the 3 × 2 matrix of the coefficients hij (with h31 = 0) then the
matrix form of the equations above is

AV2VV = (Av1 Av2 ) = (v1 v2 v3 ) H2HH = V3VV H2HH (4.105)

In GMRES, the L2−norm of the residue ‖b− Ax‖2 is minimized. With x =
x0 + V2VV y this can be written as

‖b−Ax‖2 = ‖r0 −AV2VV y‖2 =
‖βv1 − V3VV H2HH y‖2 = ‖V3VV (βe1 −H2HH y‖2 =

‖βe1 − H2HH y‖2 (4.106)

where the results above are used together with the fact that the matrix V3VV is
orthogonal (its norm is unity) and e1 = (1, 0, 0). The minimization of the
norm (4.106) can be easily solved for y by least squares techniques since it is
small dimensional.

One can now imagine, how the subspace is further extended and how succes-
sive approximations can be found through projection and solution of a system of
equations of small dimension.

4.7.2.2 The BICGSTAB technique
In the previous method, an orthogonal basis of a Krylov subspace Km(A,v)

was constructed. Other methods have been developed which rely on the construc-
tion on a bi-orthogonal basis of two subspaces Km(A,v1) and KmKK (AT ,w1). An
approximation of the solution x is searched in the first subspace K = Km(A,v1),
while being orthogonal to the space L = Km(AT ,w1). One of those techniques
is the BICSTAB method, which is now briefly described (see Saad (1996) for
details).

(i) Construction of the subspaces

Using a starting vector x0, the residual vector r0 is computed and again its
L2-norm is indicated by β. The basic vector of the Krylov subspace is the
normalized vector

v1 =
r0

β
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For the testspace, one chooses w1 such that < v1,w1 >= 1. The bases of
both spaces are extended by construction of vectors v2 and w2 through the
so-called Lanczos algorithm as follows

α1 = < v1, Av1 >

v̂2 = Av1 − α1v1 ; ŵ2 = ATw1 − α1w1

δ2 = ‖ < v̂2, ŵ2 > ‖
1
2 ; β2 =

< v̂2, ŵ2 >

δ2
(4.107)

w2 =
ŵ2

β2
; v2 =

v̂2

δ2

In this way, the vectors vi and wi, i = 1, 2, are bi-orthogonal as can be easily
checked from the expressions above, i.e.,

< v1,w1 >= 1, < v2,w1 >= 0, < v1,w2 >= 0, < v2,w2 >= 1
(4.108)

The next step proceeds in the same way: for example, with α2 =< v2, Av2 >,
the new vector v̂3 is defined as v̂3 = Av2 − α2v2 − β2v1.

(ii) The projected problem

In the same way as in the GMRES method, we write the equations for the basis
vectors in matrix notation and find

W T
2WW AV2VV =

(
< w1, Av1 > < w1, Av2 >
< w2, Av1 > < w2, Av2 >

)
=
(
α1 β2

δ2 α2

)
= T2TT

(4.109)
where for example the identities for < w1, Av2 > and < w2, Av1 > follow
from

< w1, Av2 > = < w1, v̂3 + α2v2 + β2v1 >= β2 (4.110a)

< w2, Av1 > = < w2, v̂2 + α1v1 >= δ2 (4.110b)

because of the bi-orthogonality of the bases. The projected problem now fol-
lows directly from the orthogonality constraints (4.95) which can be written,
again with x = x0 + V2VV y and r0 = βv1 as

W T
2WW AV2VV y = W T r0 ⇒ T2TT y = βe1 (4.111)

which is a small problem to solve. When an LU decomposition of T2TT is made,
special advantages can be taken of the structure of the upper and lower trian-
gular matrices to obtain an efficient algorithm; implementation details can be
found in Saad (1996).

The software package SPARSKIT, which contains many of the it-
erative solvers in FORTRAN, can be obtained from http://www-
users.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html. A package
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containing C versions of the iterative methods is available through http://www.tu-
dresden.de/mwism/skalicky/laspack/laspack.html. The iterative methods will not
perform well on all systems of linear equations and are even not guaranteed to
converge. This is contrary to direct methods, which always give an answer if the
matrix is nonsingular; it may, however, be very (in most cases prohibitively!)
expensive to get it. This has lead to the development of so-called preconditioning
techniques (see Technical Box 4.4) for iterative solvers. Building an efficient
preconditioner is usually the key to being able to solve giant dimensional sparse
linear systems.

Technical box 4.4:
Preconditioning

The idea of preconditioning is that if Ax = b is difficult to solve — e.g., when
A is approximately singular — then one may find a matrixM for which the system
M−1Ax = M−1b = c is more easy to solve. Geometrically, preconditioning has
also a nice interpretation, best again illustrated in case N = 2. If a matrix is

x

y

original system of equations

intersection point

x

y

preconditioned system of equations

intersection point

Figure 4.16. Sketch of the effect of preconditioning in the case of N = 2.

nearly singular, this means that the two lines of which one wants to compute the
intersection are nearly parallel. In the preconditioned system of equations, the
two lines are more orthogonal (Fig. 4.16). There is a wealth of literature on these
preconditioning techniques, which we cannot discuss here (but see Saad (1996));
we only sketch one approach.

For sparse matrices, a very effective way of obtaining a proper preconditioning
matrix is to proceed with an LU decomposition, such as that constructed with a
direct solver (section 4.6.1). To preserve the sparsity in the factors L̃ and Ũ some
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or all elements causing fill-in additional to that of A are ignored. The matrix M
is then chosen equal to L̃Ũ . In this way, one obtains a splitting of A in which
R = A − L̃Ũ is the so-called residual matrix. An iterative method, such as
GMRES, is then applied to the system of equations

Ũ−1L̃−1Ax = Ũ−1L̃−1b (4.112)

The way in which elements in the incomplete decomposition are ignored leads
to many variants with names as ILU, NGILU and MRILU and more details of
these methods are given in Van der Ploeg (1992), Saad (1996) and Botta and Wubs
(1999). In the ILU technique, for example, an incomplete LU decomposition is
used in which the sparsity pattern of L̃ and Ũ is based on a drop tolerance ε.

Also for the preconditioning techniques much software is (in most cases
freely) available. For ILU-type methods, codes are available in SPARSKIT
(http://www-users.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html) and
LASPACK (http://www.tu-dresden.de/mwism/skalicky/laspack/laspack.html).
The MRILU method is available from http://www.math.rug.nl/∼wubs.

4.8. Application to the Example Problem

In this section, a typical application of the methods above is presented for the
Rayleigh-Bénard problem as described in section 4.2. All results below were com-´
puted with a version of the code BOOM, which has been developed in my group
over the years. The BOOM (Dutch for ‘tree’ and abbreviation for Bifurcation
Analysis (‘Onderzoek’ in Dutch) of Ocean Models) code combines the contin-
uation method with a choice of eigenvalue solvers and iterative linear systems
solvers. The user has to supply the discretized operators LN , NNNN ,MN , FNF and
the Jacobian matrix.

A starting point (x0, λ0) has to be prescribed and the number of eigenvalues
me to compute within the linear stability analysis has to be chosen. The sequence
of computations is the following:

1 Compute the tangent vector (ẋ0, λ̇0), if necessary; sometimes it can be analyt-
ically determined.

2 Compute the Euler guess with chosen step length Δs,

x = x0 + Δs ẋ0

λ = λ0 + Δs λ̇0

3 Solve the system of nonlinear algebraic equations (4.24) and (4.30) using the
Newton-Raphson method. Within each Newton iteration, one (or two) systems
of linear equations have to be solved with a chosen method (direct, iterative).
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4 When the previous step has converged, the generalized eigenvalue problem
Ax = σBx is solved for the first me eigenvalues closest to the imaginary axis
using a chosen eigenvalue solver (SIT, JDQZ).

5 Compute a desired number of test functions to monitor properties of the flow
and to monitor whether bifurcations have occurred (real part of eigenvalues,
test functions τpqττ as in (4.40), determinant of Jacobian matrix). Take action, if
a bifurcation point is detected, for example proceed with branch switching.

The two-dimensional case of the example problem is considered for a liquid
with Pr = 1 which is heated from below in a container of aspect ratio A = 10
(Fig. 4.17). For water, with κ = 10−7 [m2s−1] and ν = 10−6 [m2s−1], the
Prandtl number is about 10. Results for this problem have been presented exten-

0 A = 10

0

1

no -slip / no -flux

no -slip
/ no -flux

no -slip
/ no -flux

x

z
slip/ Bi = 1

Figure 4.17. Set-up of the two-dimensional configuration of the example problem.

sively in section 4 of Van Dorsselaer (1997) for the case Bi → ∞ and no-slip
conditions at all walls, using the original primitive-equation formulation with un-
knowns (u,w, p, T ). In this paper, also results can be found on the performance
of the iterative methods GMRES and BICGSTAB, either for the steady equations
as well as within the JDQZ method. These results indicate that the methods used
are indeed efficient for the example problem but since so many parameters are
involved, they are not presented here; interested readers should consult Van Dors-
selaer (1997).

For the two-dimensional case, a more efficient formulation of the example
problem was used in Dijkstra et al. (1995). A streamfunction-vorticity formu-
lation can be used, where the streamfunction ψ and the vertical component of the
vorticity vector ζ are defined as

u =
∂ψ

∂z
; w = −∂ψ

∂x
(4.114a)

ζ =
∂w

∂x
− ∂u

∂z
(4.114b)
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I × J (Grid) aspect ratio Bi lateral walls Rac
128× 16 A = 10 Bi = 1 no-slip 1589.76
256× 16 A = 10 Bi = 1 no-slip 1566.30
512× 16 A = 10 Bi = 1 no-slip 1563.78
16× 16 A = π/ac Bi = 1 slip 1555.58
32× 32 A = π/ac Bi = 1 slip 1544.50
64× 64 A = π/ac Bi = 1 slip 1541.98
∞×∞ A = π/ac Bi = 1 slip 1541.18
(Nield, 1964) A = π/ac Bi = 1 slip 1541.14
256× 16 A = 10 Bi = 5 no-slip 1620.10
256× 16 A = 10 Bi = 10 no-slip 2019.02

Table 4.1. Grid test of the value of the first bifurcation point. The first three rows show the
convergence of the value of Ra for the case considered here. In the next five rows, a comparison
with analytically determined values can be made for a special aspect ratio ac = π/

√√
2 and slip

conditions at the lateral boundaries (Nield, 1964). The last two rows show the sensitivity of the
location of the first bifurcation point with Bi.

This reduces the number of unknowns per point from 4 (u,w, p, T ) to 3 (ψ, ζ, T ).
The equations in this formulation are easily derived by taking the rotation of the
momentum equations (4.4a) and the continuity equation become

Pr−1

[
∂ζ

∂t
+
∂(uζ)
∂x

+
∂(wζ)
∂z

]
= ∇2ζ +Ra

∂T

∂x
(4.115a)

ζ = −∇2ψ (4.115b)

The boundary conditions are

x = 0, A :
∂T

∂x
= ψ = γ

∂ψ

∂x
+ (1− γ)ζ = 0 (4.116a)

z = 0 : T − 1 = ψ =
∂ψ

∂z
= 0 (4.116b)

z = 1 :
∂T

∂z
+Bi T = ψ = ζ = 0. (4.116c)

where γ = 0 and γ = 1 give slip and no-slip conditions, respectively. Details of
the discretization, on a non-staggered grid, can be found in Dijkstra (1992) and
Dijkstra et al. (1995).

First aim of the computations is to find the critical temperature gradient (or crit-
ical value ofRa) for fixedBi. Hence, we takeBi = 1, γ = 1, λ = Ra, start at the
motionless solution ( 4.7) and prescribe the initial tangent as (ẋ0, λ̇0) = (0, 1).
The latter can be used because the motionless solution is a solution for all values of
λ = Ra. The version of the code applied has an iterative solver (BICGSTAB com-
bined with ILU-preconditioning) and the SIT eigenvalue solver (Dijkstra et al.,
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Figure 4.18. (a) Computation of the test function τpqττ along the primary branch of motionless
flow. A zero of this function may indicate a bifurcation point. The diamonds indicate the actual
points computed along the motionless state. (b) First two eigenvalues as a function of Ra along the
same branch. Indeed, a real eigenvalue passes the imaginary axis at the same location where the
zero of τpqττ appears. (c) Pattern of the streamfunction of the eigenvector corresponding to σ1, just
at the point where the imaginary axis is crossed (σ1 = 0). (d) Pattern of the temperature of the
same eigenvector.

1995). In the latter paper, also the performance of the preconditioner (see Techni-
cal Box 4.4) can be found.

In Fig. 4.18, the computation along the primary branch (i.e., the motionless
solution) is displayed using a 256 × 16 grid. Note that the dimension of the dy-
namical system is 3 × 257 × 17 = 13, 107. A particular test function τpqτ (4.40)
for p = q = 256 × 16 + 1 = 4, 097, is shown in Fig. 4.18a and goes through
zero near Ra = 1565. In this figure, the points actually computed are indicated
by the diamonds. The first two eigenvalues, which are both real, are shown along
this motionless solution in Fig. 4.18b, indicating that the motionless solution be-
comes unstable near Ra = 1565, since one eigenvalue crosses the imaginary axis.
Patterns of the streamfunction and temperature perturbation which destabilize the
motionless state (the eigenvector associated with σ1) are plotted in Fig. 4.18c and
Fig. 4.18d, respectively. The pattern consists of seven cells and the solution for the
streamfunction is symmetric with respect to the mid-axis of the container. Note
that the pattern with counter-rotating cells is also an eigenvector associated with
σ1.

For each application, it is recommended to check whether the chosen resolu-
tion is sufficient to obtain accurate results. If the discretization is consistent then,
for an infinitely fine grid, the results of the continuous problem are approached.
To check the convergence of the numerical discretization procedure and to be able
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to extrapolate the results to the continuous problem, the value of Ra at the first
bifurcation is determined for a number of grid sizes; the result is shown in Ta-
ble 4.1. One can see that there is convergence and that a 256× 16 is a reasonable
grid to perform the computations. In this case, a comparison with analytical solu-
tions is also possible for a particular aspect ratio and value of Bi if the boundary
conditions on the sidewalls (4.116a) are taken to be slip conditions (γ = 0). The
sensitivity of the bifurcation point with Bi is illustrated in the last two rows of
Table 4.1. Note that the value of Ra at these bifurcation points does not depend
on Pr since the eigenvalues σ are all real.

(a)
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1560 1565 1570 1575 1580 1585 1590

Ra

w
3,12

(b) (c)

Figure 4.19. (a) Bifurcation diagram and (b-c) streamfunction of the finite-amplitude cellular
solutions (at Ra = 1575) arising at the first pitchfork bifurcation.

Because of the reflection symmetry through the mid-axis (x = A/2), a pitch-
fork bifurcation is expected to occur and it is found atRa = 1565. The bifurcation
structure for Pr = 1.0 is plotted in the weakly nonlinear regime in Fig. 4.19a. On
the vertical axis, the vertical velocity at the gridpoint (3, 12) - near the upper
left corner - is plotted. The slightly supercritical streamfunction patterns on both
branches near the primary bifurcation point are shown in the Figs. 4.19b-c. At
the first primary bifurcation point (Ra = 1565) the motionless solution becomes
unstable to the 7-cell pattern (Fig. 4.19b) which stabilizes for Ra > 1565. Also
its symmetry related pattern stabilizes (Fig. 4.19c) and both patterns are stable up
to Ra = 1590. For the three-dimensional case, similar results can be calculated
and an overview of the complete solution to this problem is presented in Gelfgat
(1999).
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4.9. Exercises on Chapter 4

(E4.1) Rayleigh-Benard: linear stability boundary´

There are analytic results available for the stability of the motionless flow
in the Rayleigh-Bénard problem under slightly different boundary conditions´
than in section 4.1. In this exercise, we determine one of these stability bound-
aries. Our starting point will be the dimensionless equations (4.9) and for sim-
plicity, we will restrict to a two-dimensional situation, with velocities (u,w)
in the (x, z) direction, respectively.

To investigate the stability of the solution (4.12), we perturb it according to

u = ū+ ũ ; p = p̄+ p̃ ; w = w̃ ; T = T̄ + T̃

a. Linearize the equations (4.9) near the basic state given by (4.12) and
determine the evolution equations for the perturbations.

Next, we consider slip conditions and isolating conditions (Bi → ∞) at the
top and bottom boundaries. The boundary conditions for the perturbations are
then slightly modified from (4.10a-b) and become

z = 0, 1 :
∂ũ

∂z
=
∂ṽ

∂z
= w̃ = T̃ = 0

and we consider the liquid layer to be unbounded in the horizontal direction.

b. Eliminate the pressure in the equations obtained in a., introduce a stream-
function ψ through ũ = ∂ψ/∂z, w̃ = −∂ψ/∂x and derive the equations

Pr−1∂∇2ψ

∂t
= Ra

∂T

∂x
+∇2∇2ψ

∂T

∂t
+
∂ψ

∂x
= ∇2T

where the tilde on T has been omitted for convenience. Also formulate the
boundary conditions for ψ and T .

As a next step, use normal mode expansions of the form

ψ(x, z, t) = Ψ̂ sinnπz sin kx eσt

T (x, z, t) = T̂ sinnπz sin kx eσt

Here, k is the wavenumber, σ the complex growth factor, n = 1, 2, · · ·, and Ψ̂
and T̂ are arbitrary amplitudes.



164 NONLINEAR PHYSICAL OCEANOGRAPHY

c. Determe the eigenvalues σ.

d. Determine the curve in the (k,Ra) plane on which σ = 0. This curve is
called the neutral curve.

e. Show that the smallest value of Ra (say Rac) for which instability occurs if
Ra > Rac, is given by

Rac =
27
4
π4

Further reading: Chandrasekhar (1961), chapter 3.

(E4.2) Staggerred grid

In ocean models, several grids are used to discretize the primitive equations.
These grids are indicated as Arakawa A, B, C, D and E grids. On the C-grid,
the positioning of the variables is as depicted in Fig. 4.20. It shows the
projections of the 3D cell on which the mass conservation law (continuity
equation) is discretized. The four v-velocities surrounding a u-point are
averaged to compute a v-velocity at a u-point.

The boundary at the east and west coast runs through the u-points.

�

�

u u� �

v

v

w, p, T

�

�

u u� �

w

w

v, p, T

Figure 4.20. Positioning of variables on the C-grid, topview (left) and vertical cross section
(right)

a. Discretize the terms in the zonal momentum balance

−fv = −1
ρ

∂p

∂x
+AH

∂2u

∂x2

at u-points on the C-grid using second-order central differences.

The positioning of the variables on the B-grid is shown in Fig. 4.21.

b. Discretize the zonal momentum balance above at u-points for the B-grid,
also using second-order central differences.
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Figure 4.21. Positioning of variables on the B-grid, topview (left) and vertical cross section
(right)

c. Which discretization of the zonal momemtum balance is more susceptable
to wiggles, a B- or a C-grid, and why?

Further reading: Adcroft et al. (1999).

(E4.3) Pseudo-arclength continuation

One of the most important advantages of the pseudo-arclength method is that
one is able to trace a branch around a saddle-node bifurcation. To demonstrate
this, consider system of nonlinear algebraic equations given by

F(x, λ) = 0

We first look at the so-called ‘natural’ continuation method by solving the
equations

F(x(λ), λ) = 0

with the Newton Raphson method starting at the solution (x0, λ0), with
λ = λ0 + Δλ.

a. Why does this method cause problems near a saddle-node bifurcation?

Next, consider the pseudo-arclength method

F(x(s), λ(s)) = 0
ẋT0 (x− x0) + λ̇0(λ− λ0)−Δs = 0

starting at the solution (x0, λ0), with s = s0 + Δs.

b. Why is there no problem anymore at saddle-node bifurcations? (Hint:
Consider the extended Jacobian matrix of this system of equations at the
saddle-node bifurcation).

Further reading: Keller (1977) and Seydel (1994).
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(E4.4) Continuation of eigenvalue curves

It is interesting that eigenvalue problems can be formulated as bifurcation
problems. In this way, branches of eigensolutions and eigenvalues can be
traced through parameter space using pseudo-arclength continuation. As
shown in section 4.4, a typical linear stability problem is written as

Ax = σBx

with x = xR + ixI the complex eigenvector and σ = σR + iσI the complex
eigenvalue. Assume that, as in many problems, the matrices A and B are real.

a. Write this eigenvalue problem as a nonlinear system of algebraic equations
for the state vector (xR,xI , σR, σI).

b. Formulate a pseudo-arclength scheme to follow a branch of eigensolutions
in a particular parameter μ.

Further reading: Dijkstra and Steen (1991).

(E4.5) Implicit time integration

For the implicit time stepping scheme (4.75), also nonlinear systems of
algebraic equations have to be solved per time step.

a. Formulate this nonlinear system of equations for the Crank-Nicholson
method, with ω = 1/2.

b. Formulate the Newton-Raphson scheme for these equations.

c. Why is the transient problem usually easier to solve than the steady state
problem?

Further reading: Roache (1976).

(P4.1) The JDQZ eigenvalue solver

In this exercise, you learn to work with the JDQZ method using a relatively
simple elliptic eigenvalue problem. This problem, with eigenvalue λ, is on a
domain x ∈ [0, 1], y ∈ [0, 1] and defined by the equations

∇2u = −λu
x = 0 : u = 0 ; x = 1 :

∂u

∂x
=

3
4
u

y = 0 :
∂u

∂y
= 0 ; y = 1 :

∂u

∂y
= 0
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a. Discretize these equations using central differences on a grid [x0 =
0, x1, ..., xN−1, xN = 1] × [y0 = 0, y1, ..., yM−1, yM = 1] and formulate
the discrete eigenvalue problem

Au = −λu

for the (N + 1)(M + 1) vector of unknowns u =
(u0,0, u1,0, ..., uN,0, u0,1, ..., uN,M )T .

Download the JDQZ solver from http://www.math.uu.nl/∼people/bomhof/ff jd./
html, read the short manual and install the code on your machine.

b. For N = M = 10, solve for the first ten eigenvalues λ using JDQZ.
Experiment with the choice of the target τ .

c. Study the convergence of the first five eigenvalues with increasing
N = M = 40, 80, 160 and 320.

Further reading: Sleijpen and Van der Vorst (1996).

(P4.2) Linear system solvers

In this exercise, you will get experience with modern iterative linear systems
solvers. To do this, you are going to solve the following problem defined by
the equations

∇2T = 0
x = 0, L : T = T0TT ; y = 0 : T = T0TT , y = H : T = T1TT

numerically for the temperature T (x, y) on a domain x ∈ [0, L], y ∈ [0,H],
where T1TT > T0TT .

One can show (by Fourier-series analysis) that the analytic solution to the prob-
lem is given by

T (x, y) = T0TT +
∞∑
n=1

CnCC sin
nπx

L
sinh

nπy

L

CnCC =
2(T1TT − T0TT )

nπ

1− (−1)n

sinh nπy
H

a. Discretize the governing equations using central differences on a grid [x0 =
0, x1, ..., xN−1, xN = L] × [y0 = 0, y1, ..., yM−1, yM = H] and formulate
the linear system of equations

Au = b
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for the (N + 1)(M + 1) vector of unknowns u =
(T0TT ,0, T1TT ,0, ..., TN,T 0, T0TT ,1, ..., TN,MT )T .

You can download different linear system solvers from the internet at
http://www.netlib.org/. For this problem, download the LASPACK (written
in C) package or the SPARSPAK (written in FORTRAN) package and install
it on your machine. A short manual of each package is included in the
distribution and the code contains most of the linear system solvers discussed
in this chapter. If you do not like C or FORTRAN, codes of the methods in
other languages are also available at http://www.netlib.org/.

Choose values: T0TT = 0.0, T1TT = 1.0, L = 2.0, H = 1.0.

b. Solve the linear system for N = 20,M = 20 using the following methods:
Jacobi, GMRES and BiCGSTAB. Compare the convergence of the different
methods to the exact solution.

c. Use also the classical Gauss Elimination (GE) method (section 4.6) to solve
the linear system of equations.

d. Compare the computational times for GE and GMRES when
N = M = 40, 80, 160 and 320.

Further reading: Barrett et al. (1994).



Chapter 5

THE WIND-DRIVEN CIRCULATION

Sailing on the Gulf Stream, but not too rough !
English Suite, J.W. Duarte.
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An important problem in physical oceanography is to understand the physics
of the time-mean surface ocean circulation and the variability of this circulation
on time scales from several months to several years. Focus of this chapter is on
the Kuroshio in the North Pacific Ocean and the Gulf Stream in the North Atlantic
Ocean which are the major northern hemispheric western boundary currents. The
mean position of these currents is important for the global climate system and
for both regions relatively many observations are available. The midlatitude sur-
face ocean circulation has also been extensively studied theoretically using a wide
range of ocean models (Kraus, 1996). Although the basin of the North Pacific has
larger dimensions than that the North Atlantic, the time-mean wind-stress forc-
ing is very similar and a close dynamical correspondence between both western
boundary currents can be expected.

In section 5.1, a brief description is given of the flow phenomena in both the
Gulf Stream and Kuroshio regions motivating the problems studied later on. These
problems are (i) the separation of the Gulf Stream near the North American coast,
(ii) the different time-mean paths of the Kuroshio near the Japanese coast, and (iii)
the variability of both the Gulf Stream and Kuroshio on subannual-to-interannual
time scales. At the end of this introductory section, the questions related to these
problems are formulated from a dynamical systems perspective.

Section 5.2 introduces a hierarchy of ocean models of the wind-driven circu-
lation (WDC) using a ‘top-down’ approach, i.e., starting with the most complex
model and ending with a very elementary model. In the sections 5.3 to 5.7, bi-
furcation analysis is applied to this hierarchy of models, using a ‘bottom-up’ ap-
proach. In this way, the consequences of the relevant physical processes on the
behavior of the circulation in the North Atlantic and North Pacific can be system-
atically determined. In the last sections 5.8 and 5.9, it will be evaluated whether
the bifurcation analyses provide a framework to understand results from high-
resolution ocean models and phenomena deduced from observations.

5.1. Phenomena
A sketch of the global surface ocean circulation was given in section 1.2.1

(Fig. 1.12). In the North Atlantic Ocean, the Gulf Stream is seen as an eastward
jet forming part of two recirculating gyres, the subtropical and subpolar gyre. The
Kuroshio takes the same role as the western boundary current in the North Pacific.
In this section, more detail of the flows in the Gulf Stream and Kuroshio regions is
provided. The description below is very limited and readers can consult Wunsch
(1996) and WOCE (2001) for more details and references.

5.1.1. Gulf Stream
A sketch of the geography and bathymetry in the region of interest with the dif-

ferent currents is given in Fig. 5.1. The time-mean position of the Gulf Stream has
fascinated oceanographers since its early description by Benjamin Franklin and
Timothy Folger (Richardson, 1980). From the enormous amount of data obtained
since then, from ships and satellites, the time-mean path of the Gulf Stream is
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now well-known (Auer, 1987; Lee and Cornillon, 1995). The southern part of the
Stream (the Florida Current) flows almost parallel to the coastline (Fig. 5.1). At
Cape Hatteras, the Gulf Stream leaves the North-American continent and moves
further eastward along 40◦N. It is accompanied by recirculation gyres to the north
(Hogg et al., 1986) and the south (Worthington, 1976). At 68◦W, maximum zonal
velocities of 2 ms−1 have been found near the surface, decreasing to about 0.2
ms−1 at 1000 m depth. A typical meridional width of the Gulf Stream at this
location is about 150 km. Near Cape Hatteras, the volume transport is estimated
to be about 50-65 Sv which increases to a total of about 145 Sv at 60◦W (Johns
et al., 1995).

Figure 5.1. Sketch of the near-surface circulation in the Gulf Stream region (Dengg et al., 1996).
Bold lines: Florida Current (FC) and Gulf Stream (GS), branching into the North Atlantic Current
(NAC) and Azores Current (AC). The abbreviations NRG and SRG indicate Northern and Southern
Recirculation Gyre, respectively.

As a typical example, a snapshot of the sea surface temperature (SST) field of
the region is plotted in Fig. 5.2. The infrared data used to obtain this picture were
obtained from observations from the Advanced Very High Resolution Radiometer
(AVHRR, see http://fermi.jhuapl.edu/avhrr/index.html). Fig. 5.2 is a multipass
image of the situation in May 1996 where the ’warmest’ pixel is selected from
each pass over (every three days).

The Gulf Stream transports warm water northward into the central Atlantic
with typical surface temperatures of 25◦C in the Florida Current and 15◦C near
the separation point at Cape Hatteras. Its northern boundary is characterized by
a strong meridional temperature gradient, which has been referred to as the north
wall or cold wall (Stommel, 1965). From the SST signature, it can also be seen
that the current strongly meanders after it has separated from the North American
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coast. This meandering causes the position of the axis of the Gulf Stream to vary,
leading to variations of the position of the cold wall (Auer, 1987). After crossing
the Southeast Newfoundland Ridge (at about 50◦W) the Gulf Stream splits into
two branches: the northern branch becomes the North Atlantic Current, and the
southern one the Azores Current (Kaese and Krauss, 1996).

Figure 5.2. (in color on page 518). Multipass image of the SST field of the Gulf Stream regioni
as determined by the Advanced Very High Resolution Radiometer (AVHRR) in May 1996 (obtained
from http://fermi.jhuapl.edu/avhrr/gallery/sst/stream.html).yy

Although the mean separation location of the Gulf Stream has been fairly sta-
ble over the last decades, satellite images of SST of the North Atlantic have also
revealed that the Gulf Stream near South Carolina can be in a weakly deflected
or a strongly deflected state (Fig. 5.3). Bane and Dewar (1988) have presented
observations which suggest that the seaward deflection of the Gulf Stream has
a bimodal character and that the transitions between both states occur on inter-
monthly time scales. Results from other studies of the Gulf Stream path using
in situ measurements and very high resolution infrared satellite data also show
indications of bimodal behavior. In Fig. 4 of Olson et al. (1983), a histogram of
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the cross-stream frontal position (over the period 1976-1980) indicates bimodal
behavior in the area just before separation (at about 77◦W). Similarly, in Fig. 8c
of Auer (1987), using AVHRR data over the period 1980-1985, indications for
bimodality are found in the area just after separation (at 71◦W). The two peaks
in the histogram are separated from each other by about 50 km in cross-stream
direction and 0.5◦ in latitude.

Figure 5.3. Locations of the Gulf Stream on December 3, 1981 and March 2, 1982, during the
Gulf Stream Deflection and Meander Energetics Experiment (DAMEX). These images show the
Stream in a typical strongly deflected state (left panel) and a weakly deflected state in the region
with a topographic feature such as the Charleston Bump (figure from Bane and Dewar (1988)).

Concerning the variability of the Gulf Stream, there are now reasonably long
datasets available (with enough spatial resolution) to study changes on time scales
up to a few years in quite detail (Fu, 2001). An overview of meander character-
istics and other type of variability is given in Kaese and Krauss (1996). East of
Cape Hatteras, meanders with monthly variability exist with a typical spatial scale
of 500 km. Large cold-core rings and warm-core rings are formed as a final stage
of meander development, where the meander is detached from the main current.
The signature of such a ring in the SST field can be seen in Fig. 5.2, in the middle
of the picture just above the mean Gulf Stream. These rings have typical westward
propagating speeds of 5 km day−1 and a diameter of about 200 km. Warm-core
rings appear to be less frequent than cold-core rings, with typically five warm-core
rings forming per year. Each of these rings has a life time of about 6 months.

Although the patterns on this smaller time scale (i.e., monthly) variability are
reasonably clear, those associated with somewhat longer time scales are more dif-
ficult to identify. Satellite measurements of sea-level height (altimetry), in particu-
lar from the GEOSAT, TOPEX-POSEIDON and ERS1 missions, and the patterns
of the SST field from AVHRR have contributed substantially to determine this
type of variability. In many studies, variability on subannual to annual scales is
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found (Vazquez et al., 1990; Wang and Koblinsky, 1995), but it has been difficult
to clarify its physics.

For example, using AVHRR-derived infrared images for the period April 1982
through December 1989, Lee and Cornillon (1995) find two dynamically distinct
modes of variability of the path of the Gulf Stream. The first mode of variability
is associated with large-scale lateral shifts of the mean path having a near-annual
period. These shifts are presumably caused by atmospheric forcing, through the
changes in downward heat flux over the area (Wang and Koblinsky, 1996). The
second type of variability, having a 9-month dominant periodicity, is associated
with changes in meandering intensity. Lee and Cornillon (1995) suggest that this
type of variability is related to internal oceanic dynamics. Using both ECMWF
atmospheric forcing fields and GEOSAT data, Kelly et al. (1996) also find this
type of variability in the Gulf Stream and attribute it to structural changes in the
recirculation gyres. The variations in the Gulf Stream have largest amplitudes east
of 62◦W and are not directly related to heat flux variations over the area.

5.1.2. Kuroshio
The most intense current in the North Pacific Ocean is the Kuroshio and its

time-mean path is now quite well-known. From observations, it is found that the
Kuroshio path exhibits bimodal behavior to the south of Japan with transitions
occurring between a small and a large meander state (Taft, 1972). Both states
(Fig. 5.4a) can persist over a period ranging from a few years to a decade and
transitions between them occur within a couple of months (Kawabe, 1986). At
the southeast corner of Honshu, the Kuroshio separates from the Japanese coast
and flows eastward, while meandering increases. However, the current keeps a
mean latitudinal position of about 35◦N up to 180◦E.

The time-mean zonal geostrophic transport of the Kuroshio is estimated to be
about 52 Sv at 137◦E (Qiu and Joyce, 1992). Accurate measurements along the
ASUKA observational line (at 137◦E) combined with satellite date provide a mean
Kuroshio transport of 42 Sv for 1992-1999 (Imawaki et al., 2001). The variations
in volume transport along the PN section in Fig. 5.4a, as deduced from observa-
tions in Kawabe (1995) are plotted (as thick dots) in Fig. 5.4b. During periods of
the large-meander state (indicated by the horizontal lines), the transport is typi-
cally lower than average.

Similar to the 9-month variability in the Gulf Stream region (Lee and
Cornillon, 1995), near-annual variability is also found in recent studies of the
Kuroshio Extension. Wang et al. (1998) have used four years of data from
the TOPEX/Poseidon (T/P) exact repeat mission (ERM) together with 2.3-yr
data from the GEOSAT ERM. They have separated the low-frequency variabil-
ity into subannual, annual and interannual variability through filtering processes.
Hövm¨ oller diagrams (their Figs. 9 and 14) show that the subannual sea level¨
height fluctuations are primarily propagating westward and they weaken away
from the Kuroshio axis (at about 35◦N). Wang et al. (1998) speculate that in-
stability and/or external forcing might be responsible for the generation of the
subannual variability and that bottom topography plays a role as well.
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Figure 5.4. (a) Examples of paths of the Kuroshio in its small meander state (or non-large-
meander (nNLM) path) and in its typical large-meander state (tLM). (b) Interannual variations of
volume transport (dots) of the Kuroshio along the PN section in (a), as deduced from observations
in Kawabe (1995). The horizontal lines show the large-meander state periods.

Kelly et al. (1996) also found variability with timescales of 5-9 months in the
Kuroshio. There appear to be correlations between the height difference across
the jet (surface transport) and the path itself. This suggests that there are struc-
tural changes in the recirculation gyres, associated with a path change. Although
windstress (curl) is clearly correlated with surface transport, mean path and net
surface heat flux in the Pacific ocean basin, there is no clear correlation between
the net surface heat flux and the surface transport over the entire study region.

5.1.3. Central questions
Given the brief description of the surface flows in the Gulf Stream and Kuroshio

regions, it is clear that both flows are very complex. Important features related
to the time-mean path are the separation of the Gulf Stream from the North-
American coast and the apparent bimodality of the Kuroshio path. What physics
determines the spatial pattern of the time-mean path of these currents? We will
approach this issue by first looking at the steady-state problem. For a hierarchy
of models, the steady flow patterns will be determined versus parameters, such as
the lateral friction or wind-stress strength. Special focus will be on the existence
of different time-mean patterns under the same forcing conditions.

Having described the presence of meanders, rings and variations in the lateral
extension of the western boundary currents, it can be anticipated that it is difficult
to understand the physics of the transient flow. While several of the types of vari-
ability may be explained from the (highly variable) forcing from the atmosphere,
some phenomena may be intrinsically caused by oceanic dynamical processes; an
example is the 9-month variability in the Gulf Stream. The question is whether a
clear candidate of such a mode of variability can be found. A second topic dis-
cussed below is the systematic determination of the internal modes of variability
in models of the WDC. Identification of these modes may provide an understand-
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ing of how their nonlinear interactions leads to the complex behavior as seen in
reality.

This sets the context for the approach in the following sections, which is moti-
vated through the following questions.

(i) Are there different time-mean flow patterns of the midlatitude WDC under the
same forcing conditions? Is different separation behavior of the Gulf Stream
and Kuroshio dynamically possible?

(ii) Can temporal variability on subannual to interannual time scales in the Gulf
Stream and Kuroshio be understood from instabilities of the time-mean flow?

5.2. Models of the Midlatitude Ocean Circulation
The full three-dimensional model as put forward in section 2.1.1 is the starting

point of the hierarchy of models of the WDC. As a first reduction of this model, the
vertical structure of the flow is idealized. The stratification of the ocean is thought
as being built up of stacked layers of constant density of which the thickness
varies. The simplest of these models is the homogeneous model, where the density
of the ocean water is constant. This one-layer model will be considered in section
5.2.1 and subsequently be generalized to a multi-layer model in 5.2.2.

5.2.1. The homogeneous model
A typical domain of, for example, the North Atlantic is the re-

gion [285◦W - 350◦W] × [10◦N - 60◦N]. The continental geometry can
for example be determined from the ETOPO5 dataset (available through
http://csep1.phy.ornl.gov/etopo5-doc/etopo5-doc.html), which provides the depth
below the average sea level on a 0.5′ grid. Within this domain, the flow of
a constant density liquid is considered. This flow is driven by a wind stress
τ∗ττ (φ, θ) = τ0ττ (τφ, τ θ), where τ0ττ is the amplitude and (τφ, τ θ) provides the spatial
pattern. Bottom topography is given by a function z∗ = r∗−r0 = −D+hb∗(φ, θ)
and the ocean-atmosphere interface is described by z∗ = η∗(φ, θ, t∗), where r0 is
the distance between the center of the earth and the average position of the ocean-
atmosphere interface (see also Fig. 2.4).

The governing equations in spherical coordinates are obtained from (2.6a) -
(2.6d) for constant density ρ0. When the frictional terms (2.13), with constant
mixing coefficients of momentum AV and AH , are written out in full, these equa-
tions become (e.g., Appendix 2 in Batchelor (2000))

Du∗
dt∗

+
u∗w∗
r∗
− u∗v∗

r∗
tan θ − 2Ω (v∗ sin θ − w∗ cos θ) =

− 1
ρ0r∗ cos θ

∂p∗
∂φ

+
AV
r2∗

∂

∂r∗

(
r2
∗
∂u∗
∂r∗

)
+

+
AH

r2∗ cos2 θ

[
LH(u∗)− u∗ + 2cos θ

∂w∗
∂φ
− 2 sin θ

∂v∗
∂φ

]
(5.1a)
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Dv∗
dt∗

+
w∗v∗
r∗

+
u2
∗
r∗

tan θ + 2Ωu∗ sin θ =

− 1
ρ0r∗

∂p∗
∂θ

+
AV
r2∗

∂

∂r∗

(
r2
∗
∂v∗
∂r∗

)

+
AH

r2∗ cos2 θ

[
LH(v∗)− v∗ + 2cos2 θ

∂w∗
∂θ

+ 2 sin θ
∂u∗
∂φ

]
(5.1b)

Dw∗
dt∗
− u2

∗ + v2
∗

r
− 2Ωu∗ cos θ = − 1

ρ0

∂p∗
∂r∗
− g +

+
AV
r2∗

∂

∂r∗

(
r2
∗
∂w∗
∂r∗

)
+

AH
r2∗ cos2 θ

×

×
[
LH(w∗)− 2w∗ cos2 θ − 2 cos θ

∂(v∗ cos θ)
∂θ

− 2 cos θ
∂u∗
∂φ

]
(5.1c)

∂w∗
∂r∗

+
2w∗
r∗

+
1

r∗ cos θ

[
∂(v∗ cos θ)

∂θ
+
∂u∗
∂φ

]
= 0 (5.1d)

with the operators

D

dt∗
=

∂

∂t∗
+

u∗
r∗ cos θ

∂

∂φ
+
v∗
r∗

∂

∂θ
+ w∗

∂

∂r∗
(5.2a)

LH = cos θ
∂

∂θ

(
cos θ

∂

∂θ

)
+

∂2

∂φ2
(5.2b)

The boundary conditions (2.18) at z∗ = η∗ are given by

p∗ = pa∗ (5.3a)

ρ0AV r∗
∂

∂r∗
(
u∗
r∗

) +
ρ0AH
r∗ cos θ

∂w∗
∂φ

= τ0ττ τ
φ (5.3b)

ρ0AV r∗
∂

∂r∗
(
v

r∗
)− ρ0AH

r∗

∂w∗
∂θ

= τ0ττ τ
θ (5.3c)

D

dt∗
(r∗ − r0 − η∗) = 0 (5.3d)

where pa∗ is a constant atmospheric background pressure. At the bottom of the
domain, z∗ = −D + hb∗, the boundary conditions (2.16) become

u∗ +
w∗

cos θ
∂hb∗
∂φ

= 0 (5.4a)

v∗ + w∗
∂hb∗
∂θ

= 0 (5.4b)

D

dt∗
(z∗ +D − hb∗) = 0 (5.4c)

At the continental boundaries, no-slip boundary conditions are imposed unless
otherwise specified.
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5.2.2. Dominant balances
To determine whether each of the terms above are important in large-scale mid-

latitude flows over a meridional sector of width Δθ, their magnitude is estimated
through scaling. Thereto scales U and W are introduced for the horizontal veloc-
ity and the vertical velocity, respectively. Similarly, L = r0Δθ and D are typical
horizontal and vertical length scales, respectively. A dimensionless coordinate z
is introduced through

r∗ = r0(1 +
z∗
r0

) = r0(1 + z
D

r0
) (5.5)

From the continuity equation (5.1d), a relation between the vertical and hori-
zontal velocity scales is obtained as

W =
D

L
U = δU (5.6)

with δ = D/L is the ratio of vertical to horizontal length scale of the flow, which
is very small. For D = 103 m and L = 107 m, the value of δ = O(10−4).

For a central latitude θ0 �= 0�� , let f0ff indicate the Coriolis parameter, with
f0ff = 2Ω sin θ0. Because the vertical velocity is much smaller than the horizontal
velocity, the magnitude of the horizontal components of the Coriolis acceleration
(2.5) is ρ0Uf0ff . Since the magnitude of the inertial terms is ρ0U

2/L, the ratio
of inertial and Coriolis terms is measured by the Rossby number ε = U/(f0L).
The Rossby number is therefore very small in the large-scale ocean circulation
and since the effects of frictional processes are uncertain, but very small, the
only balance which seems possible is the geostrophic balance, in which horizontal
pressure gradients balance the Coriolis acceleration. In this way, the dynamical
pressure scale P can be anticipated from the dominant balance in (5.1b)

2Ωu∗ sin θ = − 1
ρ0r∗

∂p∗
∂θ

(5.7)

which leads to P = ρ0Uf0ff L.
The equations are now scaled by the introduction of the non-dimensional quan-

tities u, v,w, t, η, hb and p through

u∗ = Uu ; v∗ = Uv ; w∗ = δUw ; t∗ =
L

U
t (5.8a)

η∗ = Dη ; hb∗ = Dhb (5.8b)

p∗ = −gDρ0z + ρ0Uf0ff Lp (5.8c)

where the advective timescale L/U is chosen as characteristic time scale. In (5.8),
the hydrostatic part and dynamic part of the pressure are separated out. When (5.8)
is substituted into the equations (5.1) and the shallow water limit (δ = D/L→ 0
and D/r0 → 0) is taken, one obtains

ε

[
Du

dt
− γuv tan θ

]
− v sin θ

sin θ0
= − 1

cos θ
∂p

∂φ
+
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EV
∂2u

∂z2
+

EH
cos2 θ

[
cos θ

∂

∂θ

(
cos θ

∂u

∂θ

)
+
∂2u

∂φ2
− u− 2 sin θ

∂v

∂φ

]
(5.9a)

ε

[
Dv

dt
+ γu2 tan θ

]
+ u

sin θ
sin θ0

= −∂p
∂θ

+

EV
∂2v

∂z2
+

EH
cos2 θ

[
cos θ

∂

∂θ

(
cos θ

∂v

∂θ

)
+
∂2v

∂φ2
− v + 2 sin θ

∂u

∂φ

]
(5.9b)

∂p

∂z
= 0 (5.9c)

∂w

∂z
+

1
cos θ

[
∂(v cos θ)

∂θ
+
∂u

∂φ

]
= 0 (5.9d)

with
D

dt
=

∂

∂t
+

u

cos θ
∂

∂φ
+ v

∂

∂θ
+ w

∂

∂z

The dimensionless boundary conditions at z = η become

p = ε Fr η (5.10a)

EV
∂u

∂z
= αSW τφ (5.10b)

EV
∂v

∂z
= αSW τ θ (5.10c)

D

dt
(z − η) = 0 (5.10d)

and those at z = −1 + hb become

u+
w

cos θ
∂hb
∂φ

= 0 (5.11a)

v +w
∂hb
∂θ

= 0 (5.11b)

D

dt
(z + 1− hb) = 0 (5.11c)

In the equations above, several dimensionless parameters appear. They are the
Rossby number ε, the inverse Froude number Fr, the wind-stress strength αSW ,
a geometrical ratio γ and the horizontal and vertical Ekman numbers EH and EV .
Expressions for these parameters are

ε =
U

f0ff L
; Fr =

gD

U2
; αSW =

τ0ττ

f0ff ρ0DU

EH =
AH
f0ff L2

; EV =
AV
f0ff D2

; γ =
L

r0
(5.12)

Note that only five of these parameters are independent, since the horizontal ve-
locity can be chosen arbitrarily. For a characteristic horizontal velocity ofU = 0.1
ms−1, for later reference indicated by USWU , and θ0 = 45◦N, typical values of the
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Parameter Value Parameter Value
L = r0 6.4× 106 m τ0ττ 2.0×10−1 Pa
D 1.0× 103 m ρ0 103 kgm−3

f0ff = 2Ω 1.5×10−4 s−1 AH 103±1 m2s−1

USWUU 10−1 ms−1 AV 10−3±1 m2s−1

Parameter Value Parameter Value
ε 1.0×10−4 αSW 1.4×10−2

γ 1.0 Fr 9.8 × 105

EH 10−7±1 EV 7.0 10−6±1

Table 5.1. Typical values of dimensional and dimensionless parameters appearing in (5.12), with
g = 9.8ms−2 and θ0 = 45◦N. For the representation of friction, ranges for the friction parameters
AV and AH are indicated. The uncertainty in the value of these parameters is quite large.

dimensional and non-dimensional parameters for the North Atlantic basin (with
L = r0) are shown in Table 5.1.

By inspection of the equations (5.9) and the values of the dimensionless param-
eters, the coefficients before the highest order derivatives appear to be very small.
One can therefore already anticipate that thin frictional boundary layers are likely
to occur in these flows, both near horizontal and vertical boundaries. Since the
value of the Rossby number is also small on the large scale, nonlinear effects are
expected only to become important on smaller scales than the basin size or in flow
regions where the horizontal velocity is substantially larger than USW .

5.2.3. The multi-layer model
The model of the previous section can be generalized to a two-layer model

where two layers of constant density ρ1 and ρ2 (with ρ1 < ρ2) are separated by
a material interface which is able to deform (Fig. 5.5). This interface is indicated
by z∗ = −h∗ and is sometimes referred to as a pycnocline (or a thermocline).
In each of the layers, the equations (5.9) govern the flow and the top boundary
conditions (5.10) hold for the upper layer, while the bottom boundary conditions
(5.11) hold for the lower layer. What is additionally needed is a description of
the evolution of the interface separating the layers. The conditions to be satisfied
on this boundary are continuity of pressure and the (kinematic) requirement that
the interface z∗ = −h∗ is a material surface. When the top layer quantities are
indicated by a subscript 1 and the bottom quantities by a subscript 2, then the
dimensional conditions at z∗ = −h∗ become

D

dt∗
(z∗ + h∗) = 0 (5.13a)

p1∗ = p2∗ (5.13b)

where the D/dt∗ operator can be taken in either layer, since the vertical velocity
is continuous over the thermocline (the horizontal velocities are discontinuous).
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Figure 5.5. Sketch of the two-layer model set-up. Two layers having constant densities ρ1 and ρ2

are separated by an interface described by z∗ = −h∗, referred to as a thermocline.

The equilibrium value of h∗, which occurs when there is no motion, is indicated
by D1. A dimensionless thermocline deviation h is defined as h∗ = D1 + μDh,
where μ is an a priori unknown dimensionless scale factor. Using the scaling for
the pressure (5.8) in each layer, the condition (5.13b) becomes

g(ρ1 − ρ2)μh = f0ff LU(ρ2p2 − ρ1p1) (5.14)

The relation (5.14) indicates that small dynamic pressure differences between the
layers can lead to substantial deflections of the interface since the factor ρ2 − ρ1

is small compared to a typical reference density ρ0. Hence, μ can be chosen as

μ =
ρ0f0ff UL

gD(ρ2 − ρ1)
(5.15)

and the dimensionless form of the equations (5.13) at z = −D1/D + μ h is

w = −μDh
dt

(5.16a)

h = p1 − p2 (5.16b)

The quantity g(ρ2 − ρ1)/ρ0 is called the reduced gravity and indicated by g ′.
The two-layer model is formed by the homogeneous equations (5.9) in each

layer together with boundary conditions (5.10) for the first layer, (5.11) for the
second layer and the interface conditions (5.16). Understanding this set-up, it is
easily generalized to a multi-layer model. More details on the derivation of layer
models can be found in chapter 6 of Pedlosky (1987).

5.3. Shallow-water and Quasi-geostrophic Models
The multi-layer models defined in the previous section can be reduced in par-

ticular cases. The subsections that follow describe two of these simplifications,
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introducing the shallow-water (SW) models and the quasi-geostrophic (QG) mod-
els.

5.3.1. The spherical shallow-water model
A reduction of the homogeneous model in section 5.2.1 can be obtained by

realizing that the horizontal and vertical Ekman numbers (EH and EV ) and the
Rossby number ε are very small numbers on the basin scale. Hence, the effects
of inertia and friction are relatively small with respect to the Coriolis effect. Over
most of the flow domain, the dominant balance in (5.9a-b) must be the geostrophic
balance

v
sin θ
sin θ0

=
1

cos θ
∂p

∂φ
(5.17a)

u
sin θ
sin θ0

= −∂p
∂θ

(5.17b)

By differentiating these equations to z and using the hydrostatic relation (5.9c),
it follows that the horizontal velocity field outside the vertical boundary layers is
independent of depth. Of course, this solution cannot satisfy the boundary con-
ditions at top and bottom and hence boundary layers occur, the so-called Ekman
layers. The vertical structure of the solutions is sketched in Fig. 5.6; the thick-
ness of the Ekman boundary layers is δE = D

√
EV . The latter can be easily

deduced from the equations (5.9) since it is on this vertical scale that the vertical
momentum exchange terms become O(1). The flow in the Ekman layer and its

Figure 5.6. Sketch of the vertical structure of the flow in the homogeneous model. In the region
outside the Ekman layers, the horizontal velocities are depth independent. Within the Ekman layers,
which have thickness δE = D

√√
EV , vertical momentum exchange through friction become impor-

tant in the momentum balance. In this way, the input of momentum by the wind stress is distributed
over the bulk of the liquid.

coupling with the flow in the geostrophic interior are treated in many textbooks
on geophysical fluid dynamics (Pedlosky, 1987; Cushman-Roisin, 1994) and will
not be discussed here.
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Shallow-water models are obtained by integrating over the total layer depth
and simplifying (or neglecting) the momentum exchanges with the bottom Ekman
layer. The input of momentum through the top Ekman layer is related to the wind
stress, using (5.10), through

EV

∫ η

−

∫∫
1+hb

∂2u

∂z2
dz = EV

∂u

∂z
|η−1+hb

≈ αSW τφ (5.18)

with a similar approximation for the momentum transfer of the meridional wind
stress. When this procedure is followed in the case of a spherical domain with
L = r0 (γ = 1), the shallow-water model becomes

ε

(
∂u

∂t
+

u

cos θ
∂u

∂φ
+ v

∂u

∂θ
− uv tan θ

)
− v sin θ

sin θ0
=

− ε Fr
cos θ

∂η

∂φ
+ EH

(
∇2u− u

cos2 θ
− 2 sin θ

cos2 θ

∂v

∂φ

)
+ αSW

τφ

h
(5.19a)

ε

(
∂v

∂t
+

u

cos θ
∂v

∂φ
+ v

∂v

∂θ
+ u2 tan θ

)
+ u

sin θ
sin θ0

=

−ε Fr ∂η
∂θ

+ EH

(
∇2v − v

cos2 θ
+

2 sin θ
cos2 θ

∂u

∂φ

)
+ αSW

τ θ

h
(5.19b)

∂h

∂t
+

1
cos θ

(
∂(hu)
∂φ

+
∂(hv cos θ)

∂θ

)
= 0 (5.19c)

where the total layer depth is written as h = h∗/D = η+1−hb. The equilibrium
value h = 1 appears for a motionless liquid in a flat-bottom basin. The model
(5.19) together with boundary conditions is referred to as the spherical homoge-
neous shallow-water model.

5.3.2. The β-plane model
When the basin size extends only over a small angle Δθ in the meridional

direction, a β-plane approximation of the equations can be made. Usually, one
also assumes a small size of the basin in zonal direction and identifies L = r0Δθ
as the characteristic horizontal scale of the flow. When γ = L/r0 = Δθ is small,
local dimensionless Cartesian coordinates (x, y) are introduced through (Fig. 5.7)

x = (φ− φ0) cos θ0 (5.20a)

y =
(θ − θ0)

Δθ
(5.20b)

Locally near θ = θ0 the Taylor series expansions

sin θ = sin θ0 + (θ − θ0) cos θ0 +O((θ − θ0)2) (5.21a)

cos θ = cos θ0 − (θ − θ0) sin θ0 +O((θ − θ0)2) (5.21b)

are used where the O symbol is short to indicate higher-order terms. In the β-
plane approximation, the local variation of the Coriolis parameter is only taken
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Figure 5.7. Definition of local Cartesian coordinates (x, y) near a central point defined by lon-
gitude φ0 and latitude θ0.

into account, whereas in the inertial and frictional terms, just the Cartesian form
is taken. In this way, a new dimensionless parameter β arises, which is given by

β =
β0L

2

U
with β0 =

2Ω cos θ0

r0
(5.22)

A full derivation and discussion of the β-plane model can be found in chapter
6 of Pedlosky (1987) and is not given here. Substitution of the approximations
(5.21) and the local coordinates (5.20) give directly the dimensionless equations
of the β-plane model, which become

ε
Du

dt
− v(1 + βεy) +

∂p

∂x
= EH

[
∂2u

∂x2
+
∂2u

∂y2

]
+ EV

∂2u

∂z2
(5.23a)

ε
Dv

dt
+ u(1 + βεy) +

∂p

∂y
= EH

[
∂2v

∂x2
+
∂2v

∂y2

]
+ EV

∂2v

∂z2
(5.23b)

∂p

∂z
= 0 (5.23c)

∂w

∂z
+
∂v

∂y
+
∂u

∂x
= 0 (5.23d)

D

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(5.23e)

Note that for consistency, the term βε = (Δθ cos θ0)/(sin θ0) must be small
compared to unity. The boundary conditions (5.10) at the ocean-atmosphere in-
terface and the equations (5.11) at the bottom remain basically unchanged, except
for their formulation in Cartesian coordinates. When the wind-stress field in the
β-plane model is denoted by τ = (τ x, τy), the boundary conditions (5.10) at
z = η become

p = ε Fr η (5.24a)
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EV
∂u

∂z
= αSW τx (5.24b)

EV
∂v

∂z
= αSW τy (5.24c)

D

dt
(z − η) = 0 (5.24d)

and the equations (5.11) at z = −1 + hb(x, y) become

u+w
∂hb
∂x

= 0 (5.25a)

v +w
∂hb
∂y

= 0 (5.25b)

D

dt
(z + 1− hb) = 0 (5.25c)

The β-plane model thus obtained is said to represent the dynamics in the tangent
plane at the sphere at a certain latitude θ0.

After vertical integration over the layer, the homogeneous shallow-water β-
plane model results. The equations are

ε(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
)− (1 + βεy)v = (5.26a)

−ε Fr ∂h
∂x

+ EH∇2u + αSW
τx

h

ε(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) + (1 + βεy)u = (5.26b)

−ε Fr ∂h
∂y

+ EH∇2v + αSW
τy

h

∂h

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= 0 (5.26c)

As for the shallow-water model in spherical coordinates, the problem of deter-
mining the flow has been reduced to a set of partial differential equations on a
two-dimensional domain. Hence, only conditions at the continental boundaries,
for example no-slip, have to be imposed to complete the model description.

5.3.3. Quasi-geostrophic β-plane models
When the Rossby number ε is small and the bottom topography variations are

O(ε), the shallow-water equations can be further simplified. In this regime, quasi-
geostrophic (QG) theory is an adequate approximation to describe the flow. The
QG theory is an asymptotic theory using ε as a small parameter with assumptions
of the magnitude on the other parameters in terms of ε. For the homogeneous
β-plane case, the starting point of the derivation are the equations (5.23).
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One can immediately see that expansion of all quantities in ε leads to a zeroth
order (indicated by the superscripts 0) balance

(u0, v0) = (−∂p
0

∂y
,
∂p0

∂x
) = (−∂ψ

∂y
,
∂ψ

∂x
) (5.27)

in the momentum equations. Here, ψ = p0 is the geostrophic pressure, also
called the geostrophic streamfunction. Consideration of the Ekman layers to sat-
isfy boundary conditions at top and bottom of the domain and integration over
the interior flow domain, where the flow is strictly geostrophic, finally leads to an
evolution equation for the geostrophic streamfunction (Pedlosky, 1987).

In the homogeneous case, the quasi-geostrophic model leads to the so-called
barotropic potential vorticity equation which is given by[

∂

∂t
+ u0 ∂

∂x
+ v0 ∂

∂y

]
[ζ − Fψ + βy] =

1
Re
∇2ζ + αQG(

∂τy

∂x
− ∂τx

∂y
) − rb1ζ (5.28a)

ζ = ∇2ψ (5.28b)

where ζ = ∂v0/∂x − ∂u0/∂y is the vertical component of the relative vorticity.
The parameter β was already defined in (5.22) but additional parameters appear
in (5.28): the bottom friction parameter rb, the rotational Froude number F , the
wind-stress coefficient αQG and the Reynolds number Re. These new parameters
have expressions

αQG =
τ0ττ L

ρ0DU2
; F =

f2
0ff L2

gD

rb1 =
√√
EV
ε

=
L

UD

√
AV f0ff ; Re =

EH
ε

=
UL

AH
(5.29)

Values of both dimensional as well as dimensionless parameters for a basin of
1000 × 1000 km at θ0 = 45◦N are shown in Table 5.2. In this case, the reference
horizontal velocity U , for later reference indicated by UQG, is chosen slightly
smaller than the horizontal velocity scale in the shallow-water models.

A direct extension of the single-layer QG model is a two-layer QG model,
where the densities are constant (ρ1 and ρ2) within the layers. Again, the interface
between both layers is able to deform, the reduced gravity g ′ is given by g′ =
g(ρ2 − ρ1)/ρ0 and the top and bottom layers have equilibrium depths D1 and
D2 (D = D1 +D2), respectively. Within each layer, the homogeneous equations
(5.28) hold and the motion of fluid in both layers is coupled through the continuity
of pressure and vertical velocity. Both conditions are the same as in the two-layer
shallow water model and were given in (5.13). When the QG-theory is used, the
dimensionless two-layer quasi-geostrophic model is obtained as[

∂

∂t
+ u1

∂

∂x
+ v1

∂

∂y

]
[ζ1 − F1FF (ψ1 − ψ2) + βy] =
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Parameter Value Parameter Value
L 1.0× 106 m τ0ττ 1.5×10−1 Pa
D 6.0× 102 m β0 1.6 10−11 (ms)−1

f0ff 1.0×10−4 s−1 AH 103±1 m2s−1

AV 10−3±1 m2s−1 Rext 1.0 × 106 m
ρ0 103 kgm−3 UQGUU 1.6×10−2 ms−1

Parameter Value Parameter Value
αQG 1.0× 103 β 1.0 × 103

F 1.0 Re 1.6 − 160
rb1 1.0− 100

Table 5.2. Typical values of dimensional and dimensionless parameters for the single-layer
quasi-geostrophic model. These parameters are defined in (5.12), (5.22) and (5.29). The quan-
tity Rext is the external Rossby radius of deformation, given by Rext =

√√
gD/f
√√

0ff .

=
1
Re
∇2ζ1 + αQG(

∂τy

∂x
− ∂τx

∂y
) (5.30a)

ζ1 = ∇2ψ1 (5.30b)[
∂

∂t
+ u2

∂

∂x
+ v2

∂

∂y

]
[ζ2 + δFF1FF (ψ1 − ψ2) + βy] =

=
1
Re
∇2ζ2 − r2ζ2 (5.30c)

ζ2 = ∇2ψ2 (5.30d)

with additional parameters

F1FF =
f2

0ff L2

g′D1
, δF =

D1

D2
; rb2 =

D

D2

rb1
2

(5.31)

Again, typical values of the additional dimensional as well as dimensionless pa-
rameters for a basin of 1000× 1000 km at θ0 = 45◦N for the two-layer model (for
typical depths D1 and D2) are shown in Table 5.3.

Parameter Value Parameter Value
D1 6.0× 102 m D2 1.4 × 103 m
g′ 2.0×10−2 ms−2 Rint 3.5 × 105 m
Parameter Value Parameter Value
F1FF 8.5× 102 δFF1FF 4.5 × 102

rb2 0.7− 70 δF 4.3×10−1

Table 5.3. Typical values of additional parameters for the two-layer quasi-geostrophic model.
The quantity Rint is the internal Rossby radius of deformation, given by Rint =

√
g
√√ ′D1/f0ff .
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When the bottom layer is motionless, i.e. ψ2 = 0, (5.30a) reduces to a single
equation for ψ1. This equation is mathematically similar to (5.28a), but with a
different value of the parameter F , i.e., F1FF . This model is called an equivalent
barotropic model or 1.5-layer QG model. In the same way, 1.5 layer SW models
are obtained.

5.3.4. Overview of the SW and the QG models
The brief formulation of the SW models and QG models in the previous subsec-

tions completes the hierarchy of models which will be considered in the remainder
of this chapter. The high-end member of the hierarchy is the multi-layer primitive
equation model on the sphere and the low-end model member is the (single-layer)
quasi-geostrophic barotropic vorticity equation on the β-plane.

With all the different models around for the WDC, it is desirable to have an
easy reference system within the model hierarchy. There are many ways to do this
and here only one of such possibilities is suggested. We can introduce dynam-
ical classes, and use Q (quasi geostrophic), S (shallow water) and P (primitive
equation) as subscripts to a W indicating the WDC. Then we add the number
of layers and details in the bathymetry as subsequent superscripts. For the lat-
ter, we can use 0 for a rectangular basin, 1 for only continental geometry and
2 for full bathymetry. In this nomenclature, the model W 1,0

QW will be the single-
layer QG model with a flat bottom, while a 5-layer shallow-water model with real
bathymetry has the notation W 5,2

SW .
The advantage of this classification is that other dynamical classes, such as

balanced models (McWilliams and Gent, 1980), can be added to the hierarchy.
All ODE-type ad-hoc or reduced models can be put into one model class W0WW and
superscripts can be added to indicate where the model was derived from. Finally,
we can add an argument to the model to indicate the vector of parameters, say α,
for example W 1,0

gg

QWW [α]. Together with the coordinate system, the domain and the
boundary conditions this then totally specifies a model configuration.

It is important to realize what type of assumptions underly each of the mod-
els and what physics is added/neglected when one goes up/down one level in the
model hierarchy. The latter can be efficiently discussed in terms of mechanisms of
production of vorticity, as presented in chapter 2. An overview of these assump-
tions and parameter restrictions of each of the homogeneous models is given in
Table 5.4.

In the multi-layer spherical coordinates model, all vorticity production mech-
anisms, i.e., advection, diffusion, stretching, tilting and baroclinic vorticity pro-
duction are present. The details of the baroclinic vorticity production which can
be represented are limited by the choice of the vertical structure of the flow; this
is basically set by the number of layers. The gradients in the density field can
only be represented by gradients in the layer thicknesses. A priori, there is no
restriction on the amplitude of the sea surface height and the layer thicknesses.
In principle, the interface is allowed to intersect the ocean-atmosphere interface
although problems can be anticipated when a layer thickness approaches zero. In
the homogenous model, the baroclinic vorticity production is absent.
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Overview of the type of single-layer models
Model Assumptions Parameter Momentum

Conditions Equations

I. Spherical PE hydrostatic limit δ = D
L � 1 (5.9)

II.β PE as I & γ = L
r0
� 1 (5.23)

limited
meridional extent

III. Spherical SW as I & EV � 1 (5.19)
vertical

homogeneity
IV. β SW as III & γ = L

r0
� 1 (5.26)

limited
meridional extent

V. β QG as III & ε� 1 (5.28)
small bottom
topography

Table 5.4. Overview of the assumptions of the different homogeneous ocean (PE, SW and QG)
models which form part of the hierarchy of models of the WDC described in this section.

In the SW models, there is the assumption of vertical homogeneity of the flow
outside the frictional boundary layers. In the homogenous case, the mechanism
of vortex tilting is eliminated, because there can be no vertical shear. However, in
the multi-layer case, the vertical shear is represented by the differences in veloc-
ities between the layers reintroducing this mechanism. This is similar for either
spherical or β-plane models. In the latter models, only the representation of the
Coriolis acceleration is simplified and effects of Earth’s curvature are neglected in
the inertia and frictional terms.

In the QG models, the amplitudes of bottom topography and deformations of
the equilibrium layer thicknesses are all assumed O(ε), where ε is the Rossby
number. The geostrophic balance is the dominant balance over the whole flow
field. All ageostrophic terms are sources of potential vorticity and must balance
in the QG models. In the homogeneous model, the stretching mechanism is only
represented by changes in the sea surface height (the term Fψ). The length scale
over which stretching is important is the external Rossby deformation radiusRext,
with F = (L/Rext)2. In the multi-layer version, the changes in the depth of the
interface separating the layers can contribute to the stretching. For example, in
the two-layer model these are the terms involving F1(ψ1 − ψ2) and the relevant
horizontal scale is the internal Rossby radius of deformation Rint with F1FF =
(L/Rint)2.

The models can furthermore be categorized by the type of boundary conditions
prescribed and the detail of the geometry taken into account. Below, rectangular



190 NONLINEAR PHYSICAL OCEANOGRAPHY

basins as well as realistic continental geometry will be considered. Having clari-
fied the assumptions within this hierarchy models, next their solution structure is
described.

5.4. Classical Results
The quasi-geostrophic barotropic vorticity equation (5.28) is the cornerstone of

the classical explanation of the large-scale gyres, the intensification of the western
boundary currents and the theory of Rossby waves (Sverdrup, 1947; Stommel,
1948; Munk, 1950). Furthermore, the two-layer quasi-geostrophic model (5.30)
has been used extensively to understand instabilities in wind-driven flows. A brief
overview these results is given in the next subsections as a preparation for the
results which follow later on.

5.4.1. The Sverdrup-Munk-Stommel theory
The value of the horizontal velocity UQGUU as in Table 5.2 is based on the choice

αQG = β ⇒ U =
τ0ττ

ρ0Dβ0L
(5.32)

In this case, the steady barotropic vorticity equation (5.28) can be written as

(
δI∗
L

)2

�
∂ψ

∂x

∂

∂y
− ∂ψ

∂y

∂

∂x

�
�
∇2ψ − Fψ

�
+
∂ψ

∂x
=

=
∂τy

∂x
− ∂τx

∂y
− δS∗

L
∇2ψ + (

δM∗
L

)3 ∇4ψ (5.33)

where δI∗, δS∗ and δM∗ are three internal length scales given by

δI∗ =

�
U

β0
, δS∗ =

√√
AV f0ff

2Dβ0
and δM∗ = (

AH
β0

)
1
3 (5.34)

Taking values from Table 5.2, typical values of these internal length scales are
δM∗ = 18 – 85 km, δI∗ = 32 km and δS∗ = 5.2 – 52 km.

Although both frictional length scales δS∗ and δM∗ can vary substantially in
magnitude due to the uncertainties in the values of AH and AV , all three internal
length scales are substantially smaller than the basin length L. Hence, on the basin
scale L, the dominant balance is the Sverdrup balance (Sverdrup, 1947), given by

∂ψ

∂x
=
∂τy

∂x
− ∂τx

∂y
(5.35)

Because (5.35) contains only first order derivatives to x, the Sverdrup solution can
only satisfy one boundary condition on the east-west boundaries. Hence, bound-
ary layers are expected to appear at either eastern, western or both boundaries.
In example 5.1, the case considered in Stommel (1948) where the boundary layer
structure is provided by only bottom friction is described for a given wind-stress
forcing. In this case, bottom friction is assumed to be the dominant term in (5.33)
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or δS∗ � max{δM∗, δI∗}. The Sverdrup-Stommel flow, as presented in Example
5.1, is the simplest flow containing a Sverdrup interior and a western boundary
layer.

�
Example 5.1: Sverdrup flow and Stommel boundary layer

Within a square basin [0, 1] × [0, 1], consider the wind-stress forcing

τx(y) = − 1
2π

cos 2πy ; τ y = 0

Under the conditions δS∗ � max{δM∗, δI∗}, the equation (5.33) becomes

∂ψ

∂x
= −∂τ

x

∂y
− δS∗

L
∇2ψ (5.36)

As the bottom friction contains only second-order derivatives, we can only pre-
scribe kinematic conditions on the lateral boundaries. In the simplest case ψ = 0
on all boundaries x = 0, 1 and y = 0, 1.

For the chosen wind-stress field, the solution to (5.35) satisfying the boundary
conditions at y = 0, 1 is

∂ψ

∂x
= − sin 2πy ⇒ ψ(x, y) = (−x+ C(y)) sin 2πy

The function C(y) is determined by boundary conditions at x = 0, 1, but it is
not clear a priori which one. Using the notation δS = δS∗/L, a boundary layer
coordinate μw = x/δS is introduced near the western boundary and a coordinate
μe = (1 − x)/δS near the eastern boundary. When transforming the equation
(5.36) to obtain the boundary layer equations, note that the wind-stress curl is a
slowly varying function on these scales. Let the boundary layer solutions at the
western and eastern boundary be indicated by ψw and ψe, respectively.

The transformed equation (5.36) at the eastern boundary becomes

−∂ψe
∂μe

= −δS
∂τx

∂y
−
[
∂2ψe
∂μe2

+ δ2
S

∂2ψe
∂y2

]

The solution ψe of the O(1) balance, with respect to δS , in this equation is given
by

ψe(μe, y) = (Ce
1 +Ce2CC eμe) sin 2πy

with constants Ce
1 and Ce2CC . This solution has to match up at μe → ∞ with the

Sverdrup solution ψ for x → 1. However, it clearly cannot because it becomes
unbounded for large μe unless Ce

2 = 0. In the latter case, the condition ψe(1, y) =
0 gives also Ce

1 = 0 and consequently ψe ≡ 0. Hence, the Sverdrup solution has
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(a) (b)

Figure 5.8. (a) Plot of the streamfunction of the Sverdrup solution ψ(x, y) = (1 − x) sin 2πy.
(b) Plot of the combined Sverdrup-Stommel solution, incorporating the western boundary layer flow
ψw(μw, y) = (1− e−μw ) sin 2πy with μw = x/δS and δS = 0.1.

to satisfy ψ(1, y) = 0 and hence C(y) = 1. The Sverdrup flow then becomes

ψ(x, y) = (1− x) sin 2πy

which is easily seen as consisting of a double-gyre flow (Fig. 5.8a).

At the western boundary, (5.33) transforms into

∂ψw
∂μw

= −δS
∂τx

∂y
−
[
∂2ψw
∂μw2

+ δ2
S

∂2ψw
∂y2

]

Again, the solution ψw of the O(1) balance in the equation above is given by

ψw(μw, y) = (Cw
1 +Cw2CC e−μw) sin 2πy

The conditions ψw(0, y) = 0 and ψw(μw →∞, y) = ψ(x→ 0, y) determine Cw
1

and Cw2CC to give
ψw(μw, y) = (1− e−μw) sin 2πy

The uniformly valid solution over the whole domain is plotted in (Fig. 5.8b) for
δS = 0.1.

�

A simple physical argument to explain why the boundary layer occurs in the
west instead of in the east was put forward by Stommel (1948). Consider only
the subtropical (southern) gyre of the flow in Fig. 5.8b, then the input of vorticity
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by the wind stress is everywhere negative (clockwise). According to the Sverdrup
flow, the interior meridional geostrophic velocity is everywhere negative on the
domain y ∈ [0, 1

2 ]. Hence, in either case of a boundary layer near the eastern or
western wall, the flow must be northward to compensate the southward interior
Sverdrup flow. Northward motion of fluid particles produces negative relative
vorticity through the β-effect.

We now write the vorticity balance (5.33) with δS∗ � max{δM∗, δI∗} in terms
of velocities as

0 = −v − ∂τx

∂y
− δS(

∂v

∂x
+
∂u

∂y
) (5.37)

The β induced negative vorticity due to a northward flow (v > 0) is the first term
on the right hand side. The wind stress induced negative vorticity is represented
by the second term and the last term is the vorticity induced by bottom friction. In
the boundary layer, the first and the last term have to compensate. Also the zonal
gradients in the meridional velocity are much larger than the meridional gradient
of the zonal velocity and hence | ∂v/∂x |�| ∂u/∂y |.

As there are only kinematic conditions, the meridional velocity is maximal at
the lateral boundaries. Hence, in the eastern boundary layer the zonal gradient
of meridional velocity is positive (∂v/∂x > 0) and both the first and third term
in (5.37) are negative and cannot compensate. In other words, the vorticity gen-
erated through bottom friction cannot balance that due to the β-effect. In the
western boundary layer, the zonal gradient of the meridional velocity is negative
(∂v/∂x < 0), the first and term in (5.37) have opposite sign, and hence the vor-
ticity produced by both bottom friction and β-effect can compensate (Fig. 5.9).
Hence, the boundary flow can only occur in the west, as follows directly mathe-
matically from the boundary layer analysis (Example 5.1).

--

input by wind stress

SverdrupSverdrup

betafriction beta friction

western compensating flow
is able to balance friction and
beta-effect

eastern compensating flow
is not able to balance
friction and  beta-effect

Figure 5.9. Sketch of the vorticity balances from which one can deduce that the compensating
flow of the Sverdrup transport can only occur in the western boundary layer.

Nonlinearities due to advection of vorticity introduce north-south asymmetries
and are responsible for strong recirculation regions (Veronis, 1966). Although
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this regime will be explored in more detail in the following sections using bifur-
cation analysis, many classical theoretical results have been obtained. In the fully
inertially dominated regime, for example, special type of motion may occur, i.e.,
the Fofonoff inertial solution (Fofonoff, 1954) or the modon-type solution (Stern,
1975). An overview of these results is presented in chapter 5 of Pedlosky (1987).

5.4.2. Temporal variability
Apart from time-dependent forcing, which can be a major source of temporal

variability (for example the annual cycle), there are also internal sources of vari-
ability in large-scale ocean flows. There are at least two processes leading to this
variability: adjustment of the flow to changes in the forcing through the propaga-
tion of waves and the development of instabilities on the mean flow. Each of these
processes will be considered briefly in the following subsections.

5.4.2.1 Rossby waves
The homogeneous quasi-geostrophic model (5.28) has also been important to

understand wave phenomena in the ocean. Within this model, small amplitude
motions on a motionless background state in the unforced, frictionless model sat-
isfy the dimensionless equation

∂

∂t
(∇2ψ − Fψ) + β

∂ψ

∂x
= 0 (5.38)

In a horizontally unbounded domain, free wave solutions

ψ(x, y, t) = Ψ0 e
i(kx+ly−σt) (5.39)

exists for waves with wavenumber k = (k, l), phase speed C = (σ/k, σ/l) and
arbitrary amplitude Ψ0. These waves are characterized by a dispersion relation

σ = − βk

k2 + l2 + F 2
(5.40)

and represent westward propagating waves called Rossby waves. In a two-layer
quasi-geostrophic model, there are two types of Rossby modes: one barotropic
mode which has no vertical structure (both layers have the same response) and
a baroclinic mode (where the response in both layers is different). Dispersion
relations of these waves follow directly by considering small amplitude motions
in the unforced, frictionless model (5.30) and become

σbt = − βk

k2 + l2
: σbc = − βk

k2 + l2 + F1FF (1 + δF )
(5.41)

where the subscripts bc and bt refer to baroclinic and barotropic waves, respec-
tively. In the latter equation, δF is again the depth ratio D1/D2.
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�
Example 5.2: Propagation of Rossby waves

The propagation mechanism of the barotropic Rossby wave can be understood,
by writing (5.38), for F = 0, in the form

D

dt
(ζ + βy) = 0

which is a statement of conservation of the potential vorticity ζ + βy (see section
2.3). Consider now three initially motionless columns of liquid, I, II and III on a
certain latitude. If column II moves slightly northward, the term βy increases and
hence to conserve potential vorticity, the column starts to rotate clockwise since
ζIIζζ < 0. This motion induces downward velocities at column III and upward

II IIII

IIII

induced velocity
III - > II

induced velocity
I - > II

yI

IIII

III

induced velocity
II - > I

yI II III

induced velocity
II - > III

Figure 5.10. Sketch to illustrate the mechanism of propagation of a barotropic Rossby wave.

velocities at column I (Fig. 5.10). Again by conservation of potential vorticity in
each column the induced vorticities are ζI < 0 and ζIII > 0, and both motions
induce downward velocities on column II, which draws it back to its equilibrium
position. In this way, a westward propagating wave motion results (Pedlosky,
1987).

�

Consider Rossby waves in a zonal channel with a meridional extent of 1000
km and only those waves for which l = π. For the parameters as in Table 5.2,
typical travel times of both barotropic and baroclinic Rossby waves over a zonal
distance of 1000 km are provided in Table 5.5. Note that to convert to dimensional
time, the factor is L/UQGUU . In Table 5.5, the quantity λ∗ is the dimensional zonal
wavelength λ∗ = 2πL/k, CxC ∗ is the zonal phase speed (Cx∗ = UQGUU σ/k) and
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k F λ∗(km) CxCC ∗(m/s) TbTT ∗(days)
π 0 2000 0.811 14.2
2π 0 1000 0.324 35.6
π 100 2000 0.134 86.6
π 1200 2000 0.016 1031.3

Table 5.5. Typical values of basin crossing times TbTT ∗ for midlatitude Rossby waves (with l = π)
traveling over a distance L = 1000 km. In this table, the second column is the quantity F (for the
barotropic waves), as well as the quantity F1FF (1 + δF ) (for the baroclinic waves).

TbTT ∗ is the travel time TbTT ∗ = L/CxCC ∗. This table illustrates that barotropic Rossby
waves are much faster than baroclinic Rossby waves and that longer waves have
shorter travel times. Typical time scales are in the order of days for the barotropic
waves and years for the baroclinic waves.

5.4.2.2 Rossby basin modes
In a bounded basin, say the domain [0, 1] × [0, 1], the free solutions become

so-called Rossby basin modes which satisfy kinematic boundary conditions, i.e.,
ψ = 0 at the lateral boundaries. For the barotropic case, solutions of (5.38) can
be found of the form (Pedlosky, 1987)

ψ(x, y, t) = Ψ0 sin nπx sin mπy e−i(σnmt+
βx

2σnm
) (5.42)

where Ψ0 is again an arbitrary amplitude. The dispersion relation of these modes
in a square basin is given by

σnm = − 2β√√
(nπ)2 + (mπ)2 + F 2

(5.43)

where the indices (n,m) refer to the spatial structure of the basin modes as defined
in (5.42). For the two-layer case, both barotropic and baroclinic Rossby basin
modes exist.

Note that each σnm defines a period of oscillation TpTT ∗ given by

TpTT ∗ = 2πL/(| σnm | UQGUU )

The propagation direction can be seen through the pattern changes along one os-
cillation and is westward. For the parameters in the Tables 5.2 and 5.3, typical
propagation periods of both barotropic and baroclinic basin modes are given in
Table 5.6. For the gravest barotropic ocean basin mode (n,m) = (1, 1), the
propagation time scale is about 20 days. The pattern of this mode is shown in
Fig. 5.11 at three instances during its propagation. The propagation mechanism
of these modes is similar to that of Rossby waves, but their spatial structure is dif-
ferent. These modes can also be described by a sum of free Rossby waves where
the coefficients are chosen such that the boundary conditions are satisfied.
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(n,m) F TpTT ∗(days)
(1, 1) 0 20.3
(1, 1) 100 454
(2, 1) 0 31.9
(1, 1) 1200 4500

Table 5.6. Typical values of travel times of Rossby basin modes over a distance of 1000 km in
the North Atlantic. The value of F indicates both values for the barotropic modes, as well as the
quantity F1FF (1 + δF ) for the baroclinic modes.

(a) (b) (c)

Figure 5.11. Sketch of the streamfunction pattern of the (1, 1) basin mode at three different in-
stances during its propagation. In the contour plots, the contour values are with respect to the
absolute maximum of the field ψm. (a) σ11t = 0, ψm = 0.867, (b) σ11t = 1

2
π, ψm = 0.353 and

(c) σ11t = 3
4
π, ψm = 0.305.

5.4.2.3 Basic instability mechanisms
Large-scale ocean flows are susceptible to instabilities. The growth of perturba-

tions and their interaction with the background state (and with each other) leads to
a rectification of the mean state and synoptic scale time-dependent features. Much
of the understanding of the instability mechanisms has been obtained through the
study of zonal flows in β-plane channels (Pedlosky, 1987). Two instability mech-
anisms are central in geophysical flows. The first mechanism is barotropic insta-
bility, where perturbations derive their kinetic energy from the horizontal shear of
the basic state (Kuo, 1951). The second is baroclinic instability (Eady, 1949), in
which the kinetic energy of the perturbations is drawn from the potential energy
of the basic state associated with the existence of vertical shear.

Prototype situations to understand both instability mechanisms in detail exist.
In Kuo (1951), the stability of a zonal jet is considered in a barotropic quasi-
geostrophic model and stability bounds are derived numerically. Two prototype
situations to understand baroclinic instability are the continuously stratified Eady
model (Eady, 1949) and the two-layer Phillips model (Phillips, 1951); these case
are extensively described in chapter 7 of Pedlosky (1987). Here, a typical case
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will be described where both instability mechanisms occur, usually referred to as
a mixed barotropic/baroclinic instability.

An example, illustrating the essence of both mechanisms, is the stability of
a zonal jet within a β-plane channel (y ∈ [−1, 1]) using the two-layer quasi-
geostrophic model (Van der Vaart and Dijkstra, 1997). The dimensionless zonal
velocity profile of the jet is prescribed analytically as

u1(y; ν) =
sech2( yν )− sech2( 1

ν )
sech2( 1

ν )
; u2(y) = αu1(y; ν) (5.44)

where sech(z) = 1/ cosh(z). This basic flow is such that u1(−1; ν) =
u1(1; ν) = 0; the parameter ν measures the width of the jet. For a value ν = 0.3,
the zonal velocity profile u1 is plotted in Fig. 5.12. The basic state (5.44) is a solu-
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Figure 5.12. Zonal velocity profile u1 = U(y) of the basic state (5.44) for ν = 0.3.

tion of the unforced, frictionless two-layer model (5.30) as can be easily verified.
The difference in strength of the zonal velocity in both layers is monitored by α.
A pressure difference ψ1−ψ2 exists between the layers, which is immediately re-
flected in a slope of the interface between the layers according to (5.16b). This is a
special case of the so-called thermal-wind balance in hydrostatic and geostrophic
flows, which relates horizontal gradients in density to vertical gradients in the
horizontal velocities.

In looking at the linear stability of the jet (5.44), the class of perturbations
considered are those which satisfy only kinematic conditions at the channel walls,
while being periodic in the zonal direction. Using the two-layer model (5.30), the
equations for infinitesimal perturbations on the basic state (5.44) can be written in
terms of the perturbation streamfunctions φj in both layers as

(
∂

∂t
+ u1

∂

∂x
)q1 + Π′1

∂φ1

∂x
+ r∇2φ1 = 0 (5.45a)
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Parameter Value Parameter Value
L 1.0× 105 m D2 1.4 × 103 m
D1 5.0× 102 m β0 2.0 10−11 (ms)−1

f0ff 1.0×10−4 s−1 g′ 2.0×10−2 ms−2

ρ0 1.0× 103 kgm−3 UQGUU 1.0×10−1 ms−1

Parameter Value Parameter Value
α 0.22 F1FF 13.2
δF 0.22 β 0.22
r 0.2 ν 0.3

Table 5.7. Standard values of the parameters for the Gulf Stream regime of a zonal channel flow
of horizontal dimension L = 100 km. The meaning of the quantities is the same as in Table 5.3.

(
∂

∂t
+ u2

∂

∂x
)q2 + Π′2

∂φ2

∂x
+ r∇2φ2 = 0. (5.45b)

where the potential vorticity of the perturbations qj and the potential vorticity
gradient of the basic state Π′ are given by

q1 = ∇2φ1 − F1FF (φ1 − φ2) (5.46a)

q2 = ∇2φ2 + δFF1FF (φ1 − φ2) (5.46b)

Π′1(y) = β + F1FF (1− α)u1 −
d2u1

dy2
(5.46c)

Π′2(y) = β − δFF1FF (1− α)u1 −
d2u2

dy2
(5.46d)

and only linear friction has been taken into account in both layers through the
coefficient r. These equations are complemented with boundary conditions at the
channel walls in both layers

y = ±1 :
∂φj
∂x

= 0 (5.47)

corresponding to the kinematic condition of zero normal flow at the channel walls.
The system of equations (5.45) allows for traveling wave solutions in the x -

direction with wavenumber k, complex growth factor σ and unknown meridional
structure, i.e.

Φ(x, y, t) = Φ̂(y)eikx+σt (5.48)

with the complex function Φ̂ = (φ1, φ2). The eigenvalue σ is written as σ =
λ+ iω and considered as a function of the wavenumber k and a control parameter,
in this case chosen as β−1, of the system. If λ > 0 for a particular wavenumber
k, the basic state is unstable. The neutral curve, λ(k, β−1) = 0 in the (k, β−1)
plane separates linearly stable basic states from unstable ones. The parameters
in Table 5.7 are used in the two-layer model to represent the Gulf Stream in a
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zonal channel; choices of parameters are discussed in Flierl (1978). The neutral
curve in the (k, β−1) plane is shown in Fig. 5.13 and has a minimum at (kc, β−1

c ).
These critical values occur at β−1

c = 2.2 and kc = 2.35, the latter corresponding
to a wavelength of 260 km. Since the standard value β−1 = 4.5 for this regime
(Table 5.7) is larger than β−1

c , the zonal jet described by (5.44) is unstable.
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Figure 5.13. Neutral curve for the parameter values of the Gulf Stream regime as given in Ta-
ble 5.7. The parameter β−1 is used as control parameter and k is the dimensionless wavenumber
(Van der Vaart and Dijkstra, 1997).

The perturbation streamfunction of the most unstable mode at one phase of the
oscillation (the solution (5.48) at t = 0) is for both layers shown in Fig. 5.14 with
dark (light) shading indicating positive (negative) values. The spatial patterns
have a symmetric structure in both layers with maximum amplitude at the center
line of the jet (y = 0) in the upper layer and off the axis for the lower later. There
exists a phase shift between φ1 and φ2 characteristic of baroclinic effects in the
instability.

One way to understand the nature of the instability is to investigate changes in
the mechanical energy balance. For the two-layer model this balance can be de-
rived by multiplying equation (5.45a) by ψ1, equation (5.45b) by ψ2 and integrate
the sum of both results over the domain to give (Pedlosky, 1987)

∂E
∂t

= I1II + I2II + CpCC −D (5.49)

where the total energy E is given by the sum of kinetic and potential energy over
both layers

E =
1
2

∫ 1

−

∫∫
1
( δF (|u1|2 + |v1|2) + |u2|2 + |v2|2 + δFF1FF |φ1 − φ2|2 ) dy, (5.50)
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Figure 5.14. Perturbation streamfunction Φ̂ of the neutral mode at the minimum of the curve in
Fig. 5.13 in layer 1 (φ1) and layer 2 (φ2). Dark (light) shading indicates positive (negative) values
(Van der Vaart and Dijkstra, 1997).

with perturbation velocities in both layers represented by (uj , vj), j = 1, 2. The
dissipation D is given by

D =
r

2

∫ 1

−

∫∫
1

( δF (|u1|2 + |v1|2) + |u2|2 + |v2|2 ) dy, (5.51)

The energy production terms I1II and I2II due to Reynolds’ stresses in both layers
are given by

I1II =
∫ 1

−

∫∫
1
(�(u1v

∗
1))

d

dy
u1(y) dy (5.52a)

I2II =
∫ 1

−

∫∫
1
(�(u2v

∗
2))

d

dy
u2(y) dy (5.52b)

where a ∗ superscript indicates complex conjugate and � indicates the real part
of the expression which follows. Finally, the potential energy conversion CpCC is
expressed by

CpCC = δFF1FF (1− α)
∫ 1

−

∫∫
1
u1(y)�(−v1φ

∗
2) dy (5.53)

These terms nicely illustrate the instability mechanisms at work. Clearly, the dis-
sipation is always positive and is stabilizing. First, suppose that the mean flow
has no vertical shear (α = 0), then the potential energy conversion term is zero.
Energy production sufficient to overcome the dissipation can then only be gen-
erated by the Reynolds stress terms through horizontal shear. In this barotropic
instability mechanism, the horizontal shear of the basic state is able to transfer
energy through the Reynolds stress to the perturbations.
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When α �= 0�� , but the horizontal shear of the mean state is absent, then I1 =
I2II = 0 and no barotropic instability can occur. However, the zonal jet can still
become unstable because the potential energy conversion term CpC may overcome
the dissipation. Because the vertical shear of the zonal jet is associated with a
slope in the interface between the layers, it is possible that potential energy is
released through the associated stratification and transferred to the kinetic energy
of the perturbations. This is the baroclinic instability mechanism. One can indeed
describe this instability in more detailed mechanistic terms; this is done in several
textbooks (Holton, 1992; Pedlosky, 1987).

The net perturbation energy term ∂E/∂t = �(σ)E = λE is zero at neutral
conditions and the other quantities in (5.50) can be computed as β is decreased
through its critical value βc along the dotted curve in (Fig. 5.15). Note that insta-
bility occurs for values of β/βc < 1 and that both I1 and CpCC are positive. The
perturbation patterns used to compute these terms are those in Fig. 5.14. When
β decreases, the term CpCC is fairly constant, the term I1 slightly decreases, but the
dissipation term decreases more rapidly. For values of β slightly smaller than βc,
both barotropic and baroclinic mechanisms provide enough energy to the pertur-
bations to cause exponential growth.
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Figure 5.15. Terms of the mechanical energy balance (5.50) computed with the perturbations in
Fig. 5.14, when β is changed through its critical value (Van der Vaart and Dijkstra, 1997).

5.5. Regimes of Double-Gyre QG Flows
With the knowledge of the linear theory of the steady ocean circulation and

the basic mechanisms of temporal variability, the bifurcation behavior of the full
nonlinear circulation is presented systematically in the following sections. As a
‘bottom-up’ approach is followed, we start in section 5.5.1 with the equivalent
barotropic model and look at the transition to complex flows when the friction is
decreased in this model. In section 5.5.2, flows modeled by two- and three-layer
quasi-geostrophic models are considered.
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5.5.1. Equivalent barotropic flows
The simplest model of this type is the quasi-geostrophic barotropic vorticity

equation (5.28) in a rectangular basin ([0, 1] × [0, A]), where A is the aspect ratio
of the basin, and other dimensionless parameters as in Table 5.2. For convenience,
the equations of this model are again written out in full and become

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)(ζ − Fψ + βy) =

1
Re
∇2ζ − rb∇2ψ

+ αQG(
∂τy

∂x
− ∂τx

∂y
) (5.54a)

ζ = ∇2ψ (5.54b)

No-slip boundary conditions are prescribed at the east-west boundaries and slip
conditions at the north-south boundaries, i.e.

x = 0, 1 : ψ = 0,
∂ψ

∂x
= 0 (5.55a)

y = 0, A : ψ = 0,
∂2ψ

∂y2
= 0 (5.55b)

The unforced system of equations (5.54) has a reflection symmetry with respect
to the mid-axis (y = A/2) of the basin. This reflection RQG has a representation

RQG(ψ(x,A − y)) = −ψ(x, y);
(5.56)

RQG(u(x,A − y)) = u(x, y) ; RQG(v(x,A − y)) = −v(x, y)

Hence, if the applied wind forcing is symmetric with respect to y = A/2, the
equations (5.54) are invariant with respect to RQG. This symmetry will put con-
straints on the bifurcations which can occur. The double-gyre wind-stress forcing
is chosen as

τx(y) = − A

2π
cos(2π

y

A
) ; τy = 0 (5.57)

and since it is symmetric with respect to y = A/2, symmetry-breaking bifurca-
tions of pitchfork type are expected.

5.5.1.1 Basic bifurcation diagrams
Cessi and Ierley (1995) determined stationary solutions of the equations (5.54)

over a large range of conditions for the case A = 1, F = rb = 0 using a classical
Newton-Raphson scheme. In the parameter plane of the Munk western boundary
layer thickness δM∗ and the inertial western boundary layer thickness δI∗ (as in
(5.34)), regions of multiple equilibria are found. Even seven steady solutions ex-
ist in a small area of parameter space. At some value of δI∗, with fixed δM∗, the
symmetric double-gyre circulation becomes unstable to anti-symmetric perturba-
tions leading to asymmetric double-gyre flows. There are at least two such pitch-
fork bifurcations and the second one occurs in the inertially dominated regime (at
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relatively large δI∗). Although Cessi and Ierley (1995) investigate the stability
to stationary perturbations, they exclude oscillatory perturbations, and hence no
complete picture of the stability of the steady states is given.

Dijkstra and Katsman (1997) computed bifurcation diagrams for the barotropic
QG-model, also for the case A = 1, F = rb = 0, using a pseudo-arclength
continuation technique. The structure of the steady solutions is shown through
the bifurcation diagram in Fig. 5.16, where the value of the streamfunction at a
point in the southwest of the domain (ψSW ) is plotted versus Re = UQGUU L/AH .
Each point on the curves represents a steady state and its stability is indicated
by the linestyle, with solid (dashed) curves indicating stable (unstable) solutions.
At large values of AH (small Re), the symmetric double-gyre flow (Fig. 5.17a)
is a unique state. Note that although the streamfunction is anti-symmetric with
respect to the mid-axis of the basin, we call the pattern in Fig. 5.17a the symmetric
double-gyre flow because it satisfies (5.56).

When lateral friction is decreased, this flow becomes unstable at the pitchfork
bifurcation P1PP and two stable asymmetric states appear for smaller values of AH

(larger Re). The solutions on these branches have the jet displaced either south-
ward (Fig. 5.17b) or northward (Fig. 5.17c) and are exactly symmetrically related
for the same value of Re. For even smaller friction, the symmetric flow becomes
inertially dominated (Fig. 5.17d) and ψSW increases rapidly. Note that this is not
visible when a value of ψ on the mid-axis of the basin is chosen as indicator of
the solution, since this value is zero for the symmetric double-gyre solution for all
values of Re. The asymmetric solution branches arising from the bifurcation P2PP
are not shown; all these solutions are unstable.

The existence of the bifurcation P1PP (Fig. 5.16) captures the heart of the physics
of symmetry breaking in these flows. The physical mechanism of the instability
can be analyzed with help of the approach outlined in section 3.7.3.2. Thereto
we use the patterns of the steady state and the eigenvector of the linear stability
analysis which has a zero growth rate just at P1PP . The streamfunction and vorticity
field of the steady state are presented in Fig. 5.18. The spatial patterns of the
streamfunction and vorticity perturbation (determined from the eigenvector) are
shown in Fig. 5.19.

The streamfunction perturbation has a tripole-like structure with a negative vor-
ticity center along the jet-axis and two positive vorticity centers at either side
(Fig. 5.19). The special property of these patterns is that the center negative vor-
ticity lobe is exactly localized within the vorticity extrema of the symmetric basic
state (Fig. 5.18). If we consider the region just above the symmetry line of the
eastward jet (y = 0.5), the perturbation zonal flow is eastward, and therefore in
the same direction as that of the basic state. More northward (above y = 0.7),
the perturbation flow is westward and therefore also in the same direction as the
steady flow. If we consider the flow just below the symmetry line of the steady
jet, it is observed that the flow perturbations are in the opposite direction to that
of the basic state. Hence, the flow perturbation weakens the subtropical gyre and
strengthens the subpolar gyre. The asymmetric change in the strength of the basic
flow due to the perturbations leads to increased horizontal shear in the eastward
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Figure 5.16. Bifurcation diagram (from Dijkstra and Katsman (1997)) for the barotropic QG-
model for a square basin (L = 1000 km) with Re = UQGUU L/AH as the control parameter. Other
parameters are as in Table 5.2.

jet, which leads to an additional negative vorticity. This extra vorticity just ampli-
fies the original perturbation flow in this region leading to instability (Fig. 5.19).
A similar mechanism can, for example, be put forward for the region of positive
vorticity with its maximum near x = 0.3, y = 0.7 in Fig. 5.19. In each region, the
destabilization of the flow is induced by horizontal shear and hence is barotropic.

The symmetry-breaking mechanism leads to two stable asymmetric steady
states for values of Re slightly larger than that at P1PP . However, these states also
become unstable at larger values of Re due to the occurrence of Hopf bifurca-
tions. The first two on each asymmetric branch are labelled H1 and H2HH . The
pattern of the oscillatory mode which destabilizes the asymmetric double-gyre
flow at each Hopf bifurcation can be determined from the solution of the linear
stability problem. At the Hopf bifurcation, a complex conjugate pair of eigen-
values σ = σr ± iσi crosses the imaginary axis. The corresponding complex
eigenfunction x̂ = x̂R + ix̂I provides the disturbance structure Φ(t) with angular
frequency σi and growth rate σr to which the steady state becomes unstable, i.e.,

Φ(t) = eσrt [x̂R cos(σit)− x̂I sin(σit)] (5.58)

Propagation features of a neutral eigenmode (σr = 0.0) can be determined by
first looking at Φ(−π/(2σi)) = x̂I and then at Φ(0) = x̂R. The period P of the
oscillation is given by P = 2π/σi with dimensional value P∗ = PL/UQGUU .

The patterns of this perturbation at H1 are shown for four phases within half a
period of the oscillation (which is at σit = π) in Fig. 5.20a-d, whereas the steady
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Figure 5.17. Steady solutions for the streamfunction ψ at labelled points (a)-(d) in Fig. 5.16. All
contour plots are scaled with the absolute maximum and the contour levels are with respect to this
maximum. Along the horizontal and vertical axes, the dimensionless quantities x = x∗/L and
y = y∗/L are shown (from Dijkstra and Katsman (1997)).

Figure 5.18. Contour plots of the steady state at the pitchfork bifurcation P1PP in Fig. 5.16 with
the streamfunction (ψ̄) in the left panel and the vorticity (ζ̄) in the right panel (from Dijkstra and
Katsman (1997)).
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Figure 5.19. Contour plots of the perturbation destabilizing the steady state of Fig. 5.18 with
the streamfunction (ψ̃) in the left panel and the vorticity (ζ̃) in the right panel (from Dijkstra and
Katsman (1997)).

state which is destabilized is close to that in Fig. 5.17c. The oscillation consists
of a basin-scale perturbation that propagates through the basin. Its dimensionless
frequency σi = 75.0 which corresponds to an intermonthly period. When this
oscillatory mode is followed to zero forcing, it can be shown to ‘deform’ into
a stable Rossby-basin mode as considered in section 5.4.2.2. The propagation
mechanism of the oscillatory pattern therefore can be deduced from that of the
(inviscid) Rossby-basin modes, which is in turn similar to that of free Rossby
waves. The growth rate of the perturbation is determined by the horizontal shear
within the asymmetric double-gyre flow.

The patterns of the oscillatory mode which destabilizes the solutions on the
asymmetric branch in Fig. 5.16 containing the flow labelled (b) at H2, are shown
in Fig. 5.21a-d; the steady state at H2 is similar to that in Fig. 5.17b. This
mode has an interannual period (σi = 5.43) and the perturbations strengthen and
weaken the jet during both phases of the oscillation (Figs. 5.21). The interannual
modes do not have their origin in the spectrum of the linear operator (5.38) related
to free Rossby-wave propagation. The patterns of these modes already indicate a
close orientation within the gyres and the interannual time scale of these modes
is related to the circulation time scale within the gyres which is in the order of
3 years. Although these modes can obtain positive growth factors by horizon-
tal shear at small friction they disappear when the amplitude of the wind forcing
becomes very weak; these therefore have been called gyre modes (Dijkstra and
Katsman, 1997).

Simonnet and Dijkstra (2002) clarified the spectral origin of the gyre mode and
presented a physical mechanism of the propagation of the pattern of this mode.
For a barotropic QG model with slightly different parameters as in Table 5.2, the
first pitchfork bifurcation P1PP occurs at Re = 29.4 and the gyre mode destabilizes
the asymmetric solutions at the Hopf bifurcation H2 at Re = 83.2. The gyre
mode, therefore has a negative growth factor for Re < 83.2. In the right panels
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Figure 5.20. Contour plot of the streamfunction of the of the oscillatory mode at the Hopf bifur-
cation H1 in Fig. 5.16 at several phases of the oscillation (from Dijkstra and Katsman (1997)). (a)
σit = 0.0; (b) σit = π/4; (c) σit = π/2; (d) σit = 3π/4.

of Fig. 5.22, the patterns of the real and imaginary parts of this eigenmode are
shown near Re = 40. The path of the gyre mode (the dash-dotted curve in Fig.
5.22) ends at the point M , where it splits into two stationary eigenmodes. These
stationary modes exist up to the point P1PP where the asymmetric solutions cease to
exist.

Also shown in Fig. 5.22 are the leading eigenmodes on the symmetric solution
branch. The non-oscillatory mode responsible for the first pitchfork bifurcation
(P1PP ) has a symmetric tripolar structure (Fig. 5.22, upper-left panel), similar to the
streamfunction pattern in Fig. 5.19. At P1PP , the growth rate σr of this mode be-
comes positive which means that the symmetric steady flow becomes unstable to
this perturbation pattern. Because this mode is responsible for multiple equilibria
and asymmetric states under symmetric forcing conditions, Simonnet and Dijk-
stra (2002) called it the P-mode. The P-mode streamfunction keeps its symmetric
structure unchanged over the whole Re-range.

The non-oscillatory mode responsible for the saddle-node bifurcation at L1 in
Fig. 5.16 has a dipolar anti-symmetric structure (Fig. 5.22, lower-left panel). It
thus acts on both gyres simultaneously so that they either increase or decrease in
intensity. Simonnet and Dijkstra (2002) called this non-oscillatory mode (involved
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Figure 5.21. Contour plot of streamfunction of the of the oscillatory mode at the Hopf bifurcation
H2 in Fig. 5.16 at several phases of the oscillation (from Dijkstra and Katsman (1997)). (a) σit =
0.0; (b) σit = π/4; (d) σit = π/2; (e) σit = 3π/4.

in the saddle-node bifurcation, or limit point) the L-mode. At P1, the L-mode is
damped (with a dimensionless growth rate σr ≈ −5) and σr becomes positive
at the saddle-node bifurcation. The L-mode perturbation (as shown) increases
the energy of both gyres so that the symmetric steady flow will reach a more
energetic state. On the contrary, if the perturbation has opposite sign, both gyres
will decrease simultaneously so that the basic flow reaches a less energetic state.

Relevant for the spectral origin of the gyre mode is the path of both the P -
mode and L-mode on the asymmetric branches for Re > 29.4. For Re slightly
above P1PP , both modes are still non-oscillatory and have negative growth factor
since the asymmetric branch is stable. The paths of the eigenvalues of both modes
are indicated by the thick lines in Fig. 5.22 (starting at Re = 29.4). The growth
factor of the P-mode decreases with Re, whereas that of the L-mode increases.
Both modes meet at the point M (Fig. 5.22), which Simonnet and Dijkstra (2002)
called the merging point, and give birth to the gyre mode.

Simonnet and Dijkstra (2002) showed that this mode merging also occurred
in a much simpler truncated QG-model, having only two degrees of freedom, as
formulated in Jiang et al. (1995). From this, the physical mechanism of the exis-
tence of the gyre mode could be described. The growth and decay of the energy
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Figure 5.22. Real part σr of the eigenvalues closest to the imaginary axis of the linear stability
of the symmetric double-gyre flow (thin lines) and along one of the asymmetric steady states (thick
lines). The P-mode (streamfunction pattern in the upper left panel) destabilizes the symmetric state
at the pitchfork P (from Simonnet and Dijkstra (2002)). Along the asymmetric states, however, it
deforms and merges with the L-mode (streamfunction pattern in the lower left panel) at the point
M. This gives rise to the gyre mode (streamfunction patterns in the right panel).

of the gyre mode in the different stages of the oscillation is determined by a pure
shear mechanism and free of Rossby-wave dynamics. The combined effect of this
shear, the asymmetry of the steady flow and the symmetry-breaking mechanism
– which induces temporal constraints between the symmetric and anti-symmetric
components of the perturbations – causes the low-frequency oscillation. In this
way, the oscillatory behavior of the gyre mode is linked to the same mechanism
leading to the appearance of multiple equilibria at the (first) pitchfork bifurca-
tion. The gyre mode tries to break the ‘symmetry’ of the steady solution on the
asymmetric branch (growth of the P-mode) but the resulting flow does not reach
a steady equilibrium state because the background flow is asymmetric (growth of
the L-mode).

So far, the horizontal scale of the basin (L = 1000 km) was kept smaller than
that of typical ocean basins. Primeau (2002) computed the bifurcation diagrams
for a large, 2800×3600 km, ocean basin using an equivalent barotropic QG model
(with g′ = 0.02 ms−2). Instead of Laplacian friction, represented by the term
with∇2ζ in (5.54a) with the lateral friction coefficient AH , he used a biharmonic
representation of lateral friction. The friction term is this case becomes ∇4ζ with
a biharmonic friction coefficient AB . A linear friction term is also included in
his model. The instabilities of the symmetric double-gyre flow are followed with
decreasing AB and a sequence of symmetry-breaking pitchfork bifurcations is
found. The steady flow patterns at the first four pitchfork bifurcations are plotted
in Fig. 5.23a and the patterns of the eigenmodes which destabilize these steady
states are shown in Fig. 5.23b.
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(a) (b)

Figure 5.23. Results from the bifurcation study of the double-gyre flow in a large ocean basin of
Primeau (2002). (a) Sequence of the double-gyre flows at successive symmetry breaking pitchfork
bifurcations P1PP − P4PP when the biharmonic friction coefficient AB is decreased. (b) Patterns of the
eigenmodes destabilizing the double-gyre flows in (a) at each pitchfork bifurcation.

The pattern of the symmetric double-gyre flow at the first pitchfork bifurcation
P1PP and that of the eigenmode (upper panels in Fig. 5.23) can be identified with
the ones in Fig. 5.18a and Fig. 5.19a for the smaller basin. When the basin size
increases, the zonal extension of the gyres increases and additional symmetry-
breaking instabilities occur. These subsequent instabilities can be classified ac-
cording to the zonal extent of the P-mode, but the mechanism of instability is the
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same as that at P1PP . Hence, there is a quantization of the instabilities and the struc-
ture of equilibria and instabilities becomes therefore much more complicated in
larger basins. However, it can in principle be understood from the bifurcation di-
agrams for the small-basin case which repeats itself at lower friction with spatial
patterns having a richer structure in the zonal direction.

5.5.1.2 Transient flows
From the bifurcation analyses of the (equivalent) barotropic QG models, it can

be expected that for small lateral friction the flows will be transient and highly
complicated, in particular in the large-basin case. To understand the route to
complexity it seems best to start with relatively small basins and then proceed
to the larger ones. Trajectories computed with the barotropic QG-model for the
1000× 1000 km basin show that indeed intermonthly variability first occurs with
increasing Re in the form of periodic oscillations. Subsequently, when Re is in-
creased, a quasi-periodic orbit is obtained with both interannual and intermonthly
frequencies. This is nicely in agreement with the bifurcation diagram in Fig. 5.16.
Soon after Re = 80, the flow becomes irregular.

In Meacham (2000), transient flows in a basin of 1024× 2048 km with no-slip
boundary conditions on the lateral walls are considered. For parameters and forc-
ing similar as in Dijkstra and Katsman (1997), transient solutions are computed
using the frictional boundary layer thickness δM = δM∗/L as control parameter.
An overview of the different solutions (with the kinetic energy as norm) is shown
in Fig. 5.24. As can be seen, steady (diamonds), periodic (plusses) and aperiodic
solutions (squares) are found. The structure of steady states and periodic orbits
can be understood with help of the bifurcation diagram Fig. 5.16, where the peri-
odic orbits are coming from the Hopf bifurcations. In some aperiodic solutions,
large excursions are made and ultra low-frequency variability arises. This does
not seem to occur as a movement of trajectories between unstable steady states
and/or limit cycles; Meacham (2000) suggests that it arises through a homoclinic
orbit.

In Nadiga and Luce (2001), the location of the homoclinic orbit in the double-
gyre flows is precisely located for flows in a basin of size 1000× 2000 km. Many
transient computations are performed for different parameters and spectra are plot-
ted versus the dimensionless inertial layer thickness δI . In this way, they find evi-
dence for the occurrence of a homoclinic orbit of Shilnikov (1965) type (see sec-
tion 3.5). This behavior is characterized by specific periodic and aperiodic orbits
that can be observed in the spectrum of the time series. Nadiga and Luce (2001)
also demonstrated the importance of this dynamical phenomenon in explaining
low-frequency variability in these flows.

For a 2560 × 2560 km basin, Chang et al. (2001) show that the flow transi-
tions, when the ratio δI/δM is increased, are qualitatively similar to those in the
smaller basins. The symmetric flow destabilizes through a pitchfork bifurcation
and the asymmetric double-gyre flows subsequently destabilize through Hopf bi-
furcations. The first periodic orbit that appears has a subannual time scale and
interannual variability occurs at slightly larger values of δI/δM . They monitor the
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Figure 5.24. Different flow regimes for the barotropic double-gyre problem (Meacham, 2000) in
a 1024 × 2048 km basin. Symbols indicate families of symmetric and asymmetric steady states
(FP), symmetric and asymmetric periodic orbits (LC) and aperiodic solutions (AP).

transition to aperiodicity in detail by plotting the transport difference ΔΦ between
the subtropical and subpolar gyre versus the basin kinetic energy E of the flow for
different ratios δI/δM (Fig. 5.25). The quantity ΔΦ is defined as

ΔΦ =
−ψpoψ − ψtr
max | ψ | (5.59)

where ψpo < 0 is the maximum transport of the subpolar gyre and ψtr > 0 the
maximum transport of the subtropical gyre. Note that ΔΦ = 0 for a symmetric
flow, with ψpo = −ψtr .

In Fig. 5.25a, the projection of a periodic orbit around an asymmetric steady
state can be seen and it has a period of about 148 days. As δI/δM increases, the
periodic orbit at some instant of time reaches the symmetric double-gyre solution,
for which ΔΦ = 0 (Fig. 5.25b-d). For slightly larger values the flow becomes
aperiodic while the trajectory now attains both positive and negative values of
ΔΦ (Fig. 5.25e-f). It appears as though the periodic orbit makes a connection
with the branch of steady symmetric solutions and then connects to the periodic
orbit which is present around the symmetry-related asymmetric state: this is char-
acteristic of the presence of a homoclinic bifurcation.

The connection between the pitchfork bifurcation, the gyre modes and the oc-
currence of the homoclinic bifurcation was clarified in Simonnet et al. (2005) and
an overview of the bifurcation behavior leading to the homoclinic orbit is plot-
ted in Fig. 5.26. The symmetry-breaking pitchfork bifurcation P is responsible
for the asymmetric states; the P-mode is involved in this instability. The merg-
ing of the P-mode and the L-mode on the branches of the asymmetric states (at
the points M) is responsible for the Hopf bifurcations H associated with the gyre



214 NONLINEAR PHYSICAL OCEANOGRAPHY

Figure 5.25. Phase projections of trajectories computed with a barotropic QG model by Chang
et al. (2001). On the horizontal axis, the basin averaged kinetic energy (BKE) of the flow and on
the vertical axis, the asymmetry of the flow measured through TD = ΔΦ is plotted. The different
panels are for several values of the ratio of δI/δM . (a) 0.880, (b) 0.884, (c) 0.888, (d) 0.892, (e)
0.897 and (f) 0.900.

modes. Finally, the periodic orbits arising from these Hopf bifurcation points on
both asymmetric branches connect with the unstable symmetric steady state at the
point A; this gives rise to the homoclinic orbit. As explained in section 3.6, the
type of homoclinic orbit depends on the eigenvalues associated with the linear
stability of the symmetric state at the connection point A. In case there are only
real eigenvalues, there is a homoclinic connection of Lorenz-type and when the
second and third eigenvalue form a complex-conjugate pair, there is a homoclinic
bifurcation of Shilnikov type. Simonnet et al. (2005) show that both types can
occur and that Shilnikov is more likely to occur in the small lateral friction limit,
in accordance with the results in Nadiga and Luce (2001).

McCalpin and Haidvogel (1996) investigated the time-dependent solutions of
an equivalent-barotropic QG model for a basin of realistic size (3600 × 2800
km), as well as the sensitivity of solutions to the magnitude of the wind stress and
its meridional profile. They classified solutions according to their basin-averaged
kinetic energy, and found three persistent states in their simulations (Fig. 5.27a).
High-energy states are characterized by near-symmetry with respect to the mid-
axis, weak meandering, and large jet penetration into the basin interior (Fig. 5.27b,
left panel). Low-energy states have a strongly meandering jet that extends but a
short way into the basin (Fig. 5.27b, right panel), while intermediate-energy states
resemble the time-averaged flow and have a spatial pattern somewhere between
high- and low-energy states (not shown). The persistence of the solutions near
either state is irregular but can last for more than a decade of simulated time
(Fig. 5.27a).
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Figure 5.26. Schematic bifurcation diagram of an equivalent-barotropic QG model, plotted in
terms of a measure of the asymmetry of the solution (for example, ΔΦ) versus either wind-stress
intensity, the ratio δI/δM or simply the Reynolds number Re (from Simonnet et al. (2005)).

(a)
(b)

Figure 5.27. (a) Typical variation of the basin averaged kinetic energy of the double-gyre flow in
a large basin for the high-forcing or low-dissipation regime (from McCalpin and Haidvogel (1996)).
(b) Typical patterns of the streamfunction for the high-energy state (left panel) and the low-energy
state (right panel).

Primeau (1998) reproduces the time-dependent behavior of the multiple
regimes as found by McCalpin and Haidvogel (1996). To test whether unstable
steady states act to steer the model trajectories, the steady states of the system are
determined using continuation methods. Multiple equilibria, both symmetric and
asymmetric, are found for the parameter values used for the transient computa-
tions. By projecting the instantaneous flow fields onto four of the steady solutions,
he found that a significant amount of the low-frequency variability of the trajecto-
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ries are associated with transitions between these steady solutions. Furthermore,
he explained that the reduction of the low-frequency variability associated with
an increased asymmetry of the wind forcing is a result of the fact that some of the
steady states cease to exist. However, knowing that there are many branches of
steady solutions, many gyre modes and possibly several homoclinic connections,
more work is needed to figure out the precise dynamics causing the different en-
ergy states found in McCalpin and Haidvogel (1996).

5.5.2. Baroclinic flows
In this section, we follow the same approach as in the previous section, but now

for two- and three-layer quasi-geostrophic models.

5.5.2.1 Basic bifurcation diagrams
As was shown in section 5.3, an eastward jet is susceptible to mixed baro-

clinic/barotropic instabilities, which may lead to a strong modification of the mean
flow through the formation of eddies. It is therefore expected that additional in-
stabilities will appear in multi-layer quasi-geostrophic models, where baroclinic
effects can be represented. As in the previous section, we again consider the small
basin and high friction case first and then proceed to flows in larger basins at small
friction.

Dijkstra and Katsman (1997) first studied the bifurcation behavior of the
double-gyre flows in a two-layer quasi-geostrophic model. Equations of the two-
layer model were given in (5.30) and the standard parameter values used were
provided in Table 5.3; these are for a small basin of dimension 1000 × 1000 km.
Boundary conditions (5.55) and wind forcing (5.57) are similar as for the single-
layer model. Since there is no interfacial friction between the layers, the second
layer is unforced and the steady solutions for the baroclinic case have a motionless
second layer.

The bifurcation structure (Fig. 5.28) shows the presence of three (new) Hopf
bifurcations H1, H2HH and H3H , which are already on the symmetric double-gyre
solution. The patterns of the modes which destabilize the steady state (Fig. 5.29)
represent baroclinic modes having time scales of variability of 4.3, 8.2 and 6.0
months, respectively. For each mode, there is a phase difference between the
response in both layers, illustrating the baroclinic nature of the instability. These
modes are the equivalent of the baroclinic modes destabilizing a zonal jet (section
5.4.2.3.), but which now have to satisfy the lateral boundary conditions.

In Fig. 5.28, the window of multiple equilibria is rather small in this case as
the equilibria coming from P2PP are connected to those of P1PP . The connection be-
tween the bifurcation diagram in the two-layer and single-layer model (Fig. 5.16)
was investigated by subsequently reducing the layer thickness ratio δF and the
rotational Froude number F1FF to zero (Dijkstra and Katsman, 1997). For decreas-
ing δF (or increasing the second layer depth D2), the Hopf bifurcation points H1

and H2HH move towards higher values of Re, and closer to each other. They can
be detected for values of δF down to δF = 0.08, but not for smaller values of
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Figure 5.28. (a) Bifurcation diagram (Dijkstra and Katsman, 1997) for the baroclinic two-layer
QG-model of a square basin with δF = 0.4 and control parameter Re. On the vertical axis, the
value of the upper layer streamfunction ψ1 at the same gridpoint as in Fig. 5.16 is plotted. Solid
(dashed) lines represent stable (unstable) solutions. Marked are three Hopf bifurcations (H1 to
H3) and two limit points (L1 and L2). The dotted line connects the mean states of time integrations
(marked by circles) performed at specific values of Re. (b) Detail of the bifurcation diagram for
Re ∈ [36.5, 37]. Marked are two pitchfork bifurcations (P1PP and P2PP ) and three limit points (L1,
L3a and L3b).

(a) (c) (e)

(b) (d) (f)

Figure 5.29. Transition patterns at the Hopf bifurcations H1 (a/b), H2 (c/d) and H3 (e/f), show-
ing both the upper and lower layer response at phase t = 0 of the oscillation (from Dijkstra and
Katsman (1997)).

δF . For δF = 0.08, the spatial structure of the most unstable modes is still the
same, but the time scales of both oscillatory modes approach 6 months, point-
ing to the existence of a point in parameter space where the instabilities cease to
exist. Decreasing F1FF mainly affects the region where multiple asymmetric equi-
libria exist. For standard parameter values for the two layer model (F1 = 850),
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the asymmetric solutions branching off at pitchfork bifurcations P1 and P2PP are
connected through the limit points L3a and L3b (Fig. 5.28b). With decreasing F1FF ,
the sadde-node bifurcations L3a and L3b move towards larger values of Re, and
disappear for F1FF ≈ 450. For smaller values of F1FF , the asymmetric branches are
disconnected, as was the case for the equivalent barotropic model (Fig. 5.16) and
a large interval of multiple steady states exists.
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Figure 5.30. (a) Plan view of the boundary conditions in the lower layer where VinVV is a control
parameter defining the dimensionless inflow velocity of the DWBC over a dimensionless width l; the
transport Γ == Γ∗2 = VinVV UlLD2. (b) Bifurcation diagrams (from Katsman et al. (2001)) showing
only the branches of steady states for different values of Γ = Γ∗2; note that for Γ = 0 the diagram
is the same as in Fig. 5.28.

Katsman et al. (2001) investigated the impact of the presence of a deep western
boundary current (DWBC) in the lower layer within the same two-layer model.
The DWBC is modeled through the inflow in the lower layer with a certain
strength Γ (Fig. 5.30a). As it introduces an asymmetry into the problem, the
pitchfork bifurcations in Fig. 5.28 no longer exist when Γ �= 0�� . The bifurcation
diagrams due to this imperfection are shown for several values of Γ in Fig. 5.30b.
For a value of Γ ≈ 7 Sv, there is only a single branch of solutions.

Steady flows for different values of Γ and for Re = 31 (Fig. 5.31) show
that the zonal jet is shifted southwards and that the upper-layer flow becomes
strongly asymmetric. Katsman et al. (2001) also follow the Hopf bifurcations on
the branches versus Γ. They show that the gyre modes are destabilized by the
DWBC and that they are responsible for the low-frequency variability in the flow
at large values of Re. According to the mechanism of the gyre mode, merging
of the P-mode and the L-mode can only occur when the asymmetry of the mean
state is large enough. It is therefore expected that the appearance of gyre modes
is favored when the DWBC strengthens. In this way, the gyre modes may be at
the origin of the decadal variability found in the model study by Spall (1996a,b)
on the interaction of the Gulf Stream and the DWBC.
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(b)

Figure 5.31. Streamfunction of steady upper (left panel) and lower (right panel) layer flows for
Re = 31 and two values of the strength Γ of the DWBC. (a) Γ = 5.0 Sv; (b) Γ = 10.0 Sv.

5.5.2.2 Transient flows
For the two-layer small-basin case, transient flow computations were per-

formed for different values of Re in Katsman et al. (1998). The norm of the
time-mean states of these flows were shown as circles in Fig. 5.28. The periodic
orbit coming from the first Hopf bifurcation H1 is stable up to Re ≈ 40. By
comparing the mean state of this periodic orbit, which has a non-zero response in
the lower layer, with the unstable steady circulation with a motionless lower layer,
the forcing of the second layer through the baroclinic instabilities was analyzed.
Self-interactions of the most unstable mode turn out to be the main forcing for the
mean flow in the lower layer.

Nauw et al. (2004b) investigated the different flow regimes in a 2000 × 2000
km basin which appear when the lateral friction coefficient AH is decreased from
AH = 2400 m2s−1 to AH = 300 m2s−1, using a three-layer quasi-geostrophic
model (for specific parameter values, see Nauw et al. (2004b)). Four flow regimes
are identified by the analysis of a combination of the maximum northward trans-
port of the time-mean flow Ψmax and the normalized transport difference be-
tween the subtropical and subpolar gyre (ΔΦ). In this case, ΔΦ is defined
as in (5.59) in which the streamfunction ψ is that of the depth averaged flow.
With decreasing AH , the regimes found are the viscous symmetric regime (for
AH ≥ 2100 m2s−1), the asymmetric regime (for 1400 ≤ AH ≤ 2100 m2s−1),
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the quasi-homoclinic regime (for 700 ≤ AH ≤ 1400 m2s−1) and the inertial
symmetric regime (for AH ≤ 700 m2s−1).

For four different values of AH , the value of ΔΦ is plotted versus time in
Fig. 5.32 and time-mean plots of the barotropic transport streamfunction are
shown in Fig. 5.33. The time series of ΔΦ in the viscous symmetric regime
(Fig. 5.32a) displays a low-frequency modulation of a high-frequency signal,
while the time-mean state (Fig. 5.33a) is symmetric. A transition to an asymmet-
ric regime occurs at smaller AH and a typical time series of ΔΦ in that regime is
shown in Fig. 5.32b. The value of ΔΦ remains positive after a spin-up of slightly
more than 25 years and the amplitude of the high-frequency oscillation changes
on a decadal time-scale. The time-mean barotropic transport streamfunction is
asymmetric and displays a jet-down solution (Fig. 5.33b) in correspondence with
the positive value of ΔΦ.

(a) (b)

(c) (d)

Figure 5.32. Time series (including spin-up) of the transport difference, ΔΦ, for different values
of AH in the large basin case. (a) AH = 2400 m2s−1, viscous symmetric regime; (b) AH = 1600
m2s−1, asymmetric regime; (c) AH = 900 m2s−1, quasi-homoclinic regime; (d) AH = 600
m2s−1, inertial symmetric regime.

For the flow in the quasi-homoclinic regime, several intervals can be dis-
tinguished in which there is a preference for either positive or negative val-
ues (Fig. 5.32c). The time-mean flow in this regime is slightly asymmetric
(Fig. 5.33c). The time series of the case in the inertial symmetric regime
(Fig. 5.32d) consists of a mainly high-frequency signal. The time-mean flow
in this regime (Fig. 5.33d) is also symmetric, but the midlatitude jet is much
stronger than in the symmetric viscous regime. Moreover, the large-scale gyres
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are accompanied by small-scale subgyres near the northern and southern bound-
ary (Fig. 5.33d).

(a) (b)

(c) (d)

Figure 5.33. The patterns of the barotropic transport function, Ψ, averaged over the final 75
years of integration for selected values of AH . (a) AH = 2400 m2s−1, viscous symmetric regime;
(b) AH = 1600 m2s−1, asymmetric regime; (c) AH = 900 m2s−1, quasi-homoclinic regime; (d)
AH = 600 m2s−1, inertial symmetric regime.

The four regimes are also characterized by different types of variability. In
Nauw et al. (2004b), the spatio-temporal variability of the flows (of which time
series were shown for different values of AH in Fig. 5.32) was analyzed with the
M-SSA technique (Plaut et al., 1995). In Fig. 5.34, a histogram is shown of the
variance explained by each of the statistical modes, classified into groups that can
be related to an internal mode. Case (a) is for a symmetric wind-stress forcing,
while case (b) is for a slightly asymmetric wind stress. Most of the variance in
the viscous symmetric regime can be explained by two classical baroclinic modes
(CB1 and CB2), both with a period of about 3 months. In the inertial symmet-
ric regime, the variability is controlled by basin-wide westward travelling Rossby
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basin modes (RB) with intermonthly periods. Part of the variance in the asymmet-
ric and quasi-homoclinic regimes can be explained by a gyre mode (G). It causes
low-frequency variability with a period of about 3 years. The case with asymmet-

Figure 5.34. Histograms of explained variances (%) for each of the different statistical oscilla-
tions, (a) symmetric wind-stress forcing and (b) asymmetric wind-stress forcing. CB1 = classical
baroclinic mode, causing meandering of the midlatitude jet; CB2 = classical baroclinic mode caus-
ing strengthening and weakening of the midlatitude jet; D = dipole oscillation; G = gyre mode; RB
= Rossby basin mode; WT = wall-trapped mode.

ric wind-stress forcing demonstrates that the presence of the gyre mode is linked
to the asymmetry of the time-mean state (Fig. 5.34b).

Two classes of patterns of variability are found as statistical modes in the M-
SSA analysis but have not been identified (yet) with specific Hopf bifurcations in
the double-gyre problem. One class are the high-frequency wall-trapped modes
(WT) (Cessi and Ierley, 1993; Sheremet et al., 1997) with a period of about 3
months. Upper-layer streamfunction anomalies of such a wall-trapped mode orig-
inate along the northern and southern boundaries and are subsequently advected
by the western boundary currents (Fig. 5.35). The other class are dipole modes
(D), which have a spatial pattern much like that of the P-mode.



The Wind-Driven Circulation 223

(a) (b)

(c) (d)

Figure 5.35. Reconstructed component of the wall-trapped statistical mode in the upper layer at
four phases during half of a period of an oscillation (panels are 1/8th period apart). It has a domi-
nant period of 3 months and explains 99.3% of the variance of the solution at AH = 1600 m2s−1.

Nauw et al. (2004b) study the transitions between the different regimes. The
transition from the viscous symmetric regime to the asymmetric regime is associ-
ated with the symmetry-breaking pitchfork bifurcation. A homoclinic bifurcation,
caused by the merging of two mirror-symmetric low-frequency relaxation oscilla-
tions and the unstable symmetric steady state, marks the transition from the asym-
metric regime to the quasi-homoclinic regime. Indications of the nearby presence
of such a homoclinic bifurcation are that the circulation alternates between a jet-
up and a jet-down solution on interdecadal time-scales, similar to the results in
Chang et al. (2001). The transition from the quasi-homoclinic regime to the iner-
tial symmetric regime occurs through symmetrization of the zonal velocity field
of the time-mean state. The interaction of high-frequency modes (such as CB1
and CB2) introduces forcing terms that oppose the wind-stress forcing, thereby
moving the system towards a regime where both multiple equilibria and the gyre
mode cease to exist. The results in Nauw et al. (2004b) indicate that the study
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of the steady states, the bifurcations and the internal modes of variability provide
an interpretation framework for complex time-dependent flows. But, as the bifur-
cation diagrams become more complicated for ‘realistic’ size basins, much work
is needed to obtain a more detailed dynamical interpretation of time-dependent
flows in these basins (Berloff and McWilliams, 1999a,b).

Berloff and McWilliams (1999a) computed numerical solutions of the WDC
in a two-layer QG model for five values of the lateral friction coefficient AH in
a basin of realistic size (3200 × 2800 km). For AH = 1200 m2s−1, an asym-
metric steady state was found. When the lateral friction was decreased, the flow
first displays variability and two modes of variability could be identified on basis
of statistical (EOF-) analysis. The so-called ‘primary’ mode corresponds to inter-
monthly variability and is characterized by the presence of Rossby waves in the
interior. The ‘secondary’ mode introduces variability on an interannual time-scale
and is associated with a fluctuating envelope surrounding a standing Rossby wave.
At AH = 1000 m2s−1, quasi-periodic variability was found containing two dom-
inant frequencies in the sub- and interannual range, which could still be related to
the two modes discussed earlier. At even smaller friction, a broadband spectrum
appears, with the spectral power of the total energy increasing towards lower fre-
quencies. At AH = 800 m2s−1, the behavior of the solutions is called ‘chaotic’,
while at AH = 600 m2s−1 the flow patterns hover near three states with distinct
total energy. These states are characterized by a different penetration length of
the eastward jet and the presence or absence of dipole-pattern oscillations in the
recirculation region.

Characteristics of the asymmetric and quasi-homoclinic regimes are found in
Berloff and McWilliams (1999a). The spatial pattern of the ‘secondary’ mode
in the symmetrically forced equivalent barotropic case at AH = 1000 m2s−1

(their Fig. 15) is similar to that of the gyre mode. The meridional position of the
separation point of their time-dependent solution at AH = 600 m2s−1 alternates
between locations to the north and to the south of the mid-axis of the basin on
a decadal time-scale (their Fig. 18). This indicates an alternation between a jet-
up and a jet-down solution and provides support for the nearby presence of a
homoclinic orbit. Hence, this solution is likely to reside in a quasi-homoclinic
regime. Berloff and McWilliams (1999b) investigate the double-gyre flows at
even smaller values of AH in a three-layer QG model and find a destabilization of
the western boundary current at small values of AH . The patterns of variability
associated with this instability have a strong similarity with the WT modes (cf.
Fig. 5.35) which suggests (but this has not been shown yet) that these can also be
associated with a Hopf bifurcation on a branch of asymmetric steady states.

In Siegel et al. (2001), flows at very high resolution and small values of AH

are computed in a six-layer quasi-geostrophic model. In Fig. 5.36, upper layer
streamfunction plots are shown from several numerical experiments differing in
the values of AH . The displayed sequence goes from relatively low Reynolds
numbers Re (see definition in caption of Fig. 5.36) in panel A to very high (by
modern GCM standards) Reynolds numbers in panel D. In panel D, numerous
small-scale coherent vortices are displayed. Comparable features occasionally
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Figure 5.36. (in color on page 519). Upper layer streamfunction snapshots of the ocean in a
3200 km square basin for varying Reynolds numbers, Re, with Re = 0.375, 1.5, 6.0, 24 for the
panels (A)-(D), respectively. Here, Re = UL/AH , with U = 10−3 ms−1 and L = 3200 km. The
time-mean flow consists of an anticyclonic midlatitude subtropical gyre and a cyclonic subpolarrr
gyre. The resolution in the computations increases from 25 km in (A) to 1.56 km in (D). Note the
appearance of coherent vortices throughout the circulation in the highest value of Re results (from
Siegel et al. (2001)).

appear in the flow in panel C, but are essentially absent in the panels A and B.

Importantly, for the experiment in C, the vortices are far sparser and do not survive

for ‘long’ times (relative to vortex turnover time scales). The highest Reynolds

number computations possess eddy kinetic energies approaching values like those

observed in the open ocean. The dynamical origin of this so-called coherent vortex

regime is still unknown.

5.6. Regimes of Double-Gyre SW Flows
For shallow-water models, we follow the same approach as for the quasi-

geostrophic models, starting with the (equivalent) barotropic case (section 5.6.1)

followed by the baroclinic case (section 5.6.2).
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5.6.1. The equivalent barotropic case
A first systematic analysis of possible equilibria of the WDC using a 1.5-layer

shallow-water β-plane model was carried out by Jiang et al. (1995). Complemen-
tary to the dimensionless formulation in section 5.3.2, and because of the slightly
different set-up, the dimensional formulation of the model is given below. If the
velocities in eastward and northward directions are indicated by u∗ = (u∗, v∗),
respectively and h∗ is the thickness of the upper layer (with equilibrium value D),
the upper-layer mass-flux vector U∗ is given by U∗ = (U∗UU , V∗VV ) = (h∗u∗, h∗v∗)
and the equations describing the flow are (Jiang et al., 1995)

∂U∗UU
∂t∗

+∇ · (u∗U∗UU )− (f0ff + β0y∗)V∗VV =

−g′h∗
∂h∗
∂x∗

+AH∇2U∗UU − rbU∗UU + aτ
τ0ττ τ

x

ρ1
(5.60a)

∂V∗VV
∂t∗

+∇ · (u∗V∗VV ) + (f0ff + β0y∗)U∗UU =

−g′h∗
∂h∗
∂y∗

+AH∇2V∗VV − rbV∗VV + aτ
τ0ττ τ

y

ρ1
(5.60b)

∂h∗
∂t∗

+
∂U∗UU
∂x∗

+
∂V∗VV
∂y∗

= 0 (5.60c)

Most of the results in Jiang et al. (1995) were presented for no-slip conditions on
each lateral boundary and a similar wind-stress forcing was taken as in (5.57), i.e.

τx(y∗) = − cos
2πy∗
2L

; τy = 0 (5.61)

where L is the length of the basin and 2L is its width. Standard values of the
dimensional parameters used are listed in Table 5.8.

Parameter Value Parameter Value
L 1.0× 106 m τ0ττ 1.0×10−1 Pa
D 5.0× 102 m β0 2.0 10−11 (ms)−1

f0ff 5.0×10−5 s−1 AH 3.0 × 102 m2s−1

g′ 3.0×10−2 ms−2 Rint 75.0× 103 m
ρ1 1.0× 103 kgm−3 rb 5.0×10−8 s−1

Table 5.8. Typical values of dimensional parameters used in Jiang et al. (1995); for this case, the
internal Rossby deformation radius Rint =

√
(g′D)/f0ff is about 75 km.

Jiang et al. (1995) integrate the equations (5.60) in time for different values
of the wind-stress forcing strength aτ , and monitor the position of the confluence
point, i.e., the merging point of the northward and southward moving currents near
the western boundary. The horizontal resolution used is 20 km. For small values
of aτ , a unique nearly symmetric (with respect to mid-axis of the basin at y∗ = L)
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flow is found for which the confluence point is displaced slightly northward of
y∗ = L. For larger values of aτ , multiple equilibria are found and also a solution
having a southward displaced confluence point exists. Patterns of the thickness
anomaly h∗ for both solutions are shown in Fig. 5.37 for aτ = 0.9.

Figure 5.37. Patterns of the layer thickness anomaly of two steady-state solutions of the 1.5-layer
shallow water model at aτ = 0.9 (slightly modified from Jiang et al. (1995)). The position of the
confluence point is indicated and x∗ = 20X km, y∗ = 20Y km.

Based on the transient results and the steady states found, Jiang et al. (1995)
proposed the bifurcation diagram as in Fig. 5.38. Here, drawn lines are actually
computed values of the confluence point, but dotted lines represent unstable states,
which were guessed based on generic situations in bifurcation theory, but which
could not be computed using the forward time integration method. The steady so-
lution structure corresponds to that of an imperfect pitchfork bifurcation, because
the different branches are unconnected but have the appearance of a pitchfork
(see section 3.2.3). Both steady solutions become unstable at larger wind-stress
strength, and no stable steady states are found beyond aτ = 1.1.

A direct follow-up of the Jiang et al. (1995) study was the work by Speich et al.
(1995), in which the bifurcation structure of the 1.5-layer shallow-water model
was determined using continuation techniques. The exact position of the saddle-
node bifurcation in Fig. 5.38 and the Hopf bifurcations destabilizing the steady
states were determined. The bifurcation diagram, using a horizontal resolution
of 20 km, is shown in Fig. 5.39, where the minimum of the upper layer thick-
ness hmin = min h∗/D is plotted versus the dimensionless wind-stress strength
σ̄ = aττ0ττ /(ρf0ff DUSWUU ), with USWU = 1.0 ms−1 as a characteristic horizontal
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Figure 5.38. Bifurcation diagram (slightly modified from Jiang et al. (1995)) to explain the so-
lutions found in the shallow-water model by forward time integration. On the vertical axis, the
position of the confluence point (see Fig. 5.37) is plotted in km, whereas on the horizontal axis,
a measure of the wind-stress strength is shown. Again, markers indicate bifurcation points with
dots being saddle-node bifurcations and triangles Hopf bifurcations. The periodic orbits arising
from each Hopf bifurcation are monitored by plotting the minimum and maximum excursion of the
confluence point.

velocity. The locations of the values of σ̄ marking the transition from steady to
time-dependent behavior were computed accurately in Speich et al. (1995). In
Fig. 5.39, these can be seen as the two Hopf bifurcations, marked as Hu and HlH .
At HuHH , an oscillatory mode having a period of 28 months becomes unstable and
at HlH , a mode with an intermonthly time scale destabilizes.

Jiang et al. (1995) find periodic behavior in the shallow-water model for values
of aτ just above Hopf bifurcation. For such a periodic orbit, having a 2.8 year
period, the anomalies in the h-field, with respect to the time-mean field over one
period of the oscillation, resemble an elongated wave pattern confined to the recir-
culation regions of the mean flow. In the plots of the trajectories (Figs. 5-6 in their
paper), one can also observe smaller time scale oscillations. Hence, both interan-
nual and intermonthly modes contribute to the temporal variability of the solution
at supercritical conditions, with the interannual mode being most dominant. For
even larger aτ , Jiang et al. (1995) find that the interannual mode is still dominant,
but the time scale of variability has slightly increased to just over 3 years. With
decreasing friction, two distinct interannual periods were found (of about 3 and 6
years) with signatures of strongly asymmetric (relaxation) oscillations.
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Figure 5.39. Bifurcation diagram for the 1.5-layer shallow-water model (slightly modified
from Speich et al. (1995)) for the same parameters as in Table 5.8 using the parameter σ̄ =
aττ0ττ /(ρf0ff DUSWU ) as a control parameter, with USWU = 1 ms−1. On the vertical axis, the mini-
mum (dimensionless) anomaly of the upper layer depth, hmin, is plotted.

5.6.2. Connection: SW- and QG-models
The apparent correspondence of the steady-state structure of the SW-model

and the QG-model motivates to look at this connection in more detail. Dijkstra
and Molemaker (1999) investigated this connection for a basin of 1000 × 2000
km with no-slip boundaries with parameters are as in Table 5.8. The control
parameter is the dimensionless lateral friction coefficient, the Ekman number
E = AH/(f0ff L

2). This parameter can be related to the Reynolds number Re,
used in the QG-model, through E = εUQGUU /(USWUU Re) and ε = USWU /(f0ff L),
where USWU = 1 ms−1 is again the characteristic velocity used in the SW-model.
As an indicator of the solutions, the northward dimensional volume transport φ
(in Sv), i.e.,

φ = max
y∗,xe∗

[∫ xe∗

0

∫∫
v∗h∗ dx∗

]
(5.62)

was used.
In Fig. 5.40, φ is plotted versus E for steady state solutions of both models.

Solid (dotted) branches indicate steady states for the QG (SW) model, whereas
bifurcation points are indicated by markers. The bifurcation for the SW-model
is qualitatively similar (imperfect pitchfork with Hopf bifurcations) to that in
Fig. 5.39, whereas the bifurcation for the QG-model is qualitatively similar to
that in Fig. 5.16 (pitchfork bifurcation). The Hopf bifurcations on the asymmetric
branches occur at smaller values of E for the QG model and are not shown. In the
limit of large E, the models have the same (Sverdrup) transport since they both
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Figure 5.40. Bifurcation diagram (from Dijkstra and Molemaker (1999)) using the Ekman num-
ber E as control parameter for the QG-model (drawn) and SW-model (dashed) in the rectangular
domain of 1000 × 2000 km with no-slip boundaries. On the vertical axis, the volume transport φ,
as in (5.62), is plotted.

become approximately linear. It can easily be shown that the SW-equations (even
with the idealized wind stress (5.57)) are not invariant to the reflection symmetry
with respect to the mid-axis of the basin (Dijkstra and Molemaker, 1999). Hence,
no perfect pitchfork bifurcation can occur. Small deviations from the equilib-
rium thermocline depth and advection induce the imperfection, illustrated by the
break-up of the pitchfork bifurcation in the SW-model. The branch of the stable
symmetric double-gyre solution (present in the QG-model) is connected contin-
uously to one of the asymmetric solutions. The other asymmetric solution has
connected to the branch originating from the unstable part of the symmetric so-
lution in the QG-model, resulting in a saddle-node bifurcation. The occurrence
of multiple equilibria in the SW-model hence has its origin in the same physical
processes which cause the symmetry breaking within the QG-model (discussed in
section 5.5.1.1).

As explained in section 3.7.3.3, Hopf bifurcations mark the transition to tran-
sient behavior. As the lateral friction is decreased in the QG-model, the asymmet-
ric steady states become unstable to an oscillatory instability at the Hopf bifur-
cations H1 and H2HH (Fig. 5.16). Also in the SW-model, Hopf bifurcations desta-
bilize the steady solutions for decreasing friction (Fig. 5.39 and Fig. 5.40). For
the shallow water model, three modes become unstable nearly at the same con-
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ditions at the Hopf bifurcation H1 in Fig. 5.40. The real part and imaginary part
of the eigenvector of the first two modes are shown in Fig. 5.41. The first mode
(Fig. 5.41a) is neutral and its period is approximately 5 months. The pattern shows
a maximum response located to the north of the mid-axis and the mode propagates
westward. The second mode (Fig. 5.41b) has a period of about 1.5 years, it is
slightly damped and its pattern shows a propagation of the perturbations south-
westward. The third mode (not shown) is also slightly damped and has a similar
period (P∗ = 3.7 months) as the first mode. The modes at the Hopf bifurcation
H2HH in Fig. 5.40 have very similar time scales and patterns as those at H1. The

(a) (b)

(c) (d)

Figure 5.41. First two eigenmodes at the Hopf bifurcation H1 (E = 0.34 10−5) in Fig. 5.40
(Dijkstra and Molemaker, 1999). On the axes, the dimensionless quantities x = x∗/L and y =
y∗/L are again shown. Layer thickness perturbations h for the real (a) and imaginary part (b) of
the most unstable mode with σr∗ = 0.0 yr−1 and σi∗ = 16.4 yr−1. Here σ∗ = σr∗ + iσi∗ is
the complex growth factor of the eigenmode. (c) and (d) as above but for the 2nd mode (σr∗ = −
1.1 yr−1, σi∗ = 4.1 yr−1).

modes of variability of the SW model and QG model are therefore closely linked
(Dijkstra and Molemaker, 1999). The mode which destabilizes at H1 in Fig. 5.16
has an intermonthly time scale whereas at H2, an interannual mode destabilizes.
The Rossby-basin mode (Fig. 5.20) has a basin wide pattern and when the internal
Rossby deformation radius and basin size are adjusted, it can be shown For the
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gyre mode (Fig. 5.21), the perturbation has the characteristic asymmetry of the
steady-state gyre structure, similar to that in Fig. 5.41b.

5.6.3. The baroclinic case
Nauw and Dijkstra (2001) investigated the steady solutions and their successive

bifurcations in a two-layer SW model for a 1000 × 2000 km basin, located on
a β-plane centered at 45◦N. Bottom topography may be present giving a total
depth of H0HH −HbHH (x, y), where H0HH represents the constant depth in the flat bottom
case. The top and bottom layer have a constant density ρ1 and ρ2, respectively,
with ρ2 > ρ1. Laplacian lateral friction is present with (eddy) lateral friction
coefficient AH . The flow is driven by a stationary wind-stress pattern (τ x1 , τ

y
1 ).

For each layer i = 1, 2, the dimensional (for convenience, the ∗-subscript has
now been omitted) governing equations are (Holland and Lin, 1975)

∂UiUU

∂t
+∇ · (uiUiUU )− fViVV = −hi

ρ0

∂pi
∂x

+AHhi∇2ui +
τxiττ

ρ0
(5.63a)

∂ViVV

∂t
+∇ · (uiViVV ) + fUiUU = −hi

ρ0

∂pi
∂y

+AHhi∇2vi +
τyiττ

ρ0
(5.63b)

∂hi
∂t

+∇ ·UiUU = 0 (5.63c)

where UiUU = uihi and ViVV = vihi are the volume fluxes per unit length, (ui, vi) the
zonal and meridional velocities and hi is the thickness of layer i. In the β-plane
approximation, f = f0ff + β0y, where f0ff is the Coriolis parameter and β0 is the
local meridional derivative of f . The rigid-lid approximation and the condition of
continuity of normal stress at the interface of the layers become

h1 + h2 = H0HH −HbHH (x, y) (5.64a)

∇p2 = ∇p1 − ρ0g
′∇h1 (5.64b)

The reduced gravity is defined by g′ = g(ρ2 − ρ1)/ρ0, where ρ0 is a reference
density. No-slip boundary conditions are applied at all lateral walls. The standard
values of the parameters can be found in Table 5.9 and are similar to those used in
Speich et al. (1995). The equilibrium depth of each layer in the flat-bottom case
is indicated by H1 and H2HH .

The stress term in the right hand side of equations (5.63a,b) represents the
wind-stress forcing in the top layer and a bottom friction in the second layer. For
the top layer, a double-gyre wind stress is chosen

τx1ττ = −τ0ττ cos(2πy/B) (5.65a)

τy1ττ = 0 (5.65b)

where B is the width of the basin. For the second layer, a linear bottom friction is
used, with

τx2ττ = −ρ0RU2UU (5.66a)

τy2ττ = −ρ0RV2VV (5.66b)
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There is no interfacial friction and hence in steady state, the lower layer is mo-
tionless. Non-zero flow in the lower layer can only occur through transient effects,
such as the presence of and interaction between baroclinic instabilities (Pedlosky,
1996).

Parameter Value Parameter Value
L 1.0× 106 m B 2.0 × 106 m
g 9.8 ms−2 ρ0 1.0 × 103 kgm−3

f0ff 1.0×10−4 s−1 AH 3.0 × 102 m2s−1

H1 7.0× 102 m H2HH 3.3 × 103 m
ρ1 1000 kgm−3 ρ2 1002 kgm−3

β0 1.8 10−11 (ms)−1 R 5.0×10−8 s−1

Table 5.9. Standard values of the dimensional parameters in the two-layer shallow-water model
as used in Nauw and Dijkstra (2001). The wind-stress amplitude τ0ττ is used as the control parameter.

With a flat bottom, the equilibrium layer thicknesses are H1 = 700 [m] and
H2HH = 3300 [m] as shown in Table 5.9, giving a total thickness H0 = 4000 [m].
Steady states are computed, using τ0ττ as control parameter, and as a norm of the
solution the minimum upper layer thickness, h1,min, is plotted. In Fig. 5.42,
the drawn (dashed) lines represent stable (unstable) steady states. An imper-
fect pitchfork bifurcation is found with a unique steady solution for values below
τ0ττ = 6.7 × 10−2 [Pa] and multiple steady states beyond this value.

Along the upper branch in Fig. 5.42, the results of the linear stability analysis
indicate that the steady state becomes unstable through a sequence of Hopf bi-
furcations (indicated by triangular markers). Two of these are classical baroclinic
modes (H1 and H3H ), two others are Rossby-basin modes (H2 and H4HH ) and a baro-
clinic gyre mode destabilizes the steady state at H5. The oscillation periods of
these modes are 4.8 months, 2.8 months, 5.6 months, 2.6 months and 12.7 years,
respectively.

The steady-state upper-layer streamfunction at a wind-stress strength of τ0 =
8.7 × 10−2 [Pa] and the imaginary and real parts of the streamfunction of the
(12.7 year oscillating) gyre mode are shown in Fig. 5.43. The spatial pattern
of the mode displays a strong alignment with the direction of the steady-state
jet (Fig. 5.43a); its extrema are located along a line through the extrema in the
steady-state streamfunction of the subtropical and subpolar gyre. The mode has a
baroclinic character and its upper-layer pattern (Figs. 5.43b-c) strongly resembles
that of the gyre mode in the 1.5-layer shallow-water models (Fig. 5.41c-d) and in
quasi-geostrophic equivalent barotropic models (Fig. 5.21).

Time-dependent flows were calculated for several distinct values of the wind-
stress parameter τ0ττ in Nauw and Dijkstra (2001). In Fig. 5.44, the bifurcation
diagram together with the minimum upper-layer thickness of the transient flows
are plotted; the marker shows the time-mean average of h1,min and the ‘error’
bar indicates its variability. For the values up to τ0 = 6.0 × 10−2 [Pa], a
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Figure 5.42. Bifurcation diagram of the two-layer shallow-water model. The minimum upper

layer thickness h1,min is plotted versus the wind-stress strength τ0ττ . Drawn (dashed) lines indi-

cate stable (unstable) steady states and the markers labelled H1, · · · ,H5 indicate Hopf bifurcations

(from Nauw and Dijkstra (2001)).

steady double-gyre upper-layer flow is found with a motionless lower layer. For
τ0ττ = 6.3 × 10−2 [Pa], oscillatory behavior is found which contains a high-
frequency periodic orbit on top of an oscillation with a lower frequency, the
latter is damping out in time. The period of this orbit is indeed similar to the
period at Hopf bifurcation H1 (P1 = 4.79 [mo]). The variability of the flow
for τ0ττ = 7.0 × 10−2 [Pa] consists of two oscillations, which originate through
the instabilities at the Hopf bifurcations H1 and H2HH . The variability of the flow
at τ0ττ = 8.5 × 10−2 [Pa] displays a low-frequency oscillation with a period of
18 [yr] together with high-frequency oscillations. From M-SSA analysis, again a
low-frequency statistical mode is found with a pattern resembling the baroclinic
gyre mode.

For the same size basin, 1000 × 2000 km, Simonnet et al. (2003a) also find
the imperfect pitchfork bifurcation diagram in a 2.5-layer SW model (Fig. 5.45).
The first Hopf bifurcations on each of these branches are computed and also inter-
annual and intermonthly modes of variability are found. Simonnet et al. (2003b)
study in detail the time-dependent behavior of these flows for values of the wind-
stress strength above the Hopf bifurcations. They again find strong evidence for
the existence of a homoclinic orbit, where a gyre mode type limit cycle connects
to an unstable steady state (Fig. 5.45). In this figure, ΔΦ is again the measure of
the asymmetry of the flow as in (5.59) and both homoclinic connections from the
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(a) (b)

Figure 5.43. Panel (a) shows the upper layer streamfunction of the steady state at Hopf bifurca-

tion H5 at a wind stress of τ0ττ = 8.7 × 10−2 [Pa] (Nauw and Dijkstra, 2001). Panel (b) and (c)

show the imaginary and real parts of the perturbation of the upper layer streamfunction; the mode

has a period of 12.7 years.

limit cycle of the subtropical gyre branch as well as from the subpolar gyre branch
are suggested. With the help of this bifurcation diagram, Simonnet et al. (2003b)
are able to interpret quite complex behavior of trajectories.

5.7. Continental Geometry
Certainly, these bifurcation studies would be quite academic if all features

would be lost in more realistic settings, for example when continental geome-
try, bottom topography and better representations of friction were included. In
this section, this matter of robustness is addressed only with respect to continental
geometry within the (equivalent) barotropic shallow-water models.

5.7.1. Continents within a β-plane SW model
In Dijkstra and Molemaker (1999), a finite element discretization of the the β-

plane SW-model equations was used and realistic geometry was incorporated. To
represent a more realistic wind-stress forcing, the annual mean wind stress of the
Hellerman and Rosenstein (1983) data set was used. These data consist of values
on a 2◦ × 2◦ grid that was interpolated onto the computational grid.

For a maximum value of the wind-stress amplitude of 0.05 Pa, which is slightly
less than that in reality, the bifurcation diagram is shown in Fig. 5.46a using again
E = AH/(f0ff L

2) as control parameter. Other parameters are similar to those
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Figure 5.44. Bifurcation diagram showing the minimum upper layer thickness h1,min versus

the strength of the wind stress τ0ττ for the steady states (as in Fig. 5.42). The markers indicate the

average minimum upper layer thickness h1,min of the computed time-dependent solutions and the

bars indicate their amplitude range.

in Table 5.8. Main result is the existence of multiple equilibria, just as in the
rectangular geometry considered in the previous section (cf. Fig. 5.40). Two
solution branches are found, on which solutions are unstable for E < 7.5× 10−6.
One of the branches is connected to the large E regime and a solution on this
branch is shown for E = 3.0×10−6 in Fig. 5.46b. The model Gulf Stream flows
northward along Cape Hatteras and turns into the open ocean at slightly northerly
latitudes giving a transport φ (as in (5.62)) of about 21.5 Sv. There is a very weak
northern recirculation region at this value of E. The other branch exists only
for values of E smaller than 3.2 10−6, which is the position of the saddle-node
bifurcation on this branch. The solution at E = 3.0 × 10−6 (Fig. 5.46c) displays
a model Gulf Stream which turns into the open ocean near Cape Hatteras. There
is now a northern recirculation region, although too much concentrated near the
coast compared to reality. At this value of E, the maximum transport φ of this
‘separated’ model Gulf Stream (Fig. 5.46c) is about 26.2 Sv, which is larger than
that of the ‘deflected’ model Gulf Stream (Fig. 5.46b).

The first Hopf bifurcation is found at E = 7.5× 10−6 on the branch of the de-
flected Gulf Stream solution (H in Fig. 5.46a). At E = 3.0× 10−6, the deflected
solution (Fig. 5.46b) is unstable to only one oscillatory mode. The real and imag-
inary part of the eigenvector of this mode are shown in Fig. 5.47a-b; the period of
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Figure 5.45. Sketch of the local and global bifurcations in the 2.5-layer shallow-water model

studied in Simonnet et al. (2003b). The abbreviations LC stand for limit cycles, and specific tra-

jectories going along states (A), (B) and (C) are indicated; again TD = ΔΦ is a measure of the

asymmetry of the solution.

oscillation is about 5 months. The center of action for the oscillation is located in
the Gulf Stream region and the scale of the perturbations is about 500 km. The
orientation of the perturbations does not appear directly related to the orientation
of the jet itself. The disturbances propagate south-westward against the flow di-
rection of the steady state flow. The separated solution (Fig. 5.46c) is also unstable
to only one oscillatory mode (Fig. 5.47c-d) having a period of about 4 months.
Thickness perturbations with a scale of about 400 km are again localized in the
jet and the response outside the jet is weak. Because of its time scale and pattern,
this mode of variability is a Rossby-basin mode, whose pattern is deformed by the
continental geometry.

5.7.2. Continents on the sphere
The shallow-water model on the sphere enables one to look at the impact of

more realistic continental geometry. In the results below, both the North Atlantic
and the North Pacific basin are considered.
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(a)

(b) (c)

Figure 5.46. Bifurcation diagram for the 1.5-layer shallow water model (Dijkstra and Mole-
maker, 1999), with a representation of the continents and with realistic wind forcing. Again, the
Ekman number E = AH/(f0ff L

2) is the control parameter; drawn (dotted) branches indicate sta-
ble (unstable) steady states. (b) Contour plot of the layer thickness anomaly for the ‘deflected’ Gulf
Stream at E = 3.0 × 10−6 . The field is scaled with its absolute maximum and contours are with
respect to this maximum. The lateral coordinates x and y are scaled by the basin length scale L.
(c) Contour plot of the layer thickness anomaly for the ‘separated’ Gulf Stream at E = 3.0×10−6 .

5.7.2.1 North Atlantic basin
The full extent of the North Atlantic basin over the domain [85◦W-5◦W, 10◦N-

65◦N] with constant depth D = 1000 m is considered in Schmeits and Dijkstra
(2000). The barotropic shallow-water model on the sphere (5.19) is used and
the flow is driven by a realistic wind-stress field (Trenberth et al., 1989). For a
horizontal resolution of 0.5◦, the bifurcation diagram is shown in Fig. 5.48a using
the Ekman number E as control parameter. Here, the Ekman number is defined
as E = AH/(2Ωr2

0), where Ω and r0 are the angular frequency and radius of
the Earth, respectively. Again an imperfect pitchfork bifurcation is found, with
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(a) (b)

(c) (d)

Figure 5.47. Eigenfunctions corresponding to the unstable mode at the marked points in Fig.
5.46a for E = 3.0 × 10−6; shown are the layer thickness perturbations (from Dijkstra and Mole-
maker (1999)). (a-b): Real and imaginary part of the unstable oscillatory mode on the steady state
shown in Fig. 5.46b, with σr∗ = 2.2 yr−1 and σi∗ = 16.1 yr−1. (c-d): As in (a-b) but for the
steady state shown in Fig. 5.46c, with σr∗ = 0.47 yr−1 and σi∗ = 19.2 yr−1.

two steady solution branches, on which solutions are unstable for E < 2.5 ×
10−7. A solution on the lower branch is shown as a contour plot of layer thickness
anomalies for E = 1.6 × 10−7 in Fig. 5.48b, with a detail in Fig. 5.48d. It
displays the double-gyre circulation, typical for the North-Atlantic Ocean, with a
‘deflected’ model Gulf Stream which separates too far north, compared to reality.
Moreover, there is a weak southern recirculation region and at this value of E the
transport φ is about 46 Sv.

The second branch exists only for E < 2.2 × 10−7, which is the position
of the saddle-node bifurcation on this branch. The solution at E = 1.6 × 10−7

(Figs. 5.48c and 5.48e) shows a ‘separated’ model Gulf Stream that actually seems
to separate twice. First, it separates too far south compared to reality, and later on
it separates too far north (at about the same latitude as in Figure 5.48d). There
is now a strong southern and a weak northern recirculation region. At this value
of E, the transport φ is about 70 Sv, which is 1.5 times larger than that in Figure
5.48b, and somewhat larger than estimates of Gulf Stream transport near Cape
Hatteras of about 50-65 Sv (Johns et al., 1995). By comparing Figure 5.48b and
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5.48c, it can be concluded that the circulation patterns outside the region of the
western boundary current are very similar, and hence the multiple equilibria are
related to the different separation patterns of the model Gulf Stream.

On the lower branch in Figure 5.48a, a Hopf bifurcation H1 occurs at E =
2.5 × 10−7. The steady state flow pattern at this value of E is close to Fig. 5.48b
and therefore not shown. The perturbation is shown at two phases within half a
period of the oscillation in Fig. 5.49a-b. The maximum amplitude of the mode is
located around the axis of the western boundary current and propagates southwest-
ward, i.e. upstream. It has a period of 6 months and a wavelength of about 550
km. From Figs. 5.48d and 5.49 we can deduce that the perturbation adds cross-
stream components to the flow in the western boundary current, which causes the
Gulf Stream to meander. The mode has strong similarities with the first unstable
mode in the β-plane model (Fig. 5.47a-b). A second Hopf bifurcation (H2) occurs
on the branch of the ‘separated’ Gulf Stream solutions (Fig. 5.48a). The period of
this oscillation is 2 months and the maximum response is found in the high-shear
region to the southeast of Greenland.

5.7.2.2 North Pacific domain
Part of the North Pacific basin [120◦E,150◦W] × [10◦N,55◦N] is considered

using a horizontal resolution of 5/12◦ × 5/12◦. The 100 m depth contour was
taken as the continental boundary because otherwise the model Kuroshio would
enter the East China Sea. In reality, it is steered by bottom topography, so that
it follows a more or less straight path from Taiwan to Japan. The bifurcation
diagram for the North Pacific domain (Fig. 5.50a) consists also of an imperfect
pitchfork bifurcation and clearly shows that multiple equilibria exist when the
lateral friction is small enough. Note that there is quite a range of Ekman numbers
where two equilibria are (barotropically) stable. Down to E = 1.8 × 10−7, there
is a unique steady solution for each value of the Ekman number (Fig. 5.50a). The
stationary solution at location b in Fig. 5.50a displays a model Kuroshio path
south of Japan, quite similar to the observed small meander state (cf. Fig. 5.4a).
The modeled Kuroshio eventually separates too far north, compared to reality. At
this value of E, the transport φ is about 66 Sv.

The upper branch of solutions in Fig. 5.50a continues to exist for values smaller
than E = 1.8 × 10−7, but the solutions loose stability at E = 1.2× 10−7. These
steady states become unstable to one oscillatory mode at a Hopf bifurcation H1

and to another oscillatory mode at Hopf bifurcation H2 (Fig. 5.50a). The former
oscillatory mode has a timescale of 2 months and has its maximum amplitude in
the high-shear region to the south of Kamchatka; the latter oscillatory mode has
a timescale of 3 months and is located in the separation region of the Kuroshio.
A stable stationary solution on this branch (location c) is shown in Fig. 5.50b
for E = 1.5 × 10−7, which is in the multiple equilibria regime. It displays a
Kuroshio path south of Japan which is different from the observed meander states
(Fig. 5.4a), with a transport φ of about 86 Sv. Compared to the solution at location
b, to which it is continuously connected, the anti-cyclonic recirculation gyre to
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Figure 5.48. (a) Bifurcation diagram for the barotropic shallow-water model on the sphere
(Schmeits and Dijkstra, 2000) with the Ekman number as control parameter. Drawn (dotted)
branches indicate stable (unstable) steady states, whereas the Hopf bifurcation points are indi-
cated by triangles. The intersection of the upper branch does not indicate a bifurcation; it is due to
the choice of norm. (b) Contour plot of the layer thickness anomaly for the ’deflected’ model Gulf
Stream at E = 1.6 × 10−7. The contour levels are scaled with respect to the maximum value of
the field. (c) Contour plot of the layer thickness anomaly for the ’separated’ model Gulf Stream at
E = 1.6 × 10−7. (d) Same as (b), but for part of the domain [85, 45]◦W × [24, 51]◦N . (e) Same
as (c), but for part of the domain [85, 45]◦W × [24, 51]◦N .
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(a) (b)

Figure 5.49. Patterns of the neutral mode at H1 in Fig. 5.48a, for part of the domain
[85◦W,45◦W]× [24◦N,51◦N]; shown are the perturbation layer thickness anomalies at (a) σit = 0
and at (b) σit = π/2 (from Schmeits and Dijkstra (2000)).

the south of Japan has intensified and has caused the Kuroshio to deviate from the
coast.

The second branch of solutions exists only for E < 1.8 × 10−7, which is the
position of the saddle-node bifurcation on this branch. Steady states on the upper
part of this branch are stable down to E = 1.2 × 10−7 and become unstable at
Hopf bifurcation H1 to the same oscillatory mode as the steady states on the upper
branch. The steady solution at location d at E = 1.5× 10−7 (Fig. 5.50c) displays
a model Kuroshio path south of Japan vaguely resembling the observed large-
meander state (Fig. 5.4). The flow eventually separates at the southeast corner
of Honshu, which roughly corresponds to the observed separation point. At this
value of E, the transport φ is about 84 Sv. The third steady state at E = 1.5 ×
10−7 (location e) is unstable and it has different separation behavior than the other
states. The circulation patterns outside the region of the western boundary current
are very similar for each solution. Hence, the multiple equilibria are related to
the different meandering structures of the Kuroshio. The transports for the steady
solutions in the multiple equilibria regime are slightly larger than estimates of the
Kuroshio transport to the south of Japan of about 50-55 Sv (Qiu and Joyce, 1992).

5.7.3. Summary
Before turning to the results of explicit high-resolution ocean models, it is time

briefly summarize the results so far. Within a hierarchy of (equivalent) barotropic
and baroclinic QG and SW models, it is found that multiple equilibria exist for the
North Atlantic and North Pacific WDC. In the case with realistic continental ge-
ometry, these multiple steady states are associated with different separation paths
of the western boundary current. While the different steady states are well known
for the small basin case (typically with a zonal scale of 1000 − 2000 km), it is
expected (Primeau, 2002) that more isolated branches exist in SW models in the
realistic case. These branches still await computation and will indicate whether
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Figure 5.50. (a) Bifurcation diagram for the barotropic shallow-water model on the North Pacific
domain with the Ekman number as control parameter. Drawn (dotted) branches indicate stable
(unstable) steady states, whereas the Hopf bifurcation points are indicated by triangles. (b) Contour
plot of sea-surface height deviations for the steady state solution at location (c) E = 1.5 × 10−7

on the upper branch in (a). (c) Contour plot of sea-surface height deviations for the steady state
solution at location (d) E = 1.5 × 10−7 on the upper branch in (a). The contour levels are scaled
with respect to the maximum value of the field (from Schmeits and Dijkstra (2001).

multiple separation patterns with more elongated (Gulf Stream or Kuroshio) jets
are possible.

The origin of the multiple equilibria can be traced to a symmetry-breaking
pitchfork bifurcation in the QG model for flow in a rectangular basin. Due to in-
trinsic asymmetries, the pitchfork bifurcation becomes imperfect in the SW mod-
els. The ‘jet up’ and ‘jet down’ solution, i.e., the multiple equilibria in the QG-
case, deform into solutions with different separation behavior of the Gulf Stream
and Kuroshio under realistic continental geometry and wind-stress forcing. No
new equilibria appear to be introduced by deformation of the geometry from rect-
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Figure 5.51. Schematic figure of the different oscillatory internal modes identified in bifurcation

diagrams of a hierarchy of QG and SW models.

angular to realistic. The simultaneous existence of the deflected and separated
model Gulf Stream and the different meander states of the model Kuroshio are
hence not due to continental geometry, but to internal ocean dynamics. In a way,
the symmetry breaking found in the QG-model in rectangular geometry is still
present, but it is localized in the high-shear Gulf Stream and Kuroshio regions in
case of the SW model with realistic continental geometry and wind-stress forcing.

The modes of variability arising as instabilities on the mean states are closely
linked within the hierarchy of the models. An overview of the ordering and types
of modes found in QG and SW models of the WDC is presented (schematically)
in Fig. 5.51, using the wind-stress strength (τ ) as parameter. There are only a
few internal modes that contribute to the transient dynamics: classical baroclinic
modes, Rossby-basin modes and gyre modes. In statistical analysis of complex
time-dependent flows, the wall-trapped modes are found as an additional pattern,
but these modes have not yet been associated with a particular Hopf bifurcation
of a steady double-gyre flow.

In the two-layer shallow-water model, all the different modes in the spectrum
destabilize close to each other in parameter space, contrary to the two-layer quasi-
geostrophic model, which shows a strong separation of the location where these
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modes destabilize the steady states. Therefore, in the two-layer shallow-water
model complex, time-dependent behavior is already found at relatively low wind-
stress forcing and can be analyzed near criticality. The actual ordering of the
modes is sensitive to details in the models. The oscillatory time scale and even
the pattern of each mode does not depend much on the continental geometry and
wind-stress shape. The reason is that already in rectangular geometry, these modes
are strongly localized within the high-shear region of jet, which basically does not
change through the hierachy of the models.

By going through the hierarchy of models one has gotten an idea of the robust-
ness of these phenomena and has an understanding of their physics. A legitimate
question is, however, how relevant these results are for the actual ocean circula-
tion. In the next section, we first turn to the ‘virtual’ ocean circulation as simulated
with high-resolution ocean models.

5.8. High-Resolution Ocean Models
Ocean General Circulation Models (OGCMs) are widely used in physical

oceanography in order to increase our understanding of the oceans by providing
simulations of the large-scale circulation. The relatively high-resolution models
(with a horizontal resolution of 1◦ or smaller) are roughly divided (McWilliams,
1996) into three classes depending on their capabilities of resolving the develop-
ment of baroclinic instabilities of the mean flow (the so-called mesoscale eddies).
Non-eddy resolving models typically have a 1◦ horizontal resolution and cannot
capture the mesoscale eddies. Eddy-permitting models, having a resolution down
to 1/6◦, can capture the baroclinic instabilities but represent only part of the in-
teractions of these eddies. The models at the highest resolution (presently about
0.1◦) are called eddy-resolving OGCMs, as they capture the full spectrum of in-
teractions of the eddies. We will refer below to the last two classes of models as
eddy-representing OGCMs (ER-OGCMs).

Over the last decade, ER-OGCMs have been developed which are able to pro-
duce many observed features in the ocean, e.g., the meandering of the Gulf Stream
and formation and propagation of rings. A fairly complete overview of the models
currently in use, with links to the websites where these models are available, is
given in http://stommel.tamu.edu/∼baum/ocean models.html. Although it is im-
possible to give an overview of the capabilities of all the different ER-OGCMs,
below are a few words about the models which are around.

First, the M(odular) O(cean) M(odel), developed at the Geophysical Fluid Dy-
namics Laboratorium (Princeton, USA) has been developed since the early 1960’s
(Bryan et al., 1974; Cox, 1987). Versions of the MOM model have developed into
the P(arallel) O(cean) C(limate) M(odel), with home base at the Naval Postgrad-
uate School (Monterey, USA) (Stammer et al., 1994). Third, the isopycnal model
M(iami) I(sopycnal) C(limate) O(cean) M(odel) is a layer model, with mixing
along isopycnals (Bleck and Chassignet, 1994). A fourth model is the P(arallel)
O(cean) M(odel), which has been developed in Los Alamos (Dukowicz and Smith,
1994). Many of the models are discussed in detail in the books by Haidvogel and
Beckmann (1999) and Griffies (2004). Some of the typical simulations are sum-
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Figure 5.52. Streamfunction of the vertically averaged circulation as in Gerdes and KöberleK¨K
(1995) using the MOM model at 1◦ horizontal resolution.

marized in Table 5.10, where also the horizontal resolution and simulation period
are given.

The results of these numerical simulations show large internal variability on a
wide range of space and time scales and the influence of the eddies on the mean
flow (Schmitz and Holland, 1982; Holland and Schmitz, 1985; Miller et al., 1987;
McWilliams, 1996). The results are, however, not always easier to interpret than
the observations, with which they share many physical processes and scales of
motion. For example, model resolution strongly affects the mean flow path of the
Gulf Stream, in particular its separation near Cape Hatteras; this is an interesting
problem to which we turn below. Focus will be on the results of a global simu-
lation with the POCM model (Stammer et al., 1994) and a North Atlantic basin
simulation with the MICOM model (Chassignet and Garaffo, 2001).

5.8.1. Typical results
In models with a 1◦ horizontal resolution (Holland and Bryan, 1994; Gerdes

and Koberle, 1995), separation of the Gulf Stream is very diffuse between Cape¨
Hatteras and Newfoundland and no recirculation regions are present. An example
of the streamfunction for the vertically integrated transport of the reference run
in Gerdes and Koberle (1995) is shown in Fig. 5.52. The Gulf Stream north of¨
Cape Hatteras appears as a rather broad current following the coastline. Further
east, there is a strong component of transport between 40◦N and 55◦N across
the basin. In a high-resolution MOM simulation with 1/3◦ horizontal resolution
(Beckmann et al., 1994; Bryan et al., 1995), the time-mean state shows a large
anti-cyclonic gyre north of Cape Hatteras giving an actual separation north of the
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Typical high-resolution OGCM studies
OGCM Reference Resolution Time
MOM Holland and

Bryan (1994)
1◦ × 1.2◦ 100 years

Gerdes and
Koberle (1995)¨

1◦ × 1◦ 10 years

MICOM New et al. (1995) 1◦ × 1◦ 30 years
Piava et al.

(2000)
1◦ × 1◦ 64 years

POCM Semtner and
Chervin (1992)

1/2◦ × 1/2◦ 32.5 years

Stammer et al.
(1994)

1/4◦ × 1/4◦ 19 years

MOM Bryan et al.
(1995)

1/3◦ × 2/5◦ 25 years

Beckmann et al.
(1994)

1/6◦ × 1/5◦ 5 years

POP Chao et al.
(1996)

1/6◦ × 1/6◦ 22 years

Maltrud et al.
(1998)

0.28◦ × 0.28◦ 10 years

MICOM Smith et al.
(2000a)

1/3◦ × 1/3◦ 25 years

MICOM Chassignet and
Garaffo (2001)

1/12◦ × 1/12◦ 20 years

POP Smith et al.
(2000b)

1/10◦ × 1/10◦ 11 years

NLOM Hurlburt and
Hogan (2000)

1/64◦ × 1/64◦ 13 years

Table 5.10. Some typical studies of the three-dimensional ocean circulation using high-resolution
General Circulation Models.

observed position (Fig. 5.53). With a horizontal resolution of 1/6◦ and 37 vertical
levels, the POP model shows a more reasonable separation near Cape Hatteras
(Chao et al., 1996). The clockwise circulation region as in Fig. 5.53 is weaker
and the angle of separation of the Gulf Stream near the North American coast has
improved, but the current still separates at the wrong location. Only at a horizontal
resolution of 0.1◦ or higher, at which eddies are well resolved, the Gulf Stream
does tend to separate at the correct position (Smith et al., 2000b). The root-mean
square sea-surface height variability for this simulation is in good agreement with
the one reconstructed by blending altimeter data from the TOPEX-POSEIDON
and the ERS1–2 satellites (Le Traon et al., 1998).



248 NONLINEAR PHYSICAL OCEANOGRAPHY

Figure 5.53. Mean surface pressure for a typical simulation of the North Atlantic simulation
using a version of MOM in Bryan et al. (1995) on 1

3

◦ horizontal resolution.

The OGCM simulations clearly show that it is necessary to have a mesh size
that is well below the internal Rossby deformation radius in order to simulate a
Gulf Stream separation at the correct location. Recent very-high resolution sim-
ulations show a surface ocean flow field much resembling the one reconstructed
from observations (WOCE, 2001). An example of the two-year time mean North
Atlantic sea-surface height field, as computed by MICOM using a 1/12◦ hori-
zontal resolution (and 20 isopycnal layers in the vertical) is plotted in Fig. 5.54.
The meridional boundaries of the domain used are 28◦S and 70◦N and the do-
main includes the Mediterranean Sea. In this model simulation, the Gulf Stream
nicely separates at Cape Hatteras and meanders eastward into the North Atlantic
(Chassignet and Garaffo, 2001).

Still, it is far from clear which physical processes control the separation pro-
cess. Haidvogel et al. (1992) and Dengg et al. (1996) have reviewed the problem
of Gulf Stream separation. Both external factors — such as bottom topography
or the wind-stress field — and internal ones — such as adverse pressure gradients
(Tansley and Marshall, 2001), vorticity crisis (Kiss, 2002) or the outcropping of
isopycnals (Gangopadhyay et al., 1992; Chassignet and Bleck, 1993) — play an
important role. Several studies using idealized models have tried to isolate only
one or two factors as decisive but the relation between these results and those ob-
tained by using more realistic models and observations is hard to establish. The
tools of dynamical systems theory are thus essential to explore systematically the
results across the full hierarchy of ocean models.
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Figure 5.54. (in color on page 520). Plot of the two-year mean of the sea-surface height of a
high-resolution (1/12◦) simulation with MICOM (Chassignet and Garaffo, 2001).

As we know from the bifurcation diagrams of the shallow-water models, mul-
tiple mean states appear dynamically possible for both the Gulf Stream and
Kuroshio. Are signatures of these multiple mean states, with different separation
characteristics, found in high-resolution ocean models?

5.8.2. Analysis of POCM results
In Schmeits and Dijkstra (2000) and Schmeits and Dijkstra (2001), monthly

mean sea surface height (SSH) data over the years 1979 to 1997 of the Paral-
lel Ocean Climate Model (POCM) (Semtner and Chervin, 1992; Stammer et al.,
1994) are analyzed. SSH is a prognostic variable in POCM because of the in-
corporation of a free surface formulation. The POCM output used was from run
4C having an average horizontal resolution of 1

4

◦
and 20 non-equidistant levels

in the vertical direction. The global simulation was performed for the period
1979-1997 and the ocean model was forced by either ECMWF reanalysis (1979-
1993) or ECMWF operational (1994-1997) fields of heat fluxes, freshwater fluxes
and wind stress. For more details about this simulation the reader is referred to
http://vislab-www.nps.navy.mil/∼rtt.



250 NONLINEAR PHYSICAL OCEANOGRAPHY

5.8.2.1 Gulf Stream
The Gulf Stream region analyzed was the domain 90◦W-30◦W, 23◦N-48◦N.

In Fig. 5.55a, the latitudinal position of the maximum zonal geostrophic velocity
at 75◦W is plotted over this period. During the first year, the maximum zonal
geostrophic velocity is at a latitude of about 34.5◦N and a contour plot of (SSH)
anomalies is shown for January 1979 in Fig. 5.55b. The Gulf Stream separates too
far north compared to reality, and has a weak southern recirculation region and a
strong anti-cyclonic cell near Cape Hatteras. A similar mean state is also found in
other high resolution models (Beckmann et al., 1994; Bryan et al., 1995). Within
the QG and SW model context, as discussed in the previous sections, one would
call this a ‘deflected’ Gulf Stream.

In early 1980, a significant shift southward occurs in the latitudinal position
of the maximum zonal geostrophic velocity (Fig. 5.55a). The SSH anomalies for
January 1981 (Fig. 5.55c) display a Gulf Stream which actually seems to separate
twice. First, it separates too far south compared to reality, and later on it separates
too far north (at about the same latitude as in Fig. 5.55b). It is characterized by a
strong southern and a weak northern recirculation region, centered at about 74◦W,
32◦N and 73◦W, 34◦N, respectively, and by a strong anti-cyclonic cell near Cape
Hatteras. Within the QG and SW model context, one would call this a ‘separated’
Gulf Stream.

The southerly position is maintained for about two years and then the earlier
position is retained (Fig. 5.55a). Shaded contour plots of SST indicate that
at 75◦W, the cold wall (region of large temperature gradient) of the ‘deflected’
Gulf Stream is situated at a more northerly latitude (Fig. 5.55b) than that of
the ‘separated’ Gulf Stream (Fig. 5.55c). The difference in annual mean SST
between the ‘deflected’ and ‘separated’ Gulf Stream paths in POCM reveals that
the northern recirculation region is up to 2◦C warmer in the case of the ‘deflected’
than in the case of the ‘separated’ path. Analysis of the temperature fields at
depth in POCM indicates that the signatures of the different separation paths are
also found in the deeper ocean.

Stammer et al. (1994) discuss the temporal variability of POCM fields and
compare these to available observations. In Schmeits and Dijkstra (2000), non-
seasonal SSH anomalies were analyzed using the (M-SSA) statistical technique
(Vautard et al., 1992). A 9-month statistically significant (with respect to a red
noise null-hypothesis) mode is found. The anomalies are concentrated around the
mean axis of the Gulf Stream, have a maximum amplitude of 2 cm, propagate
upstream, and have a wavelength of about 500 km. The pattern of this oscillatory
mode extends from 75◦W up to 60◦W.

5.8.2.2 Kuroshio
The Kuroshio region analyzed was the domain 120◦E-160◦E, 25◦N-50◦N. In

Fig. 5.56a, the latitudinal position of the maximum zonal geostrophic velocity
at 136◦ E is plotted over the period 1979-1998. This plot indicates that several
transitions between two states occur on interannual timescales. In Figs. 5.56b
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(a)

(b) (c)

Figure 5.55. (in color on page 521). (a) Contour plot of zonal geostrophic velocity (ms−1),
calculated from SSH gradients in POCM, at 75◦ W as a function of latitude for the period 1979-
1997. Contour plot of monthly mean SSH deviations (cm), superimposed on a shaded contour plot
of monthly mean SST for (b) January 1979, representing the ‘deflected’ Gulf Stream in POCM,
characterized by a northerly position of its cold wall at 75◦W and (c) January 1981, representing
the ‘separated’ Gulf Stream in POCM, characterized by a southerly position of its cold wall.

.

and c, SSH anomalies are superimposed on SST for the two states. One state
(Fig. 5.56b) resembles the observed small meander state (Fig. 5.4a). It is char-
acterized by a northerly position of the maximum zonal geostrophic velocity at a
latitude of about 33◦N (Fig. 5.56a), accompanied by an anti-cyclonic recirculation
cell to the south. The other state (Fig. 5.56c), resembles the observed large mean-
der state (Fig. 5.4a). It is characterized by a southerly position of the maximum
zonal geostrophic velocity at a latitude of about 31.5◦N (Fig. 5.56a), accompanied
by a cyclonic recirculation cell to the north. In both cases, the main separation lat-
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itude of the Kuroshio is too far north (at about 40◦N), as is also a problem in
other high-resolution models (Maltrud et al., 1998). Shaded contour plots of SST
(Figs. 5.56b and c) indicate that the Kuroshio advects more heat northward in the
case of small meander state (Fig. 5.56b) than in the case of large meander state
(Fig. 5.56c). The simulated Kuroshio has a larger eastward geostrophic transport
when it is in its small meander state than when it is in its large meander state, at
least at 136◦E (Fig. 5.56a). Observations point at geostrophic transports of equal
magnitude for both states at 137◦E (Qiu and Joyce, 1992).

(a)

(b) (c)

Figure 5.56. (in color on page 522). (a) Contour plot of zonal geostrophic velocity (ms−1),
calculated from sea surface height (SSH) gradients in POCM, at 136◦E as a function of latitude for
the period 1979-1998. (b-c) Contour plot of monthly mean SSH deviations (cm), superimposed on
a shaded contour plot of monthly mean SST for (b) January 1988, representing the Kuroshio small
meander state in POCM and (c) January 1996, representing the Kuroshio large meander state in
POCM.
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Schmeits and Dijkstra (2002) also analyzed the variability of simulated tem-
perature fields by POCM in the Kuroshio region at three depth levels — 160 m,
310 m and 610 m — using the M-SSA technique. In all datasets, there exists
an oscillatory mode of variability with a timescale of 7 months. The anomalies
are rotating in the Kuroshio separation region of POCM and have a maximum
amplitude of 2.3 K at 160 m, 2.2 K at 310 m, and 1.0 K at 610 m.

5.9. Synthesis
The results from the analysis of POCM for both Gulf Stream and Kuroshio are

encouraging since features can be found which look like those seen in the QG and
SW models. However, there is still a huge gap between the understanding of the
behavior of the solutions of the QG and SW models and those of the ER-OGCMs.
In this last section of the chapter, the relation between solutions of the different
models in the hierarchy and the connections to observations are discussed.

5.9.1. Summary
With the dynamical systems approach as presented in this chapter, the idea is

that an understanding of the physics of the observed complex ocean flows can be
obtained by approaching the ‘real’ situation from particular limiting flows. One
path proceeds from simple to complex situations through a hierarchy of mod-
els. Here, the lowest member of the model hierarchy describing the WDC is the
barotropic QG model in a square basin with a flat bottom. In this chapter, the
hierarchy of models proceeded upwards by inclusion of stratification (multi-layer
models) and continental coastlines. A second path was taken within one partic-
ular member of the model hierarchy where we proceeded from steady, highly-
dissipative or weakly-forced flows to irregular, weakly dissipative or strongly
forced flows by varying parameters.

By proceeding along both paths, two important issues have become apparent.
The first issue is the existence of multiple steady flow patterns in wind-driven
midlatitude ocean flows. These multiple states have been robust in the model hi-
erarchy and their origin is a symmetry breaking shear instability, most apparent in
the barotropic QG model. In realistic continental geometry, these multiple states
are associated with different separation patterns of the western boundary currents.
The second issue is that a classification of internal modes of variability is appear-
ing. These modes can be considered as ‘dynamics modes’, since they are related
to the operator associated with the momentum equations. From a mathematical
point of view, there are two types of modes. One type of modes comes from
the basic linear operator arising from the linear stability analysis of the no-flow
state. These are the Rossby-basin modes (RB) in QG models which also exist in
SW models. The other types of modes have no origin in this basic linear opera-
tor. The oscillatory classical baroclinic modes (CB) arise when vertical shear is
present in the background state. The low-frequency gyre modes (G) arise through
a merger process of stationary modes, and the wall-trapped (WT) modes likely
arise through an instability of the viscous boundary layer. We do not know yet
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whether these four classes form all the ‘dynamics’ modes, but no other types have
been found at this point.

A posteriori, the double-gyre wind-forcing has not been a bad choice as a start-
ing point for studying the midlatitude WDC. An alternative would have been to
use the much studied single-gyre case of which the bifurcation structure and the
analysis of the linear stability of barotropic steady states has been presented in Ier-
ley and Sheremet (1995), Kamenkovich et al. (1995) and Sheremet et al. (1997).
One finds a back-to-back saddle-node bifurcation structure very similar to the
behavior of the symmetric solution branch in Fig. 5.19. The solution becomes in-
ertially dominated at large values of Re, a phenomenon called ‘inertial runaway’
in Ierley and Sheremet (1995).

In fact, the symmetric double-gyre solution in a 1000 × 2000 km basin can be
seen as a superposition of two single-gyre systems, each occupying a 1000× 1000
km basin. The stability of the symmetric double-gyre state is similar to that of the
single-gyre flow if only symmetric perturbations are allowed. The bifurcation
behavior of the double-gyre system is different because of the symmetry-breaking
pitchfork bifurcations (as in Fig. 5.19) which give rise to additional branches.

It is good to realize that when the path and analysis of the model hierar-
chy would have been started at the single-gyre flows, one would eventually end
up with the same bifurcation diagram for the SW model in the North Atlantic
(Fig. 5.48) and North Pacific basin (Fig. 5.50). However, the imperfect pitchfork
bifurcation in the double-gyre flows is much easier to compute and understand
since it derives from a perfect pitchfork bifurcation. In a single-gyre approach,
the additional isolated branch also appears when approaching the most realistic
configuration, but it is more difficult to understand where it comes from.

In this view, it is not surprising that there is a connection between modes of
variability of the double-gyre flow (as discussed here) and those of the single-
gyre flows (Sheremet et al., 1997). For the barotropic single-gyre case, also
Rossby-basin modes, wall-trapped modes and so-called recirculation gyre modes
are found. The precise connection between the internal modes in the single- and
double-gyre flows, however, has not been investigated yet. Also here, in the re-
alistic configuration of the North Atlantic and North Pacific in a SW-model, the
modes coming from the analysis of both configurations should eventually become
similar.

It is less clear at the moment, why the transition behavior to complexity differs
in both single- and double-gyre flow. The time-dependent behavior of the single-
gyre flows has been studied extensively (Berloff and Meacham, 1997, 1998a;
Meacham and Berloff, 1997, 1998). In Berloff and Meacham (1998b), it is sug-
gested that the route to chaos in the baroclinic case is the classical three-frequency
route (Holmes et al., 1996; Ruelle and Takens, 1970). which appears different
from the Lorenz (Simonnet et al., 2005) and Shilnikov (Nadiga and Luce, 2001)
route (through a homoclinic connection) as found in double-gyre flows. The study
of the route to complex flows over the model hiearchy, however, is in its infancy
and many exciting new results can be expected in the near future.
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5.9.2. Interpretation framework
As most ER-OGCMs perform simulations in the complex flow regime, and

observations come also from ocean flows in such a regime, there is at the moment
quite a limited interpretation framework that the dynamical systems analyses of
SW and QG models have to offer. However, on the positive side, there is a start
of a systematic qualitative theory which provides new concepts (e.g., the gyre
mode) and also new diagnostic tools for looking at both ER-OGCM output and
observations (e.g., the subannual variability in western boundary currents and the
different separation patterns).

5.9.2.1 Multiple mean paths?
With respect to multiple mean paths, observations indicate that the Kuroshio

clearly shows bimodality in the form of the large and small meander states, but
there seem to be less clear indications for bimodality in the Gulf Stream. The
question arising from these observations is: what are the physical processes re-
sponsible for this bimodal behavior and why is this behavior more pronounced for
the Kuroshio than for the Gulf Stream?

The existence of multiple equilibria was a central element in the classical ex-
planation of the bimodality of the Kuroshio (Charney and Flierl, 1981; Masuda,
1982). However, in most of the previous modeling studies in which multiple paths
of the Kuroshio were found, regional models were used with in/outflow boundary
conditions (Chao, 1984). As Qiu and Miao (2000) have pointed out, regional mod-
els with in/outflow boundary conditions may not be able to realistically capture
the Kuroshio’s recirculation gyre, which is an inseparable part of the Kuroshio
current system. Based on calculations with a high-resolution 2-layer primitive-
equation model, Qiu and Miao (2000) propose that the observed alternations of
the Kuroshio’s two states are due to a self-sustained internal oscillation involving
the evolution of the southern recirculation gyre and the stability of the Kuroshio
current system.

The barotropic shallow-water model for a Pacific basin, as used in the bifurca-
tion studies above, contains only a very small part of the physics governing the
actual flow. It contains no bottom topography, no baroclinic effects and a very
simple parameterization of mixing of momentum, i.e., downgradient Laplacian
diffusion. The latter is represented by a single Ekman number E which is used
as control parameter. It is standard practise in high-resolution ocean modelling
to decrease the coefficients measuring the magnitude of the dissipative processes
(mixing of momentum and heat/salt) simultaneously with an increase in resolu-
tion. From an oceanographic point of view, this is easily justified, since the major
part of the mixing is produced by the eddies itself and not by a background down-
gradient diffusion, which is thought to be very small. However, from a dynamical
systems point of view one changes two things at the same time. The degree of
approximation to the continuous equations is changed with changing resolution,
which introduces shifts in location of bifurcation points. Simultaneously, also pa-
rameters in the model are changed, which also induces movement in the locations
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of these bifurcation points. Hence, the correspondence with changes in E in the
SW model and the increase in resolution (and corresponding decrease in mixing
coefficients) in ocean models is admittedly vague. It seems, however, reasonable
that a decrease in E mimics this change in the ocean model configuration.

Bifurcation analysis of this model for the North Pacific gives the following
results

(i) There is unique state when E is too large, with a small meander mean state.
This would indicate that ocean models with too coarse resolution will find a
similar state.

(ii) When E is smaller than a certain value, a different flow regime is entered
where more than one stable steady equilibrium exists. The existence of such a
flow regime would imply that switches between mean states are possible, for
example induced by stochastic ‘noise’ in the wind-stress field.

The results certainly indicate that the multiple equilibrium regime is dynamically
possible in the Pacific and that the equilibria differ only in the local separation
behavior of the Kuroshio. A qualitatively similar result was obtained for the North
Atlantic version of this model, where the unique state (at large E) has a separation
of the western boundary current which is too far northward. The other equilibrium
found at smaller E has an (early) separated Gulf Stream. This result implies
that an ocean model has to be in this flow regime to get correct Gulf Stream
separation, which requires sufficiently low values of E and hence a sufficiently
high resolution.

The details on the transition to complex flows are still unknown for the more
realistic configurations, but one can try to anticipate the behavior from the studies
in idealized configurations (McCalpin and Haidvogel, 1996; Primeau, 2002; Si-
monnet et al., 2003b). One would expect that low-frequency behavior can occur
at even smaller lateral friction due to the appearance of homoclinic connections.
Eventually, a trajectory of the system may can come close to each of the steady
states which may explain the suggested ‘internal oscillation’ leading to bimodal-
ity by Qiu and Miao (2000). Of course, there is still a long way to go since the
effect of the baroclinic eddies and bottom topography has hardly been studied.
The latter may be a main factor why the bimodality of the Kuroshio is observed
while the Gulf Stream bimodality is limited. Bottom topography, combined with
a rectification effect on the mean flow due to the baroclinic eddies can certainly
have a large impact on the transitions between the multiple mean flow patterns.

5.9.2.2 Modes of variability?
With respect to variability, a central problem in comparing theory with obser-

vations is the lack of accurate long time series of data which have sufficient spatial
resolution. The satellite data from TOPEX and the AVHRR maybe satisfy the re-
quirements for accuracy, but the time period is only just over a decade. This limits
the time scale of phenomena associated with internal variability of the ocean cir-
culation, which can be investigated with some confidence, certainly to one year.
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The 9-month variability in the Gulf Stream region is within this range and it seems
to be the first period of variability which can be analyzed with reasonable confi-
dence beyond the baroclinic eddy variability (with a time scale of a 3-4 months).
Let’s take this as an example for using the QG and SW model results to interpret
ER-OGCM results and observations.

As mentioned in section 5.8, dominant patterns of variability in SSH observa-
tions were determined in Schmeits and Dijkstra (2000), using the M-SSA tech-
nique. The data set used in this study were anomalous sea-surface height obser-
vations from the NASA TOPEX/POSEIDON Altimeter Pathfinder (T/P) dataset
(http://neptune.gsfc.nasa.gov/∼krachlin/opf/algorithms.html). A statistical sig-
nificant 9-month mode, which shows anomalous power against a red-noise null-
hypothesis was found. When nothing else would be available, the result would be
meager since it might be that techniques like M-SSA overestimate the power at
this particular frequency. After all, the total period of the data analyzed is about
5 years and the frequency is also close to the annual cycle. Luckily, there is more
observational work using other types of satellite and in-situ data, which strongly
indicates that there indeed seems to be a preferred period of variability and that
it is difficult to attribute its origin to external (in this case) atmospheric forcing
(Lee and Cornillon, 1995; Kelly et al., 1996). The latter can never be excluded,
however, because stochastic noise in an ocean where advection occurs can also
introduce variability on preferred time scales (Saravanan and McWilliams, 1998).
This motivates to look at internal ocean dynamics as a likely cause of this pre-
ferred time scale of variability. But what is the physics of this phenomenon ?

Although output from only one high-resolution model was analyzed in
Schmeits and Dijkstra (2000) (the POCM model), it is encouraging that in this
model, also statistical significant modes (against a red noise null-hypothesis) are
found in the SSH field with a near 9-month time scale. The spatial patterns do not
well correspond to those in the TOPEX data, because the mean flow in POCM
has a Gulf Stream which also separates at too northerly latitudes. However, the
general characteristics with respect to location and propagation are not that dif-
ferent. It seems reasonable to state that the POCM configuration contains all the
physical processes needed to explain this 9-month variability in observations up
to sufficient detail. Through further analysis of the POCM output, it turns out that
one can trace this 9-month signal down to about 1 km, with hardly any distortion
in spatial structure. But again, what are the physical processes responsible for this
type of variability ?

Bifurcation analysis of the SW model for the North Atlantic shows that when
the Ekman number E is decreased, there is a transition where certain preferred
patterns are amplified through energy transfer from the mean flow. These patterns
correspond to the eigenvectors associated with the stability problem of the steady
states just at Hopf bifurcation. The perturbations are localized in the region of
large-horizontal shear of the mean flow. The latter is easy to understand, since
only the Reynolds’ stresses can be responsible for the energy transfer. Clearly,
this is a barotropic instability giving patterns which have a subannual time scale
for reasonable choices of the average basin depth. Hence, a clear ‘candidate’ for
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explaining the origin of the subannual variability is available. Again by going
through the model hierarchy, this mode can be traced to a barotropic instability
associated with one of the Rossby basin modes.

This leads to the next question: how about the relevance of the gyre modes,
having interannual-to-decadal periods? Recall from section 1.3.2 that in the Cen-
tral England Temperature series, there is a peak in the spectrum at 7.7 years. This
7-8-yr peak has been reported in North-Atlantic SST and SLP data by Moron et al.
(1998) and Da Costa and Colin de Verdiere (2004). The SST pattern associated´
with this variability shows downstream (with respect to the Gulf Stream) propa-
gation in a northward direction, similar to the variability presented in Sutton and
Allen (1997). In SW models of the double-gyre circulation in idealized basins,
also this period of variability is found in the so-called quasi-homoclinic regime,
which is located after the appearance of the homoclinic orbit (Speich et al., 1995;
Nauw et al., 2004b; Simonnet et al., 2005). In this regime, the oscillation period
saturates with decreasing friction to about twice the period at the Hopf bifurca-
tion. The variability introduced by the gyre mode dynamics is therefore a nice
prototype for this 7-8-yr variability, but the connection is still not very strong.

For the understanding of the multiple mean flows of the Kuroshio, the sub-
annual variability of the Gulf Stream, and the interannual-to-decadal variability
in North-Atlantic SST, the path through the model hierarchy with analysis tech-
niques from bifurcation theory directly connects to, builds on and extends the
work of the early dynamical oceanographers. There is still a long journey to go,
in terms of model complexity, effects of stochastic noise in the forcing (e.g., Sura
et al. (2000)) and in the analysis of complex behavior of the particular model
solutions, but the path is clear and it will certainly be a great adventure.
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5.10. Exercises on Chapter 5

(E5.1) Weakly nonlinear single-gyre flow

In this exercise, we consider the weakly nonlinear extension of the Stommel
boundary solution. The stationary dimensionless barotropic vorticity equation
on the domain (x, y) ∈ [0, 1] × [0, 1] can be written (with δM = 0) as

λ

[
∂ψ

∂x

∂

∂y
− ∂ψ

∂y

∂

∂x

]
∇2ψ +

∂ψ

∂x
= −∂τ

x

∂y
−∇2ψ

where λ = (δI/δS)2. Let the wind forcing be given by

τx = − 1
π

cos πy

We will consider λ as a small parameter of the system.

a. Show that the Stommel-Sverdrup solution is obtained for λ = 0. Indicate
this solution as ψ0.

Now expand
ψ = ψ0 + λψ1 +O(λ2)

b. Determine the solution ψ1.

c. Sketch the resulting flow for small λ.

Further reading: Pedlosky (1987), chapter 5 and Salmon (1998).

(E5.2) Effect of friction representation in SW models

In a 1.5-layer SW model (section 5.6.1), different forms of lateral friction are
considered in the literature. The one employed in the model in (5.60) is of the
form

FFF = ∇2(hu)

where u is the horizontal velocity field. Other forms of lateral friction used
are FEF and FMF given by

FEF = ∇.(h∇u)
FMF = h∇2u

In this exercise, we are going to investigate the impact of these different fric-
tion formulations.
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Consider a simple parallel zonal flow in a channel with a width of 2Lc. The
velocity field is u = u(y), v = 0, the layer thickness field is h = h(y) and the
equilibrium layer thickness is H0.

a. Show that under these approximations, the 1.5-layer shallow-water model
equations (5.60), with aτ = 1 and rb = 0, reduce to

0 = AHFx(u, h) +
τ0ττ τ

x(y)
ρ1h

(f0ff + β0y)u = −g′ dh
dy

and show that the frictional terms become

FxMF (u, h) =
d2u

dy2

FxEF (u, h) =
1
h

d

dy

[
h
du

dy

]

FxFF (u, h) =
1
h

d2(uh)
dy2

With no-slip boundary conditions at the channel walls, i.e., y = ±Lc : u = 0,
we need a condition to ensure overall mass conservation.

b. Show that this condition is provided by

1
2Lc

∫ Lc

−

∫∫
Lc

h(y) dy = H0HH

Suppose we prescribe a symmetric velocity profile and a purely anti-symmetric
thermocline profile and ask: what wind-stress shape is needed to force this as
a steady flow in the channel? In the simplest case, neglecting the β-effect, we
choose

h(y) = H0HH

(
1− 1

4
sin

(
πy

2Lc

))
; u(y) = U0UU cos

(
πy

2Lc

)

with U0UU = πg′H0HH /(8f0ff Lc).

c. Show that for this flow field, the general solution for the wind stress profile
is

τx(y) =
(

cos
(
πy

2Lc

)
−Aas sin

(
πy

Lc

))
and determine Aas for each of the frictional representations.
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d. Under a prescribed symmetric wind forcing, for example,

τx(y) = cos
πy

2Lc
which of the frictional parameterizations will lead to the strongest asymmetric
(with respect to y = 0) flow?

Further reading: Nauw et al. (2004a) and references therein.

(E5.3) Fofonoff inertial circulation

In this exercise, we will study a pure inertial quasi-geostrophic flow in a
homogeneous (constant density) ocean. Consider the barotropic vorticity
equation (5.33) for T = 0 and δ∗S = δ∗M = F = 0.

a. Show that the resulting equation can be written as

u · ∇
((

δI
L

)2

∇2ψ + y

)
= 0

where u = (u, v) is the horizontal velocity vector.

b. Show that a pure zonal (horizontally unbounded) flow is a solution of the
equation above.

Next consider the situation where the ocean is bounded by a continent at
x = 0, while for x → ∞, the flow is still pure zonal with dimensionless
velocity field u = −1 and v = 0.

c. Show that, in this case, the absolute vorticity is a linear function of the
streamfunction.

d. Consider in the problem above explicitly the western boundary layer (with
δI � L) and show that the solution is given by

ψW (x, y) = (y − y0)(1− e−xL/δI )

where y0 is an arbitrary meridional coordinate at which ψ = 0 for all x.

From now on take y0 = 0. As a next step, we consider also a continent at the
eastern boundary x = 1; between the zonal boundaries, the flow is still zonal.

e. Show that the total solution (eastern plus western boundary layer) is given
by

ψWE(x, y) = y(1− e−xL/δI − e−(1−x)L/δI )
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Finally, we look at a closed basin bounded meridionally by y = −1 and
y = 1, where both ψ = 0.

f. Show that the total solution is given by

ψB(x, y) = ψWE(x, y) + c1e
−(1−y)L/δI + c2e

−(y+1)L/δI )

and determine the constants c1 and c2.

g. Provide a sketch (plot) of the so-called Fofonoff inertial circulation in the
closed basin.

Further reading: Fofonoff (1954) and Pedlosky (1987), chapter 5.

(E5.4) Boundary conditions

Consider the dimensional problem for the equivalent barotropic vorticity equa-
tion for flow in a square L× L basin described by

∂

∂t
(∇2ψ − 1

R2
ψ) + β0

∂ψ

∂x
= AH∇2(∇2ψ − 1

R2
ψ) +

τ0ττ

ρL
G(x, y, t)

The lateral friction in this model is represented by AH∇2q, where
q = ∇2ψ − ψ/R2 + β0y is the potential vorticity and R =

√√
g
√√ ′D/f0ff

is the internal Rossby deformation radius. The curl of the wind-stress forcing
pattern, G, is a prescribed function.

a. Use scales L, L/(β0R
2) and τ0ττ /(β0R) for length, time and streamfunction

and show that the dimensionless equation becomes

∂

∂t
(ε∇2ψ − ψ) +

∂ψ

∂x
= δ∇2(ε∇2ψ − ψ) +G(x, y, t)

and determine δ and ε.

In QG models, there is subtlety in the boundary condition of mass con-
servation. The correct conditions on the boundary S of the domain are
(McWilliams, 1977)

ψ = ψ0(t) ;
∫
S

∫∫
ψ dx dy = 0

which are more general than the condition ψ = 0.

b. Use the dimensional model above to show that for steady states of the
barotropic vorticity equation with R→∞, both boundary conditions give the
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same solutions.

It is illustrative for the difference in the boundary conditions to investigate the
energy balance of the model above.

c. Multiply the barotropic vorticity equation above by ∇ψ, integrate over the
domain (x, y) ∈ [0, L]× [0, L] and derive the energy balance

∂E
∂t

= −∇.F− ψG−D

where E = (ε∇ψ.∇ψ + ψ2)/2. Derive the expressions for F and D.

d. Integrate the energy equation over the flow domain (x, y) ∈ [0, 1] × [0, 1],
use the correct boundary conditions above (and assume no-slip) and derive the
expression

∂ < E >
∂t

= ψ0

∮
H.n ds− < ψG +D >

and determine H. Here, <> indicates integration over the flow domain, the
contour integral is over the boundary over the domain and n is the outer
normal to the boundary.

e. Interpret the difference in the energy balance for the correct boundary
condition and for the boundary condition ψ = 0.

Further reading: McWilliams (1977) and Cessi and Primeau (2001).

(E5.5) QG - SW transition

It is useful to think how branches of steady solutions can be continuously
traced between QG and SW models. Suggest at least two methods by which
this can be accomplished.

(P5.1) The nonlinear Munk model

In this exercise, we will consider solutions of the barotropic vorticity equation
for the case when bottom friction can be neglected, i.e. δS = 0. In the western
boundary layer, the derivatives to the zonal coordinate x are much larger than
those to y.

a. Show that the boundary layer equation can be written as

λ

[
∂ψ

∂x

∂

∂y
− ∂ψ

∂y

∂

∂x

]
∂2ψ

∂x2
+
∂ψ

∂x
=
∂4ψ

∂x4

with λ = (δI/δM )2.
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Assume now that the flow far away from the boundary layer is paralell with
velocity field

ψ = y

We now try to find solutions ψ = φ(x)y.

b. Show that the equation for φ(x) becomes

φ′′′ = λ((φ′)2 − φφ′′) + φ− 1

where the prime denotes differentiation to x.

c. Formulate the three boundary conditions for φ.

Write the equations as a first order system of equations and implement
them into the AUTO continuation code (see the beginning of chapter
4 on how to obtain the code). The condition at infinity can be handled in
the simplest way by defining x = α x̃, with x̃ ∈ [0, 1] and by choosing α large.

d. Determine the solution for λ = 0. (Hint: Choose a smart starting point by
introducing an additional ‘homotopy’ parameter)

e. Calculate the bifurcation diagram in λ and show that there is a saddle-node
bifurcation at λ = −0.79.

Further reading: Pedlosky (1996), chapter 2.

(P5.2) A 4-mode model of the wind-driven circulation

In this exercise, we will investigate the steady equilibria of the double-gyre
flow in a square basin and study their linear stability within a low-order model
using the AUTO software (see beginning of chapter 4 how to obtain this
software).

The low-order model derivation starts from the barotropic vorticity equation by
taking zero lateral mixing (Re → ∞) and keeping non-zero bottom-friction.
On the boundaries only no normal flow conditions, i.e., ψ = 0 are applied.
Next step is to project the equations using suitable expansion functions. In
order to account for the existence of the western boundary layer, a decaying
exponential in the x direction is introduced while a sine expansion is retained
in the y direction, i.e.

ψ = A1(t)G(x) sin y +A2(t)G(x) sin 2y +
+ A3(t)G(x) sin 3y +A4(t)G(x) sin 4y

G(x) = e−sx sinx
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where s = 1.3 is chosen such that G(x) fits with the zonal asymmetric
structure of a typical flow. The truncated equations are obtained by projecting
the barotropic voriticity equation onto the orthogonal basis (G(x) sin ky,
k=1,4) using the inner product < f, g >=

∫ π
0

∫∫ ∫ π
0

∫∫
fg dxdy such that the

energy of the truncated system is conserved.

This leads to the following set of ODEs

dA1

dt
= c1A1A2 + c2A2A3 + c3A3A4 − a1A1

dA2

dt
= c4A2A4 + c5A1A3 − c1A2

1 − a2A2 + c7σ

dA3

dt
= c6A1A4 − (c2 + c5)A1A2 − a3A3

dA4

dt
= −c4A2

2 − (c3 + c6)A1A3 − a4A4

with c1 = 0.020736, c2 = 0.018337, c3 = 0.015617, c4 = 0.031977,
c5 = 0.036673, c6 = 0.046850 and c7 = 0.314802. Furthermore,
a1 = 0.0128616, a2 = 0.0211107, a3 = 0.0318615 and a4 = 0.0427787. We
consider only σ, which represents the strength of the wind-stress forcing, as a
control parameter.

a. Start at the zero solution for σ = 0 and determine a branch of fixed points
in σ. Determine the σ value of the first pitchfork bifurcation.

b. What is the internal symmetry of the system giving rise to the pitchfork
bifurcation?

c. Determine the branches of asymmetric solutions. Plot the bifurcation
diagram as value of A1 versus σ.

d. Determine the value of σ at the Hopf bifurcation on one of the branches of
asymmetric solutions. How do you determine whether the Hopf bifurcation is
subcritical or supercritical?

e. Calculate a branch of periodic solutions from the Hopf bifurcation. Are
these periodic orbits stable?
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f. Follow the periodic orbits up to very large period and find the approximate
value of σ where the homoclinic connection occurs. How would you deter-
mine whether this is a Shilnikov or Lorenz type of homoclinic connection?
Compute a few trajectories just beyond the homoclinic connection.

g. Make a sketch of the different solutions of the model versus σ up to the
homoclinic connection.

Further reading: Simonnet et al. (2005).



Chapter 6

THE THERMOHALINE CIRCULATION

Excitement from down the bottom right to the top.
Asturias, Isaac Albeniz.
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In chapter 1, a caricature was provided of the three-dimensional circulation as
a ‘conveyor belt’ driven by both the wind-stress forcing and buoyancy fluxes at
the ocean-atmosphere interface. In this chapter, focus will be on the thermohaline
component of this circulation, i.e., that associated with the transport of heat and
salt. The motivation to study the thermohaline circulation (THC) in isolation is
that the ocean flow transitions which may have been responsible for rapid climate
changes in the past, strongly involved this component of the circulation.

In section 1.2, the mean state of the present global ocean circulation and its
associated heat and freshwater fluxes were presented. This chapter starts with a
slightly more detailed description of long term variability of this circulation, with
focus on the North Atlantic (section 6.1). As in previous chapters, the description
of observations is far from complete and other sources should be consulted to
obtain an adequate feeling for the complexity of this circulation (Schmitz, 1995;
Wunsch, 1996; Ganachaud and Wunsch, 2000; WOCE, 2001). In section 6.2,
potential mechanisms of changes in the THC, both in the time-mean state as well
as variability around this mean state are considered. The next sections, 6.3 to
6.9, follow a path through the model hierarchy of the THC, touching on two-
dimensional models in the sections 6.3 to 6.5, zonally averaged models in section
6.6 and ending with low-resolution general circulation models in the sections 6.8
to 6.9.

6.1. North Atlantic Climate Variability
Over the years and with use of data from international measurement pro-

grammes, such as the World Ocean Circulation Experiment (WOCE, see
http://oceanic.cms.udel.edu/woce/), a more and more detailed picture of the global
ocean circulation is emerging. In WOCE (2001), many of the results from this
programme are nicely summarized and put into context with historic observations
and results from ocean models.

6.1.1. Observations
Properties of the zonally integrated time-mean flow at several sections in the

Atlantic were briefly summarized in section 1.2. The strength of the Atlantic
meridional overturning circulation (MOC) at 25◦N is estimated to be 16 ± 2 Sv.
The heat transport associated with the MOC is positive at every latitude in the
Atlantic with a maximum of 1.3 PW at about 25◦N. The freshwater transport is
southwards in the Atlantic with a typical amplitude of 0.9 ×109 kgs−1 at 25◦N.

The seasonal variability of the MOC and the physical mechanisms causing this
variability are discussed in Jayne and Marotzke (2001). From the very few obser-
vations available, estimates of the peak-to-peak seasonal meridional heat transport
variations in the midlatitude North Atlantic are about 0.6 PW± 0.1 PW (Baringer
and Molinari, 1999). At 36◦N, the wind (Ekman) induced heat transport is the
dominant contribution (Sato and Rossby, 2000), but at 24◦N baroclinic processes
are likely to be important since this latitude is near the node of the seasonal cycle
of wind stress.
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There are no indications for the occurrence of different time-mean states in the
Atlantic in the instrumental record. Proxy data (briefly mentioned in section 1.1)
indicate, however, that rapid changes in deep water temperatures have occurred
during the last glacial. The Dansgaard-Oeschger oscillations with a time scale
of 1000-2000 year are typical examples of this variability. There are now many
indications (Clark et al., 2002) that these variations involved changes in the time-
mean state of the THC.

Concerning the variability of the present THC on decadal and longer time
scales, not much is known through direct (sufficiently accurate) data. Most ob-
servations are available in the North Atlantic Ocean, with measurements of the
overflow from the Nordic Seas (Dickson and Brown, 1994), convective activity
(Schlösser et al., 1991), repeated ship measurement over the same section (Bry-
den et al., 1996) and ocean weather stations (Sy et al., 1997; Joyce and Robbins,
1995). Deep water formation was interrupted over the period 1967-1972 due to
the presence of a Great Salinity Anomaly (GSA) (Dickson et al., 1988). A low-
salinity patch of water travelled along a path around the south of Greenland (late
1960’s), through the Labrador Sea (early 1970’s) in the subpolar gyre of the North
Atlantic and was found in the Norwegian Sea in the late 1970’s (Fig. 6.1). The
salinity anomaly influenced the velocity field along its way, but it is not known
how this has influenced the Atlantic MOC. Mysak et al. (1990) suggest that the
GSA is part of an approximately 20-year climate cycle, involving changes in the
atmosphere, ocean and sea-ice.

Figure 6.1. Transport scheme for the 0-1000 m layer of the northern North Atlantic with dates of
the salinity minimum superimposed (Dickson et al., 1988).

From the Bermuda station ‘S’ data, Joyce and Robbins (1995) find changes in
temperature and salinity at different depths on decadal time scales. Temperature
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and salinity anomalies appear highly correlated in the thermocline layer (500-
1000 m) and may be associated with vertical displacements of up to 50 m. There
is a warming trend in the deepest layer, but it is difficult to relate this to either
actual changes in water-mass characteristics or vertical displacement of density
surfaces (isopycnals). Decadal changes of water-mass characteristics have also
been described at 24◦N in Bryden et al. (1996) through data from three cruises
over this latitude band in the North Atlantic. The differences in potential tem-
perature and salinity over the period 1957-1992 display negative temperature and
salinity anomalies at 500-750 depth over the whole section; at deeper levels, the
signs of these anomalies reverse. The changes in both temperature and salinity
are very small and, apart from that, it is again difficult to relate them to changes
in water mass characteristics. If more intermediate water is formed (for example
through increased convection more northward), this could show up as an increased
thickness of a particular water mass. There are measurements supporting a rela-
tively fast spreading of these newly formed intermediate water masses from the
Labrador Sea into the North Atlantic (Sy et al., 1997; Curry et al., 1998). Isopyc-
nals may also move up and down due to changes in the wind forcing, as the gyre
circulation changes intensity.

To study interannual-to-multidecadal variability in the Atlantic cli-
mate system there is quite a long sea-surface temperature (SST) data
set available: the C(omprehensive) O(cean) A(tmosphere) D(ata) S(et)
(http://ingrid.ldgo.columbia.edu/SOURCES/). A nice overview of the re-
sults of this data analysis the methods and terminology used can be found in
Moron et al. (1998). In Deser and Blackmon (1993), the first empirical orthogonal
function (EOF) of wintertime mean SST anomalies in the North Atlantic over
the period 1900-1989 displays a basin scale SST pattern with strongest positive
anomalies in the Gulf Stream region. The time series of this EOF indicates that
this region was colder than average over the period 1900-1940 and warmer over
the remaining period. The second EOF is a dipole-like pattern with positive
(negative) anomalies in the northern (southern) part of the basin with variability
in the time series on decadal scales. Using more than 100 years of SST, SLP and
wind data from the COADS dataset, Kushnir (1994) showed that the SST exhibits
multidecadal variability, with a basin scale SST pattern having maxima in the
Labrador Sea and northeast of Bermuda (see Fig. 1.20).

More recently, Tourre et al. (1999) and Delworth and Greatbatch (2000) have
identified North Atlantic SST and sea-level pressure (SLP) variability with a dom-
inant time scale of about 50 year. In Fig. 6.2, six phases of the pattern of variability
of SST and SLP are presented, each about 4.3 years apart such that half of the os-
cillation is shown. At phase 0◦ in Fig 6.2a, positive SST anomalies are seen in
the North Atlantic. These fill up the basin (Fig 6.2b-c) up to phase 90◦, where
there is a positive maximum south of Greenland (Fig 6.2d). Cooling of the central
part is seen at phase 120◦ (Fig 6.2e) as the pattern develops to the original pattern
but with opposite sign (Fig 6.2f). The SST anomalies do not seem to be caused
directly by the overlying atmosphere, since an enhanced meridional gradient of
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Figure 6.2. (in color on page 523). Reconstruction of the approximately 52-year signal (panels
are about 4.3 years apart) in SST and SLP from Delworth and Greatbatch (2000). Units of SST are
in ◦C (from -0.6◦C (blue) to 0.6◦C (red)) and that of SLP in hPa.

SLP (and hence stronger westerlies) are accompanied by positive SST anomalies
(e.g., Fig 6.2a).

The changes in heat content over the upper 300 m, as compiled in Levitus et al.
(2000) for the North, South, and whole Atlantic are plotted in Fig. 6.3a. This plot
clearly shows the warming trend of the upper ocean over the last century. The
difference in the North Atlantic’s heat content between the pentads 1988–1992
and 1970–74 is shown for two reference depths (300 m and 3000 m) in Figs. 6.3b
and 6.3c. Both patterns are strongly aligned with the Gulf Stream, with the heat
content decreasing north of it and increasing south of it. The heat content of the
subtropical gyre has thus increased substantially from 1970 to 1990, while that of
the subpolar gyre has decreased.
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(a)

(b) (c)

Figure 6.3. (in color on page 524). (a) Time series of ocean heat content (1022J) in the upper
300 m of the Atlantic for the half-century 1948–1998. For comparison, the climatological range of
upper ocean heat content for the North Atlantic is about 5.6× 1022 J. (b-c) Heat storage difference
(Wm−2) for the North Atlantic between 1988–1992 and 1970–1974 within (b) the upper 300 m and
(c) the upper 3000 m; warming is indicated by pink and cooling in light blue (from Levitus et al.
(2000)).

In summary, there are strong indications of long term (decadal-to-multidecadal)
variability in the North Atlantic climate system. The processes that control these
changes, however, are poorly understood so far.

6.1.2. Central questions and approach
A theory of the THC should contain an explanation of the physical processes

involved in the time-mean flow and the variability of the flow on decadal and
longer time scales. In the context of the description of the THC above, this leads
to the following more specific questions

(i) Are different (global) patterns of the three-dimensional circulation dynami-
cally possible under the same (surface) forcing conditions? Is the present
time-mean THC in such a multiple equilibria regime?

(ii) Does variability on decadal and longer time scales originate from instabilities
of the mean flow associated with the THC?

(iii) How stable is the present THC to perturbations? When rapid transitions are
indeed possible, this question is rather important and one would like to know,
how close the present THC is to the relevant stability boundaries.
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In the following sections an attempt is made to present theoretical results, from
the perspective of dynamical systems theory, aimed to tackle the questions above.
The approach is the same as in the previous chapter, where the wind-driven ocean
circulation (WDC) was considered, and bifurcation diagrams are presented for a
hierarchy of models of the THC. The potential mechanisms of changes in the ther-
mohaline flows are discussed in the next section using the lowest order models in
the hierarchy, i.e., box models. Next, the model hierarchy is traversed, proceeding
from the box models, via pure two-dimensional models, zonally averaged models
to low-resolution three-dimensional ocean models.

6.2. Potential Mechanisms
In early work of Stommel (1961), the THC was viewed as being driven by the

density gradient between high and low latitudes. Within this view, the present
circulation is thermally driven since the largest densities are found in the cold,
fresh high-latitude regions instead of in the salty, warm equatorial areas. However,
in the multiple equilibria regime of the Stommel (1961) model also a salinity-
driven state is possible under the same forcing conditions. In this section, potential
mechanisms for changes in mean state and for oscillatory behavior are discussed.

6.2.1. What drives the THC?
What is central in the Stommel (1961) model for the surface buoyancy fluxes

to drive the THC is that one assumes a strong vertical mixing; in fact, the ‘mixers’
are explicitly shown in Fig. 3.2. In absence of this mixing, the surface buoyancy
fluxes alone cannot drive a steady-state THC. This is an old result in Sandstrom
(1908), who performed laboratory experiments to investigate the flows arising
from heat and cold sources put at different depths in a water column. For the
ocean to have a steady closed circulation, it must do work against friction and
this can only be accomplished if the heating occurs at a larger pressure (hence
at larger depth) than the cooling (Huang, 1999). In reality, the heating in the
tropics occurs at a lower pressure than the cooling at high-latitudes and a very
weak and shallow THC would be expected. A modern and more rigorous view
of Sandstrom’s theorem is the ‘anti-turbulence theorem’ of Paparella and Young
(2002).

To drive the circulation, there must be input of mechanical energy which is
provided by the winds and the tides (Munk and Wunsch, 1998). This mechanical
energy can directly contribute to the large-scale motion by generating upwelling
and it causes turbulent mixing such that heat is transferred downward over isopy-
nals; the latter is the so-called diapycnal mixing. The surface buoyancy fluxes
are still important, however, since they control where deep water is formed (Nils-
son and Walin, 2001). Munk and Wunsch (1998) suggest that the planetary-scale
ocean circulation is a passive consequence of a circulation which is really driven
by energy input by the winds and tides. The strength of the MOC is set by the
diapycnal mixing in the upwelling branch. More recent work has provided esti-
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mates of the different energy sources and sinks and conversion routes (Wunsch,
1998; Wunsch and Ferrari, 2004).

The role of both diapycnal mixing and wind-induced upwelling in the strength
of the THC has recently received much attention. In one extreme view (Togg-
weiler and Samuels, 1995, 1998), the MOC is completely driven by the wind-
induced upwelling and Ekman transport in the Southern Ocean. The northward
Ekman transport of water basically drives the deep water formation in the North
Atlantic which acts as a return flow of the surface flow. In another extreme view,
diapycnal mixing is dominant but quite a large diapycnal diffusivity is needed to
obtain a reasonable strength of the MOC. Mixing near bottom topography may
play an important role here, as the interior diapycnal mixing is very small. There
are many studies which have investigated the effect of both mechanisms on the
strength of the MOC (and its scaling behavior with mixing parameters and sur-
face forcing). Apart from giving several references (Marotzke and Scott, 1997;
Gnanadesikan, 1999; Marotzke and Scott, 1999a,b; Zhang et al., 1999; Marotzke,
2000; Vallis, 2000; Klinger et al., 2003), these studies are not further considered
here. In this chapter, we will assume that a diapycnal mixing coefficient is given
(without considering its origin) and this mixing (and the wind) will drive a THC.

6.2.2. Advective feedback
Using a two-box model, as introduced in section 3.1, the possibility of multi-

ple equilibria under similar surface forcing conditions was discovered (Stommel,
1961) about 40 years ago. Responsible for this non-uniqueness is a nonlinear
feedback between the flow and the density structure, called the (salt) advection
feedback. Consider in Fig. 6.4 a zonally averaged (overturning) circulation from
the equator towards northern latitudes. The surface forcing saltens/warms the low
latitude region and freshens/cools the high-latitude region and the circulation is
driven by the meridional density gradient. Since there is northern sinking, the
circulation is thermally driven. If the circulation strengthens, then more salt is
transported northward. This enhanced salt transport will increase the density in
the north and consequently amplify the original perturbation in the circulation.
The strengthening of the circulation also transports more heat northward, which
will weaken the flow by lowering the density. Heat transport therefore provides a
negative feedback on the circulation.

In addition to the advection feedback, a central ingredient to the existence of
multiple steady states are the different damping times of salinity and temperature
anomalies. The atmosphere exerts quite a strong control on the sea surface tem-
perature anomalies, but salinity in the ocean does not affect the freshwater flux
at all. In the two-box model in section 3.1, these different response time scales
of salinity and temperature, with τSτ = 1/RS and τTττ = 1/RT , were taken into
account by the coefficient η3 = RS/RT = τTττ /τSτ , which was smaller than unity.
In general, the different surface boundary conditions for temperature and salin-
ity are referred to as mixed boundary conditions (Haney, 1971; Welander, 1986;
Tziperman et al., 1994b). The extreme case is a prescribed surface temperature
(τTττ << 1) and prescribed surface freshwater flux (τS >> 1) for which surface
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Figure 6.4. Sketch of the physics of the salt advection feedback. The mean circulation is indicated
by the closed arrows. The upper ocean temperature and salinity fields can be inferred from the
surface forcing of heat and freshwater. A perturbation which strengthens the circulation leads to
a northward salt transport, which leads to amplification (open arrows) of the circulation (positive
feedback). The perturbation in the circulation also leads to increased heat transport which opposes
(negative feedback) the original perturbation (closed arrows).

temperature perturbations are essentially zero. As seen in chapter 3, multiple equi-
libria arise if indeed the ratio η3 < 1 and only under certain forcing conditions
(Fig. 3.4), i.e. a particular area in the (η1, η2) plane.

Together, the advective feedback and the different response time scales pro-
vide a potential mechanism of change of the THC. Consider again the thermally
driven circulation as in Fig. 6.4 and imagine that a surface freshwater anomaly is
suddenly present in the north part of the domain. Because the density is lowered
in the north, the meridional buoyancy gradient decreases and hence the strength
of the circulation decreases. The effect is that both the northward salt and heat
transport decrease. Now, the negative heat anomaly is rapidly damped at the sea
surface, but the freshwater anomaly is not damped at all and hence amplifies the
original freshwater perturbation. This positive feedback is able to rapidly weaken
the thermally driven overturning circulation.

6.2.3. Convective feedback
A convective feedback may also be responsible for multiple equilibria (We-

lander, 1982; Lenderink and Haarsma, 1994). Consider in Fig. 6.5 a box model
with time-varying temperature T∗TT and salinity S∗ due to a surface heat fluxes
FTFF = α(TaTT −T∗TT ) and surface salinity flux FSFF in the surface box, coupled to a box
with constant temperature TiTT and SiSS and constant prescribed flow rate q. Convec-
tive exchange with time constant τ−1 occurs if the surface water becomes denser
than the deep water, which has constant temperature TbTT and salinity Sb. For q = 0,
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Figure 6.5. Sketch of the box model set-up to illustrate the convective feedback. An active box
of temperature T∗TT , S∗ is coupled to boxes of constant temperature TiTT , Si and TbTT , Sb. Advective
exchange takes place with flow rate q and vertical (convective) exchange occurs, on a time scale τc,
if the surface water is denser than the bottom water.

the model reduces to the model used by Welander (1982), and when there is no
vertical exchange, the model can be considered as a limit of the Stommel (1961)
model, for which the surface forcing in the equatorial box is adjusted such that
temperature and salinity TiTT and SiSS remain constant.

The equations for the evolution of the temperature T∗TT and S∗ are

dT∗TT
dt∗

= α(TaTT − T∗TT ) + q(TiTT − T∗TT ) + τcττ H(ρ∗ − ρb)(TbTT − T∗TT ) (6.1a)

dS∗
dt∗

= FSFF + q(SiSS − S∗) + τcττ H(ρ∗ − ρb)(Sb − S∗) (6.1b)

withH being the Heaviside function. With the equation of state

ρ∗(T∗TT , S∗) = ρ0 − αTT∗TT + αSS∗ (6.2)

the steady states can be easily solved and become

T∗TT =
qTiTT + αTaTT + τcττ H(ρ∗ − ρb)TbTT

q + α+ τcττ H(ρ∗ − ρb)
(6.3a)

S∗ =
qSiSS + FSFF + τcττ H(ρ∗ − ρb)Sb

q + τH(ρ∗ − ρb)
(6.3b)

Two types of equilibria can be distinguished. Those for which the argument of
the Heaviside function is positive are called convective equilibria, and those for
which it is negative are called non-convective equilibria. With the new parameters

ΦT = −αT (α(TaTT − TbTT ) + q(TiTT − TbTT )) (6.4a)

ΦS = αS(FSFF + q(SiSS − Sb)) (6.4b)

κ(τ) =
q + τ

q + τ + α
(6.4c)
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three different solution regimes exist (Fig. 6.6).
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Figure 6.6. Sketch of the regimes of convective and non-convective equilibria in the box model
in the (ΦT ,ΦS) parameter plane. In regime 1, there are convective states, in regime 2 there are
non-convective states, whereas in regime 3 both states are present. In regime 4 no steady states
exist.

The condition that a convective equilibrium exists can be written as ΦS >
−κ(τ)ΦT (indicated as the line a − b in Fig. 6.6) which defines regime 1 in
Fig. 6.6. Similarly, the condition for a non-convective equilibrium to exists can
be written as ΦS < −κ(0)ΦT (indicated as the line c − d in Fig. 6.6) which de-
fines regime 2. In regime 3, both convective and non-convective equilibria exist
and transitions between these solutions can occur under the same forcing con-
ditions. Consider a non-convective state with cold/freshwater above warm/salty
water which is only marginally stable and an atmospheric forcing which is cool-
ing and freshening the upper box. A finite-amplitude positive density perturbation
is able to induce convection and if this occurs, warmer and saltier water is mixed
to the surface. The heat in the surface layer is quickly lost to the atmosphere but
the surface salinity is increased and hence convection is maintained, leading to a
convective state.

For the particular case ΦT = 1.0, q/α = 0.5 and τ/α = 2.0, the bifurcation
diagram of the model (6.1) is plotted in Fig. 6.7. In this diagram, both the dimen-
sionless temperature T = αT (T∗TT − TbTT ) and salinity S = αS(S∗ − Sb) are plotted
versus the control parameter ΦS . Two saddle node bifurcations (L1 and L2) oc-
cur at ΦS = −5/7 and ΦS = −1/3. These are exactly the values −κ(τ) and
−κ(0) bounding the regions of convective and non-convective regimes, respec-
tively. Hence, the high temperature and salinity states are convective and exist
for ΦS > −5/7 (regime 1) whereas the low salinity and temperature states are
non-convective and exist for ΦS < −1/3 (regime 2). Regime 3 is exactly located
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in the interval −5/7 < ΦS < −1/3 and in this regime, multiple equilibria exist.
Note that regime 4 is not reached here, because ΦT > 0.
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Figure 6.7. Bifurcation diagram for the box model (6.1) with ΦT = 1.0, q/α = 0.5 and τ/α =
2.0 and ΦS as control parameter. The branch connecting L1 and L2 arises through the numerical
approximation of the Heaviside functionH as in (3.10) and is absent when ε→ 0.

6.2.4. The flip-flop oscillation
Within simple box models, two types of oscillatory phenomena can be found.

One is associated with propagation of perturbations along the mean thermohaline
flow which will be subject of the next subsection and another is associated with
transitions between convective and non-convective states. This type of oscillation
was found by Welander (1982) in a box model which is a special case of the model
in section 6.2.3. Only two boxes which exchange heat and salt vertically are
considered and moreover the ocean-atmosphere salinity flux is chosen as FSF =
β(Sa − S∗), with different restoring times for freshwater and heat. With q =
0;TbTT = T0TT ;Sb = S0; ρb = ρ0 in (6.1) and with a more general form of the
convective exchange function k(ρ∗, ρ0) the model equations become

dT∗TT
dt∗

= α(TaTT − T∗TT ) + k(ρ∗, ρ0)(T0TT − T∗TT ) (6.5a)

dS∗
dt∗

= β(Sa − S∗) + k(ρ∗, ρ0)(S0 − S∗) (6.5b)

with the equation of state (6.2).
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One of the cases considered (Welander, 1982) is T0TT = S0 = 0 and

k(ρ∗) = 0 , ρ∗ ≤ ε
k(ρ∗) = k , ρ∗ ≥ ε

which means that if the surface density ρ∗ becomes slightly larger than the density
in the bottom box, an exchange flux (−kT∗TT ) is generated for both temperature and
salinity with constant exchange coefficient k.

For the particular choice of parameters

αTTaTT

αSSa
= 0.2 ;

α

β
= 10 ;

k

α
= 5 ;

ε

αSSa
= −0.01 (6.6)

a trajectory is plotted in Fig. 6.8a. All fields oscillate and the oscillation seems to
be sustained. In Welander (1982), it is shown that it damps for the case ε = 0.0,
hence a nonzero ε is essential to the existence of the oscillation.

(a)(a) (b)

Figure 6.8. (a) Trajectory of the box model (6.5) for ε �= 0�� in the convective exchange function
(6.5) showing the oscillation in temperature T = T∗TT /TaTT , salinity S = S∗/Sa and density ρ =
ρ∗/ρa. (b) Phase plane picture of the oscillation in (a), where T∗TT /TaTT is plotted versus S∗/Sa
(Welander, 1982).

The advantage of these type of models is that the oscillation can be understood
in quite detail. In the particular case above, the model has two steady states. The
non-convective state is given by

ρ̄∗ ≤ ε : T̄∗TT = TaTT ; S̄∗ = Sa (6.7)

and the convective state by

ρ̄∗ > ε : T̄∗TT =
αTaTT

α+ k
(6.8a)

S̄∗ =
βSa
β + k

(6.8b)
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with
ρ̄∗ = −αT T̄∗TT + αSS̄∗

There exists a parameter regime (similar to regime 4 in Fig. 6.6), where both
steady states cannot be reached. The trajectory then oscillates between both steady
states without actually reaching them. A phase-plane picture of the oscillation in
Fig. 6.8a is plotted in Fig. 6.8b. At point 1, T and S are such that ρ∗ < ε so that
the trajectory is attracted towards the non-convective steady state and both T and
S increase (towards point 2). This steady state is never reached, because at point
3, the boundary ρ∗ = ε is crossed and convection occurs. Then the trajectory
is attracted towards the convective steady state, but it also does not reach this
state because at some point, convection will stop. Hence, the oscillation can be
described as a ’flip-flop’ between convective and non-convective states, where
during the oscillation neither of these states is actually reached.

6.2.5. The loop oscillation
The most elementary box model which includes a loop oscillation is the four-

box model originally used by Huang et al. (1992) and analysed in more detail in
Tziperman et al. (1994b). It differs from the two-box model by including two
deep boxes and vertical exchange of heat and salt (Fig. 6.9a). The surface and
deep boxes may have different volumes, but their ratio is fixed and Tziperman
et al. (1994b) mostly consider the case of equal volumes. The surface boundary

(a)
(b)

Figure 6.9. (a) Sketch of the box model to illustrate the loop oscillation (Tziperman et al., 1994b).
(b) Bifurcation diagram for the 4-box model in (a) as used in Tziperman et al. (1994b). The markers
correspond to the stability of the flow: ’+’ indicates stability, ’*’ indicates stability but the least
stable mode is oscillatory, ’o’ corresponds to an oscillatory instability and ’x’ to instability.

conditions consist of fresh-water fluxes H1 and H2HH , atmospheric temperatures T a1TT
and T a2TT and the transport q∗ is related to the average north-south density differ-
ence. The governing equations of this box model can be found in Tziperman et al.
(1994b), where also values of the parameters are provided.

A typical bifurcation diagram of this model is plotted in Fig. 6.9b with the (di-
mensionless) freshwater fluxE−P = H1+H2HH as control parameter. On the verti-
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cal axis, the buoyancy ratio is plotted with ΔT = T1TT ∗−T2TT ∗ and ΔS = S1∗−S2∗.
The basic thermally driven state is stable for small E − P , but it looses stability
due to a Hopf bifurcation (the point marking the transition between ‘*’ and ‘o’ in
Fig. 6.9b at E − P ≈ 110). The pair of complex conjugated eigenvalues which
have crossed the imaginary axis become real for slightly larger values of E − P
(at the transition of ‘o’ and ‘x’) and then one of them moves into the left complex
plane at the saddle node bifurcation (at E − P ≈ 125) and a branch of unstable
solutions exists at smaller values of E − P . The mechanism of the oscillatory
instability was investigated in Tziperman et al. (1994b) and shown to be related
to the propagation of a salinity anomaly along the mean flow. This mechanism is
very similar to that of the Howard-Malkus loop oscillation discussed in Welander
(1986). It will be considered in more detail in the context of a somewhat more
complex model below (section 6.4.3).

6.2.6. Models of the THC
Certainly box models are useful to illustrate basic physical phenomena, but

more complex models are needed to capture the full spatial-temporal behavior of
the THC. Contrary to the wind-driven circulation in the previous chapter, now
also the modelling of the heat and salt transport is essential. Starting point of
all the models are the full (Boussinesq) primitive equations, with velocity vector
v∗ and pressure p∗, that were presented in chapter 2. They are repeated here for
convenience,

ρ0

[
Dv∗
dt∗

+ 2Ω ∧ v∗

]
= −∇p∗ − gρ∗e3 + ρ0FIF ∗ (6.9a)

∇.v∗ = 0 (6.9b)

ρ0CpCC
DT∗TT
dt∗

= FTFF ∗ (6.9c)

ρ0
DS∗
dt∗

= FSFF ∗ (6.9d)

ρ∗ = ρ0(1− αT (T∗TT − T0TT ) + αS(S∗ − S0)) (6.9e)

where a simple linear equation of state is assumed with reference temperature T0TT ,
salinity S0 and density ρ0. Vertical and horizontal mixing of momentum and of
heat and salt is represented by eddy diffusivities with coefficients AH and AV
for momentum and KH and KV for heat and salt, respectively. As the eddy-
diffusivities of heat and salt are determined by turbulent processes, there is a good
reason to take them equal. The ocean circulation is driven by a wind stress τ and
by heat and fresh-water fluxes at the surface.

Within our limited view of the mixing processes, the hierarchy of models to
study transition phenomena of the THC is as follows:

(i) Strictly two-dimensional ocean models, which completely ignore the effects
of wind-stress forcing and rotation. In these models, focus is on the different
flows which can be realized under a given surface buoyancy forcing.
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(ii) Zonally averaged models, in which the effects of rotation and wind-stress forc-
ing are somehow parameterized, but for which the equations actually solved
have two spatial dimensions.

(iii) Low-resolution three-dimensional ocean general circulation models, in which
full physics of rotation and wind-stress forcing is present, but because of the
low resolution there is a cut-off in spatial and temporal scales, which limits the
representation of physical processes.

Just as for the WDC (section 5.2), it is desirable to have an easy reference sys-
tem within the model hierarchy of the THC. The dynamical classes here can be
indicated as B (2D Boussinesq), Z (zonally averaged) and P (3D primitive equa-
tion). These can be used as subscripts to a T , indicating the THC. As the surface
boundary conditions for salt and heat play an important role in the behavior of the
THC, it is useful to introduce superscripts R, M and C for restoring, mixed and
coupled conditions, respectively. Finally, we can add a superscript to indicate the
details in the bathymetry using 0 for a rectangular basin, 1 for only continental
geometry and 2 for full bathymetry. In this nomenclature, the model T R,0BT would
be a 2D Boussinesq model with restoring boundary conditions and idealized con-
tinents, while the model TM,2

PT would be a 3D primitive equation model with real
bathymetry under mixed boundary conditions. Other dynamical classes could be
added, such as the planetary geostrophic models (Salmon, 1986). All ODE-type
ad-hoc or reduced models can be put into one model class T0TT and we can add
an argument to the model to indicate the vector of parameters α, for example,
TR,0BT [α]. Together with the coordinate system, the forcing, the domain and the
boundary conditions this then totally specifies a model configuration.

In the next sections, bifurcation analyses will be performed on some of these
models and focus will be on the structure of equilibria in parameter space and
their stability.

6.3. Two-dimensional Boussinesq Models
In two-dimensional Boussinesq models (Thual and McWilliams, 1992; Quon

and Ghil, 1992; Cessi and Young, 1992) rotation and wind-stress forcing are ne-
glected. The use of these models is motivated by the understanding of the basic
fluid mechanics of thermohaline flows. In principle, laboratory experiments could
be devised to check the results of these models.

6.3.1. Formulation
The simplest of these models employ a Cartesian coordinate system, with

meridional coordinate y∗ and vertical coordinate z∗ (Fig 6.10). For two-
dimensional flow fields which do not depend on the zonal coordinate, the gov-
erning equations for the meridional velocity v∗, vertical velocity w∗, pressure p∗,
density ρ∗, temperature T∗TT and salinity S∗ are given by

ρ0
Dv∗
dt∗

= −∂p∗
∂y∗

+ ρ0AH
∂2v∗
∂y∗2

+ ρ0AV
∂2v∗
∂z∗2

(6.10a)
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w
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Figure 6.10. Sketch of the two-dimensional model set-up, where TSTT and FSFF refer the surface
forcing patterns.

ρ0
Dw∗
dt∗

= −∂p∗
∂z∗

+ ρ0AH
∂2w∗
∂y∗2

+ ρ0AV
∂2w∗
∂z∗2

− ρ∗g (6.10b)

∂v∗
∂y∗

+
∂w∗
∂z∗

= 0 (6.10c)

DT∗TT
dt∗

= KHK
∂2T∗TT
∂y∗2

+KV
∂2T∗TT
∂z∗2

(6.10d)

DS∗
dt∗

= KHK
∂2S∗
∂y∗2

+KV
∂2S∗
∂z∗2

(6.10e)

ρ∗ = ρ0(1− αT (T∗TT − T0TT ) + αS(S∗ − S0)) (6.10f)

with
D

dt∗
=

∂

∂t∗
+ v∗

∂

∂y∗
+ w∗

∂

∂z∗

The downward heat flux Qoa on the ocean surface is assumed to be proportional
to the temperature difference between the ocean surface temperature and a steady
prescribed atmospheric temperature TSTT , i.e. Qoa = BT (TSTT − T∗TT ), with BT being
a surface exchange coefficient of heat. It is positive if heat is transferred from
the atmosphere to the ocean. The freshwater flux is converted into a equivalent
salt flux F0FF FSFF and is simply a prescribed function. The boundary conditions for
temperature and salinity at the ocean surface (z∗ = H) then become

ρ0CpCC KV
∂T∗TT
∂z∗

= BT (TSTT − T∗TT ) (6.11a)

KV
∂S∗
∂z∗

= F0FF FSFF (y∗) (6.11b)

Salt and heat fluxes are assumed to be zero at the bottom and lateral boundaries
and slip conditions are applied at all boundaries. In this way, the other boundary
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conditions become

y∗ = 0, L :
∂T∗TT
∂y∗

=
∂S∗
∂y∗

= 0, v∗ = 0,
∂w∗
∂y∗

= 0 (6.12a)

z∗ = 0 :
∂T∗TT
∂z∗

=
∂S∗
∂z∗

= 0, w∗ = 0,
∂v∗
∂z∗

= 0 (6.12b)

z∗ = H : w∗ = 0,
∂v∗
∂z∗

= 0 (6.12c)

6.3.2. Nondimensional equations
When these equations are non-dimensionalized, a number of non-dimensional

parameters appear dependent on the type of scaling. In Dijkstra and Molemaker
(1997), scales H , KH/H , ρ0KHK AH/L

2, ΔT and ΔS for length, velocity, pres-
sure, temperature and salinity are used, with ΔT and ΔS being characteristic
meridional temperature and salinity differences. In this case, the Prandtl number
Pr, the thermal Rayleigh number Ra, the buoyancy ratio λ, the aspect ratio A,
the salt flux strength σ̃, the ratio of vertical and horizontal diffusivities for mo-
mentum RMHV and for heat and salt RTHV , and the Biot number Bi appear. These
parameters are defined as

Pr =
AH
KHK

; Ra =
g αT ΔTH3

AHKHK
; A =

L

H

RMHV =
AV
AH

; RTHV =
KV

KHK

Bi =
HBT

ρ0CpCC KV
; λ =

αSΔS
αTΔT

; σ̃ =
F0FF H

KV
(6.13)

With this scaling, the non-dimensional equations become

1
Pr

Dv

dt
= −∂p

∂y
+
∂2v

∂y2
+RMHV

∂2v

∂z2
(6.14a)

1
Pr

Dw

dt
= −∂p

∂z
+
∂2w

∂y2
+RMHV

∂2w

∂z2
+Ra(T − λS) (6.14b)

∂v

∂y
+
∂w

∂z
= 0 (6.14c)

DT

dt
=

∂2T

∂y2
+RTHV

∂2T

∂z2
(6.14d)

DS

dt
=

∂2S

∂y2
+RTHV

∂2S

∂z2
(6.14e)

and the surface boundary conditions for temperature and salinity at z = 1 become

∂T

∂z
= Bi (TSTT − T ) (6.15a)

∂S

∂z
= σ F˜ SFF (y) (6.15b)
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Apart from parameters in the forcing functions, the system of equations contains
eight parameters (those in (6.13)). However, only seven of these are independent.
If the salinity is rescaled with λ, then the buoyancy forcing becomes Ra (T −S),
(6.14e) remains the same and in (6.15b), the coefficient measuring the magni-
tude of the freshwater flux becomes σ = σλ˜ . This reduces the number of free
parameters by one; we will use σ in subsequent bifurcation diagrams as control
parameter.

6.4. Diffusive Thermohaline Flows
Solutions of the THC within this two-dimensional model were first obtained

for the most simple case of prescribed equatorially symmetric temperature TST
(Bi → ∞) and salt flux FSFF , isotropic eddy diffusivities RM

HV = RTHV = 1 and
relatively large depth to width ratio (A up to 10). Since the vertical length scale
of this flow is smaller than the horizontal scale, isotropic diffusivities imply that
vertical diffusion is a dominant transport mechanism and hence this regime is
labelled the ’diffusive regime’.

Although this does not resemble the actual regime of the ocean circulation,
these studies were aimed to investigate whether the elementary phenomena as
found in box models would persist in a model in which the transport of heat and
salt and its effect on the flow are modelled more realistically. In this case, a
dynamical system with four parameters (Pr, A, σ and Ra) remains of which the
bifurcation behavior is considered next.

6.4.1. Basic bifurcation diagram
In Dijkstra and Molemaker (1997), full bifurcation diagrams were calculated

using the continuation techniques as in chapter 4. It is convenient to present this
material first and then put main results from earlier studies using these models
(Thual and McWilliams, 1992; Quon and Ghil, 1992; Cessi and Young, 1992) into
context. The surface forcing functions used in Dijkstra and Molemaker (1997) are

TSTT (y) =
1
2
(cos 2π

(
y

A
− 1

2

)
+ 1) (6.16a)

FSFF (y) = 3 cos pπ
(
y

A
− 1

2

)
− 6
pπ

sin
pπ

2
(6.16b)

where p is an additional parameter controlling the shape of the salt flux. For two
values of p, this shape is plotted in Fig. 6.11. The temperature profile simply mim-
ics the warm equator versus colder poles and the salt flux mimics the evaporation
at low latitudes and precipitation at higher latitudes. For the parameter values
Ra = 4 × 104, Pr = 2.25, p = 2.6 and A = 5, the bifurcation diagram, with σ
as control parameter, is shown in Fig. 6.12. The value at the vertical axis (ψRM )
is that of the streamfunction at a particular gridpoint (y = 0.851, z = 0.5), such
that the different branches can be well distinguished in a plot. Bifurcation points
along the branches are indicated by markers: squares indicate pitchfork bifurca-
tions and triangles Hopf bifurcations. Saddle node bifurcations are not marked
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Figure 6.11. Shape of the salt flux (6.16b) for two values of p.

but are obvious from the shape of the branches. Solid branches indicate (lin-
early) stable solutions whereas the solutions along dashed branches are unstable.
Corresponding flow patterns (through contour plots of the streamfunction ψ) and
salinity fields at several marked points along the branches in Fig. 6.12 are shown
in Fig. 6.13. The same terminology TH, SA, NPP and SP, introduced in section
3.1, is used to indicate the different solutions.

The symmetric thermally dominated 2-cell state (Fig. 6.13a) – along the TH-
branch – becomes unstable at the supercritical pitchfork P1 near σ = 0.13 at
which two symmetry related asymmetric states stabilize. Both asymmetric states
(the southward sinking SPP solution is shown in Fig. 6.13b) remain stable up to
the Hopf bifurcations H1 at σ = 1.06 where they become unstable. At slightly
larger σ, these states stabilize again at the Hopf bifurcations H2 (σ = 1.44), but
they eventually cease to exist at the saddle node L3 (σ = 1.47). Along an unstable
branch, the 1-cell patterns then deform towards 2-cell solutions with equatorial
downwelling (Fig. 6.13c) and connect at a second pitchfork bifurcation P2PP (σ =
0.24) to the stable branch of a salinity dominated 2-cell (Fig. 6.13d) solution, the
SA-branch. The stability properties of this branch are difficult to detect very near
P2PP . The unstable 2-cell TH-solution also connects up to the SA-branch at P2PP , after
it has gone through two limit points L1 and L2, the latter being very close to P2PP .
Hence, there are three σ-intervals where a unique stable steady state appears, and
three intervals where there are multiple stable steady states. The latter intervals
are given by the σ-values between both pitchfork bifurcations P1 and P2PP , between
the pitchfork P2PP and the Hopf bifurcation H1 and between the Hopf bifurcation
H2HH and the limit point L3.
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Figure 6.12. Bifurcation diagram obtained by Dijkstra and Molemaker (1997) at small aspect
ratio A = 5 for Ra = 4× 104, Pr = 2.25 and p = 2.6.

Integral properties of the solutions were considered in Dijkstra and Molemaker
(1997), in particular the mechanical energy balance. This balance can be obtained
by multiplying the dimensionless momentum balances by v and integration over
the flow domain (section 2.1.4). This gives with the buoyancy B = T − S,

dE

dt
=< wB > −D (6.17)

where E is the dimensionless volume averaged kinetic energy, < . > indicates
volume integration, < wB > the volume averaged buoyancy production and D is
the dissipation. Whether a steady flow is saline or thermally driven can be decided
from (6.17), since < wB >=< wT − wS > has to balance the dissipation. The
steady solutions can hence be distinguished according to the sign of < wT >
and < wS >. A state is thermally driven and inhibited by freshwater forcing,
if < wT > ≥ 0 and < wS > ≥ 0. It is saline driven and inhibited by
thermal forcing if < wT > ≤ 0 and < wS > ≤ 0 and it is driven by both
mechanisms if < wT > ≥ 0 and < wS > ≤ 0. If < wT > ≤ 0 and
< wS > ≥ 0 then there can be no steady flow. Along the TH branch, both <
wT > and < wS > are positive, indicating that the solutions are thermally driven
and inhibited by freshwater forcing. On the NPP- and SPP-branches originating
from the symmetry breaking bifurcation, < wS > is negative and < wT > is
positive and the pole to pole solutions are therefore driven by both thermal and
saline forcing.
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Figure 6.13. Solutions of the streamfunction and salinity at labelled points in Fig. 6.12. In these
and following contour plots, the fields are scaled with their maximum values and contour levels
with respect to this maximum are indicated.

6.4.2. Physical mechanisms
From the steady states and eigenvectors corresponding to eigenvalues which

cross the imaginary axis in a bifurcation point, one can attempt to describe the
instability mechanism of this transition as sketched in section 3.7.

6.4.2.1 Symmetry breaking
Just as in the wind-driven ocean circulation, pitchfork bifurcations associated

with the symmetry breaking are at the basis of multiple equilibria in this model.
Both the TH-branch and the SA-branch undergo these bifurcations and both 2-
cell symmetric solutions become unstable to a perturbation having a particular
spatial pattern. For example, for values of σ slightly larger than the value at P1 in
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Fig. 6.12, the symmetric TH solution will be unstable to a particular pattern even
if this disturbance has a very small amplitude initially. The instability mechanism
can be analysed within this model using the framework as sketched in section
3.7.3, i.e. by looking at the steady state and the destabilizing perturbation just at
bifurcation. The steady state streamfunction, temperature and salinity are plotted

Figure 6.14. Basic state (a) streamfunction, (b) temperature and (c) salinity at the pitchfork
bifurcation P1PP in Fig. 6.12

in the Figs. 6.14a-c, respectively. The patterns of the destabilizing perturbation
(at neutrality) are plotted in Fig. 6.15a-d for streamfunction, temperature, salinity
and density, respectively.

The instability of the 2-cell symmetric TH-solution at the bifurcation point P1

(in Fig. 6.12) can be described as follows. Consider the salinity perturbation in
Fig. 6.15c as the initial disturbance. This salt perturbation is positive over most of
the northern part of the basin and negative over the southern part, with substantial
gradients near the equator. From the density perturbation (Fig. 6.15d), it follows
that salinity mainly determines the sign of the surface density perturbation. The
perturbation salt gradient therefore drives the flow which is seen in Fig. 6.15a.
The temperature perturbation is compatible with this flow and the surface tem-
perature perturbation is zero. North of the equator, water in the upper layers is
replaced by slightly warmer water from the south and hence the temperature per-
turbation is positive. South of the equator, upper ocean water is replaced by water
from the south which has a slightly smaller temperature; a negative temperature
perturbation results. This describes the initiation stage as in section 3.7.3.2.
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To describe the growth stage, it is first realized that the northern cell of the
steady state (Fig. 6.14a) is strengthened by the flow disturbance (Fig. 6.15a) and
the southern cell is weakened. The horizontal perturbation velocities at the surface
induce a horizontal salt transport (Fig. 6.14c), because of the meridional salinity
gradient of the steady state. Note that there is no surface perturbation meridional
heat transport, because the temperature perturbation is zero at the surface. In the
salinity equation for the perturbations, which can be derived by linearizing (6.10e)
around the steady state, the tendency is proportional to

∂S̃

∂t
≈ −ṽ ∂S̄

∂y
(6.18)

where the bar refers to the steady state and the tilde to the perturbation.
In the northern part of the basin, the term in the right hand side of (6.18) is

positive since the basic state salt gradient is negative and ṽ > 0. This leads to an
amplification of the original positive salinity disturbance during the growth stage.
Similar reasoning holds for the southern part of the basin, where the sign of the
right hand side of (6.18) is negative, amplifying the original negative salinity per-
turbation. Note that the temperature perturbation plays a rather passive role in
this mechanism, except that it weakens the perturbation flow, because of its influ-
ence on the perturbation density field. This explains why there is a positive critical
value of σ, since the flow due to the salinity anomaly has to overcome the damping
effect of temperature. However, the thermal field itself is crucial since the tem-
perature field maintains the circulation of the equilibrium state. When the flow is
too weak, the basic state salinity gradient is too weak to cause any amplification.
It is clear that this mechanism involves the salt advection feedback as described
in section 6.2, and several nearly equivalent, but less accurate, descriptions have
appeared in the literature (Walin, 1985; Welander, 1986; Marotzke et al., 1988;
Thual and McWilliams, 1992; Quon and Ghil, 1992; Cessi and Young, 1992; Vel-
linga, 1996).

6.4.2.2 Transition to time-dependence
A Hopf bifurcation, for example H1 along the asymmetric branch in Fig. 6.12,

marks the location in parameter space where time periodic disturbances are about
to be amplified through their interaction with the steady state. In this section,
we concentrate on the Hopf bifurcation H1 along the southward sinking branch
in Fig. 6.12; the equilibrium state at this point is plotted in Fig. 6.16. The Hopf
bifurcation is supercritical, since a periodic orbit is found for parameter values σ
slightly larger than the value at bifurcation. This periodic orbit disappears at H2

(Fig. 6.12) in a subcritical Hopf-bifurcation. Near the Hopf bifurcation H1 the
corresponding complex eigenfunction, say (xR + ixI), shows exactly the time-
periodic disturbance structures to which the steady state becomes unstable. At
neutrality this disturbance structure φ(x, y, t) is given by (section 3.7.3.3)

φ(x, y, t) = xR(x, y) cos ωt− xI(x, y) sin ωt (6.19)
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Figure 6.15. Contour plots of the (a) streamfunction, (b) temperature, (c) salinity and (d) density
of the perturbation destabilizing the basic state at the pitchfork bifurcation P1PP in Fig. 6.12

where ω is the angular frequency, corresponding to the imaginary part of the
eigenvalue at the Hopf bifurcation. For ωt = 0, π/4, π/2 and 3π/4 the stream-
function, density, temperature and salinity corresponding to φ are plotted in
Fig. 6.18.

Before discussing the oscillation in terms of the changes of the spatial patterns
of the perturbation, it is illustrative to monitor the changes of relevant integral
quantities along the oscillation. In Fig. 6.17, the terms< wS >′=< wS¯ ′+w′S̄ >,
< wT >′=< wT¯ ′ + w′T̄ > and < wB >′=< wB¯ ′ + w′B̄ > are plotted along
one period of the oscillation. Here the prime refers to the perturbation quanti-
ties (as in Fig. 6.18) and the bar to the steady state (as in Fig. 6.16). Within
the linearized volume averaged energy balance for the perturbations, the term
< wB¯ ′ + B̄w′ > appears as the buoyancy forcing. The buoyancy forcing is
mainly determined by the salinity forcing (Fig. 6.17), indicating that the salin-
ity perturbation field mainly drives the oscillatory flow. The thermal contribution
to the forcing, becoming positive over half a cycle of the oscillation, introduces
the phase difference between salinity and buoyancy forcing. In this way, the os-
cillation resembles a ‘thermohaline loop’ oscillation as presented earlier in the
four-box model of Tziperman et al. (1994b)

A more detailed mechanism, compatible with the results in Fig. 6.17, can be
described with help of the patterns of the steady state (Fig. 6.16) and perturbation



292 NONLINEAR PHYSICAL OCEANOGRAPHY

Figure 6.16. Contour plots of the streamfunction, temperature and salinity of the basic state at
the Hopf bifurcation H1 in Fig. 6.12

Figure 6.17. Plot of the volume integrated perturbation quantities determining the buoyancy
forcing of the perturbation flow at the Hopf bifurcation H1, versus one period of the oscillation
with period 2π/ω.
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structures (Fig. 6.18), but it is not easy. Here is a try ! Within the initiation stage
one needs to describe the causal chain of why the perturbations return, after half
a cycle to the initial pattern but with negative sign, i.e. this stage is concerned
with the essence of the oscillation. The growth phase is concerned with the am-
plification of the perturbation after one cycle of the oscillation. Suppose that the
salt perturbation in Fig. 6.18d, applied at t = 0, is the initial disturbance. Since it
controls the density anomaly (Fig. 6.18b, 0) it causes liquid to sink in the south
and to rise over the rest of the basin, thereby giving the perturbation flow structure
(Fig. 6.18a, 0). The temperature perturbation is consistent with this flow giving
relatively warmer water in the south through advection and colder water over the
central part in the basin (Fig. 6.18c, 0). Because the flow perturbation strengthens
the equilibrium state circulation (Fig. 6.16a), it transports salt to the central part
of the basin (Fig. 6.18d, 0.125). The presence of this heavier water substantially
weakens the flow in the northern part (Fig. 6.18c, 0.125). In this region of weak
flow, the heat transport is dominated by diffusion and colder water appears in the
northern region (Fig. 6.18c, 0.25). This induces a reverse flow in the northern
part of the basin (Fig. 6.18a, 0.25). The reverse flow affects the salt perturbation
(Fig. 6.18d, 0.25) and the perturbation flow (Fig. 6.18a, 0.25) transports salt water
northwards in the central part of the basin. Hereby, the positive salt perturbation is
extended over the whole basin from south to north (Fig. 6.18d, 0.375). As a conse-
quence, the salinity is reduced near the southern boundary and this strengthens the
reverse flow perturbation in the basin at half a period of the oscillation (Fig. 6.18a,
0.375) and the reverse cycle starts. In summary, the oscillation is based on a com-
bined advective salt/diffusive heat transport, where the salt perturbation drives the
oscillation (compatible with Fig. 6.17). The temperature perturbation becomes
important only in regions where the perturbation flow is weak, inducing the phase
difference (Fig. 6.17) between salinity and buoyancy forcing.

6.4.3. Model-model comparison
Other studies, which appeared much earlier than the results discussed above,

can now be put easily into perspective. In Thual and McWilliams (1992), the
parameters a, b and k are used, instead of Ra, σ and A, because of a slightly
different non-dimensionalization and the case of infinite Prandtl number Pr →∞
is studied. The correspondence between these parameters and the ones introduced
in (6.13) is

a =
Ra

A2
; b = σa ; k =

2π
A

(6.20)

The idealized equatorially symmetric surface forcing imposed is

TSTT (y) = a cos y;FSFF (y) = b cos y (6.21)

Bifurcation diagrams are constructed in the (a, b) parameter plane and a typical
result is shown in Fig. 6.19. The positions of limit points, marked by e1, e2, f1 and
f2ff are shown in the (a, b)-plane for k = 0.4. The limit point e1 and e2 correspond
to the endpoints of the branches of the pole to pole solutions and, when comparing
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Figure 6.18. Contour plots of (a) streamfunction ψ, (b) density ρ, (c) temperature T and (d)
salinity S for the periodic disturbance φ destabilizing the steady solution in Fig. 6.16 at H1. The
patterns are shown for four different times ωt

2π
along the orbit. The dimensionless angular frequency

ω = 0.326 which implies a period in the order of the overturning time scale of the steady SPP-
solution.

Figure 6.19. Regime diagram as found in Thual and McWilliams (1992) in the (a, b) parameter
plane for k = 0.4. The dotted line is the curve of the no-flow solution. The other curves are
explained in the text and represent paths of limit points (e2, f1 and f2ff ) and a path of a pitchfork
bifurcation (e1).

with Fig. 6.12, we can make an identification e1 = P1PP and e2 = L3. The other
limit points are those on the symmetric branch and hence f1 = L2 and f2ff = L1.
With this identification, the steady state structure is qualitatively similar to that in
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Fig. 6.12. Consider for example a = 400 (note that the corresponding value of a
with parameters in Fig. 6.12 is 1600), and increase b, the latter being equivalent to
an increase in σ. The sequence of bifurcation points (excluding Hopf bifurcations)
encountered in Fig. 6.12 is P1PP , P2PP = L2, L1 and L3 which indeed corresponds to
the sequence e1, f1, f2ff and e2 in Fig. 6.19.

Three other parameters, i.e. RaT , γ and d, are used in Quon and Ghil (1992)
because of a slightly different non-dimensionalization. The correspondence be-
tween these parameters and the ones introduced above is

RaT = A3 Ra ; d =
1
A

; γ =
σ

λ
(6.22)

In Quon and Ghil (1992), the freshwater flux is not prescribed but determined from
a steady state situation in which an equatorially symmetric salinity is prescribed.
This freshwater flux is then used as boundary condition for salinity and contains
a free parameter γ, which measures its strength. Quon and Ghil (1992) compute
the stability boundaries for the TH-flow pattern by using time integration and
identify the symmetry breaking bifurcation through a change in steady state from
symmetric (open circles in Fig.6.20a) to asymmetric (closed circles in Fig. 6.20a).
Part of this bifurcation diagram was also recalculated in Dijkstra and Molemaker

(a)

(b)

Figure 6.20. (a) ’Guessed’ regime diagram obtained by Quon and Ghil (1992). All the markers
represent asymmetric solutions and the curve monitors the position of the pitchfork bifurcation.
(b) Computation of a bifurcation diagram at a fixed value of RaT = 5 × 106 by Dijkstra and
Molemaker (1997)

(1997) for slightly different lateral boundary conditions and is shown for RaT =
5× 106 in Fig. 6.20b. The value of the pitchfork bifurcation P is indeed close to
that determined by Quon and Ghil (1992).
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Technical box 6.1:
Amplitude equation approach

In Cessi and Young (1992) and Fleury and Thual (1997), reduced simpler
models are derived from the full governing equations, which describe the two-
dimensional thermohaline flows in limiting cases. In Cessi and Young (1992), the
governing two-dimensional equations are written in streamfunction ψ and vortic-
ity ζ formulation, with

v =
∂ψ

∂z
; w = −∂ψ

∂x
; ζ =

∂v

∂z
− ∂w

∂x

where x = −π + 2yε is a new meridional coordinate on the domain [−π, π] and
the aspect ratio ε = πD/L. In this way, the dimensionless equations

1
Pr

(ζtζζ + J(ψ, ζ)) = TxTT − SxS + ζzzζζ + ε2ζxxζζ

ζ = ψzz + ε2ψxx

TtTT + J(ψ, T ) = TzzTT + ε2TxxTT

StSS + J(ψ, S) = Szz + ε2SxxS

are obtained for z ∈ [0, 1]. Here J(f, g) = fxff gz − fzff gx is the Jacobian operator.
The boundary conditions at the surface are

z = 1 : T = aTSTT (x) ; Sz = bFSFF (x) ; ψ = ζ = 0

and at all other boundaries satisfy slip and no-flux conditions are prescribed. The
parameters a and b are related to those in (6.13) as

a = 4Ra ε2 ; b = 4σRa ε2

In the limit of small ε, expansions

(ψ, T, S) = ε(ψ1, T1TT , S1) + ε2(ψ2, T2TT , S2) + · · ·
a = εa1 + · · · ; b = ε3b3 + · · · ; τ = ε2t

are considered. At O(ε), the governing equations become

T1TT ,x − S1,x − ψ1,zzzz = 0
T1TT ,zz = 0
S1,zz = 0

with boundary conditions at z = 1:

T1TT = a1 ; S1,z = 0 ; ψ = 0 ; ψ1,zz = 0
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The solution to this problem is straightforward and given by

T1TT (x) = a1TSTT (x)
ψ1(x, z, τ) = W (z)(S1(x, τ)− a1TSTT (x))x

W (z) =
z4 + 2z3 − z

24

where S1(x, τ) is still undetermined. At O(ε2), the equations become

1
Pr

J(ψ1, ψ1,zz) = T2TT ,x − S2,x + ψ2,zzzz

−ψ1,zT1TT ,x = J(ψ1, T1TT ) = T2TT ,zz

−ψ1,zS1,x = J(ψ1, S1) = S2,zz

with S2,z = 0 and T2TT = 0 at z = 1. One integration in z on the temperature and
salinity equations and application of S2,z = T2TT ,z = 0 at z = 0 gives the relations

−ψ1T1TT ,x = T2TT ,z ; − ψ1S1,x = S2,z

In principle, ψ2, T2TT and S2 could be determined explicitly, but this is not necessary
to obtain the reduced model. AtO(ε3), the salinity equation becomes

S1,τ + J(ψ2, S1) + J(ψ1, S2) = S3,zz + S1,xx

with boundary conditions

z = 0 : S3,z = 0 ; z = 1 : S3,z = b3FSFF

Integration of the salinity over the vertical and using the boundary conditions and
the fact that S1 = S1(x, τ) gives

S1,τ −
∫ 1

0

∫∫
ψ2,zS1,xdz +

∫ 1

0

∫∫
S2,zψ1,xdz −

∫ 1

0

∫∫
ψ1,zS2,xdz = b3FSFF + S1,xx

The first integral is zero because ψ2 = 0 at top and bottom boundaries. Through
one partial integration of the third integral it can be combined with the second
integral to give

S1,τ −
∫ 1

0

∫∫
(ψ2

1S1,x)xdz = b3FSFF + S1,xx

Using the expression for ψ1 and defining

Ŝ =
S1

a1
; μ2 = a2

1

∫ 1

0

∫∫
W 2(z)dz ; r =

b3
a1

equation (6.29), for δ = 0, is obtained.
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Cessi and Young (1992) explore asymptotically the large aspect ratio regime
A → ∞, as described in more detail in Technical box 6.1. The parameters a, b
and ε are used in Cessi and Young (1992), which correspond to

a = 4 Ra ε2; b = 4 σ Ra ε2 ; ε = π/A (6.28)

A regular expansion using the small parameter ε is pursued which leads to a one-
dimensional evolution equation for the first order vertically averaged salinity Ŝ.
With x = −π + 2 y ε, this equation becomes

Ŝ′′ + μ2[Ŝ′(Ŝ′ − T ′ST )
2
]′ + r FSFF = δ2Ŝ′′′′ (6.29)

with parameters defined in Technical box 6.1 and and the primes indicate differen-
tiation to x. The parameter δ serves to allow for boundary layers in regions of the
flow with steep gradients. Cessi and Young (1992) analyse the limit δ → 0, where
analytical progress can be made, but in this limit the solutions are not globally de-
fined on the whole x−interval. For nonzero δ, and the choice FSF = TSTT = cos x,
the equation (6.29) can be integrated once in x to give the boundary value problem

δ2χ′′ = r sinx+ μ2χ(χ+ sinx)2 + χ (6.30a)

χ(−π) = χ(π) = 0 (6.30b)

with χ = Ŝ′. Solutions of this boundary value problem were computed numer-
ically in Dijkstra and Molemaker (1997), by the AUTO software (section 4.1)
package (Doedel, 1980). For δ = 0.1 and μ2 = 7 the bifurcation diagram with
respect to r is shown in Fig. 6.21a. This diagram is characterized by two pitchfork
bifurcations P1PP and P2PP , which connect TH, PP and SA branches. The symmetric
branch has two limit points and the path of these limit points in the (r, μ) plane for
several values of δ is shown in Fig. 6.21b. Only two parameters are necessary to
obtain this cusp (a codimension-two singularity). For smaller values of δ this cusp
shifts to smaller values of r and μ and converges in the limit δ → 0 to analytic
results in Cessi and Young (1992), with the cusp located at r = 8

9 and μ2 = 3.
The results in the previous sections provide the elementary bifurcation behavior

and the corresponding physical mechanisms at work. They show that symmetry
breaking can occur in case of equatorially symmetric forcing leading to asymmet-
ric pole to pole solutions. Overturning oscillations may arise through propagation
of salinity anomalies with the mean flow, with phase differences caused by the
phase lagged effects of heat and salt on the buoyancy production. These results
will be subsequently extended to more and more realistic models in the following
sections.

6.5. Convective Thermohaline Flows
The results of the previous section were rather qualitative and illustrated the

complex interplay between heat and salt transport and the THC. There is no a
priori reason, however, why these results should be of any relevance to the ocean
circulation which is operating in a different parameter regime. Hence, no effort
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Figure 6.21. a). Bifurcation diagram for the model given by (6.30) with δ = 0.1 as calculated in
Dijkstra and Molemaker (1997). Here the parameter r represent the strength of the salinity forcing
and ξ is the vertically integrated meridional salinity gradient. The symmetric branch (connecting
TH and SA) is dash-dotted, whereas the asymmetric NPP and SPP branches are drawn. b). Regime
diagram in the (r, μ) plane, showing the path of the limit points in this plane. For δ = 0.1 and
μ =
√

7 ≈ 2.65, the two limit points on the PP branches can be found at r = 1.28 and r = 1.39.

was made to use realistic surface fluxes and to relate results to actual oceanic
quantities. In this section, a first step is taken into this direction.

In reality, the aspect ratio A is very large and the ratio of vertical and horizontal
diffusivities is also considered to be very small. The usual argument is that the
mixing coefficients, as turbulent eddy viscosities/diffusivities, scale with a char-
acteristic length scale, which is very much larger horizontally than vertically. As
argued by Quon and Ghil (1995), small aspect ratio geophysical fluid systems can
only be convective when the ratio of vertical and horizontal diffusivity (viscos-
ity) is very small. From the governing equations (6.14), a simple rescaling of the
meridional coordinate shows that vertical and horizontal diffusive transports are
of the same order of magnitude when the ratio of the diffusivities are taken to be
of order A2. Much used values in ocean models for example KH and KV are of
the order 103 and 10−4 m2s−1, respectively, yielding a ratio of the same order of
magnitude as A2 (≈ 107).
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6.5.1. Basic bifurcation diagrams
In Quon and Ghil (1995), the small aspect ratio regime was explored in the

same way as in Quon and Ghil (1992). For a choice RM
HV = RTHV = 0.01 and

A = 100, the behavior of the model (with increasing Ra) is investigated for two
different sets of surface boundary conditions. Again they find both symmetric
and asymmetric steady states in this case, similar to the diffusive case. For large
surface salinity forcing they also find a robust transition to oscillatory behavior
through a Hopf bifurcation.

Bifurcation diagrams in this regime were computed in Weijer et al. (1999) for
quite realistic shapes of the surface buoyancy forcing. The zonally averaged pro-
file of Atlantic ocean surface temperatures (Levitus, 1982) can be approximated
reasonably well by a cosine function of the form (for y ∈ [0, A])

TSTT (
y

A
) = cos (π(−1 + 2

y

A
)) (6.31)

again with y the dimensionless meridional coordinate and A the dimensionless
aspect ratio. The profile of TSTT is plotted as the solid curve in Fig. 6.22a with on
the horizontal axis the coordinate θ = 60(−1 + 2y/A).

(a) (b)

Figure 6.22. (a) Plot of the dimensionless forcing functions TSTT (solid) and−FSFF (dashed) as used
in Weijer et al. (1999). (b) Three different approximations of the zonally averaged freshwater flux
over the Atlantic basin. The solid curve is from Baumgartner and Reichel (1975), the dotted from
ECMWF data (Zaucker et al., 1994) and the dash-dotted curve is from the Oort (1983) climatology.
The function FSFF in (a) is the symmetric part of the average of the three curves in (b).

Figure 6.22b shows three estimates of surface freshwater flux over the Atlantic
ocean, which equals the difference between precipitation and evaporation (P−E).
The solid line is obtained from the Baumgartner and Reichel (1975) dataset, by
assuming that the volumes of freshwater, given in km3 per 5◦ latitude bands, ap-
ply to a 60◦ wide ocean basin, in order to obtain the units of ms−1. This same
assumption is made for the other profiles, which are derived by Zaucker et al.
(1994) from ECMWF data (long-dashed line), and from the Oort (1983) climatol-
ogy (short-dashed line). Although the three profiles differ in detail, they agree on
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the particular form of the P − E profiles in the Atlantic basin: they all show ex-
cess precipitation at high latitudes, excess evaporation at midlatitudes, and a high
precipitative maximum over equatorial regions, at latitudes of the Inter Tropical
Convergence Zone (ITCZ). This precipitative maximum may have considerable
impact on the stability of the overturning circulation.

When the three profiles are averaged and symmetrized with respect to the equa-
tor, a profile for the salt flux over the domain [60◦S, 60◦N] can be obtained as

FSFF (
y

A
) = cos

( π
60
θ
)
− 2.4 exp

[
−
(
θ

12

)2
]

+ 0.6 (6.32)

(with again θ = 60(−1 + 2y/A)) and an amplitude of the strength (6.11b) of
F0FF = 3.3 × 10−7 ms−1. This flux is plotted as the dashed line in Fig. 6.22a.
Using this value of F0FF , a realistic value of the salt-flux strength is obtained as
σs = 9.24, the subscript s referring to the surface forcing.

Parameter Value Parameter Value
L 1.0× 107 m αT 1.9×10−4 K−1

H 5.0× 103 m αS 7.6×10−4

KV 1.0×10−4 m2s−1 KHK 1.0 × 103 m2s−1

AV 2.2×10−4 m2s−1 AH 2.2 × 103 m2s−1

CpCC 4.2× 103 Jkg−1K−1 ρ0 1.0 × 103 kgm−3

Table 6.1. Standard values of dimensional parameters for the two-dimensional ocean model used
in Weijer et al. (1999).

For the surface forcing functions TSTT and FSFF and the parameters as in Table
6.1, the bifurcation diagram is shown in Fig. 6.23. The dimensionless values of
parameters are Ra = 104, Pr = 2.25 and A = 2 × 103. In Fig. 6.23, the
norm plotted is the maximum value of the dimensionless meridional overturning
streamfunction ψmax, being a measure of the overturning strength. Due to this
choice, the asymmetrical pole-to-pole solutions are projected onto the same curve
and are not distinctly visible. Solid lines denote stable solutions, while dashed
lines denote linearly unstable solutions. Contour plots of ψ of four solutions at
several (labelled) locations in Fig. 6.23 are plotted in Fig. 6.24.

The solution for σs = 0.0 (Fig. 6.24a) is a thermally driven two-cell TH-
solution. For σs = 25.0 two stable asymmetric solutions are depicted: the
southern-sinking SPP solution (Fig. 6.24b) is characterized by major downwelling
in the southern part of the basin and upwelling in the rest of the basin, while
the northern-sinking NPP solution (Fig. 6.24c) is characterized by strong down-
welling in the northern part of the basin. These solutions are connected to the
branch of symmetrical solutions through the symmetry-breaking pitchfork bifur-
cations, indicated by the squares in (Fig. 6.23). Note that these are now subcriti-
cal pitchforks (contrary to the supercritical pitchfork in the diffusive thermohaline
flows). For σs = 37.6 the SA solution is shown in Fig. 6.24d, which turns out to
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Figure 6.23. Bifurcation diagram under symmetric forcing conditions in the convective regime
as obtained by Weijer et al. (1999). Through the norm chosen, the NPP and SPP branches are
indistinguishable.

be a four cell circulation pattern. This is due to the additional equatorial maximum
and mid-latitude minima in the surface freshwater flux profile.

6.5.2. Imperfections
In the previous sections, we have presented the bifurcation diagrams for the

Atlantic THC in a very idealized two-dimensional equatorially-symmetric config-
uration. Apart from the three-dimensionality of the flow in reality, it is also not
equatorially symmetric. The dominant asymmetries in the present Atlantic Ocean
are summarized as follows.

(i) The present surface freshwater flux appears to be slightly asymmetric. When
the zonally averaged profile for the Atlantic is considered (Oberhuber, 1988;
Zaucker et al., 1994), there is slightly more net evaporation in the northern
part than in the southern part of the basin.

(ii) The continental geometry of the Atlantic is quite asymmetric, with the north-
ern basin closing towards the north and the southern basin opening towards
the south. The area of ocean-atmosphere interaction therefore considerably
changes in meridional direction and this has consequences for the strength of
the atmospheric feedback on SST anomalies (Marotzke and Stone, 1995).

(iii) The salt and heat input into the Atlantic basin due to interbasin exchanges is
strongly asymmetric. In the Northern Hemisphere, an important component of
this inflow comes from the Mediterranean and the Arctic ocean. Compensation
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Figure 6.24. Solutions for the streamfunction at several points in the diagram of Fig. 6.23. (a)
σs = 0, TH-branch. (b) σs = 25.0, SPP-branch. (c) σs = 25.0, NPP-branch. (d) σs = 37.6,
SA-branch.

(Gordon, 1986; Schmitz, 1995) of the outflow of North Atlantic Deep Water is
accomplished through water coming from the Indian Ocean (the ‘warm’ water
path) and that coming through Drake Passage (the ‘cold’ water path). Both
compensation routes provide a complicated structure of heat and salt input
into the South Atlantic (Weijer et al., 2001).

(iv) The opening in the Southern Ocean impedes meridional flow since there is no
topography to support meridional flow above the sill depth of Drake Passage.
Moreover, a strong Antarctic Circumpolar Current (ACC) is present at the
southern part of the basin and absent in the north. The presence of such a
current influences the structure of the density field which may influence the
equilibria in the Atlantic basin (Toggweiler and Samuels, 1995).

(v) The winds over the Atlantic are fairly asymmetric about the equator. From
the zonally-averaged wind-stress shape, one observes that the winds over the
Southern Ocean are much stronger than those over the rest of the basin (Rahm-
storf and England, 1997).

The presence of each of the asymmetries will lead to the break-up of the pitch-
fork bifurcations, according to the imperfection theory described in chapter 3. The
question addressed here is: does any preference for the type of pole-to-pole solu-
tions exist, when the equatorially symmetric system is perturbed with asymmetric
effects?
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Of the asymmetries summarized above, only the effect of surface fluxes, the
lateral fluxes and the air-sea interaction can be considered in a two-dimensional
configuration. The impact of the lateral heat and salt fluxes on the Atlantic over-
turning was systematically studied in Weijer et al. (1999) and Weijer (2000). The
results indicate that these asymmetries lead to a strong preference for the NPP
solution. In Dijkstra and Neelin (2000), the impact of asymmetric surface fluxes
and air-sea interaction was considered. The effects of these asymmetries will be
considered next.

6.5.2.1 Coupled model
To investigate the effect of the asymmetric distribution of the continents, the

two-dimensional equatorially symmetric Boussinesq ocean model is coupled to
a one-dimensional energy balance atmosphere model (North et al., 1981) along
lines developed by Stocker et al. (1992) and Chen and Ghil (1996). The equation
for the surface temperature ϑ∗ of the atmosphere is

Ra
∂ϑ∗
∂t∗

= Qs − (Al +Blϑ∗) +
∂

∂y∗

[
Da

∂ϑ∗
∂y∗

]
− γQoa (6.33a)

y∗ = 0, L :
∂ϑ∗
∂y∗

= 0 (6.33b)

In the equation above, Ra is the (very small) thermal inertia of the atmosphere, Al
and Bl are two constants parameterizing the effect of long wave radiative cooling,
Da parameterizes the effect of baroclinic eddies on the meridional heat transport,
γ is the fraction of the earth covered by the ocean basin andQoa is the (downward)
ocean-atmosphere heat flux. The latter is positive when heat is transferred from
the atmosphere to the ocean. The short wave radiation at the top of the atmosphere
is prescribed as

Qs(y∗) = Q∗a Sa(
y∗
L

) (6.34a)

Sa(
y∗
L

) = 1− 0.239(3(2
y∗
L
− 1)2 − 1) (6.34b)

with Q∗a = 1
4Σ0(1 − α), where Σ0 is the solar constant and α the planetary

albedo. The function Sa parameterizes the latitudinal dependence of the short
wave radiation (North et al., 1981).

The formulation of the downward heat flux Qoa requires some care in interpre-
tation since ϑ is the atmospheric surface temperature. As considered by Haney
(1971), the net downward heat flux into the ocean Qoa can be approximated by

Qoa = Q1 +Q2(ϑ∗ − T∗TT ) (6.35)

if it is assumed that the air-sea temperature difference is small. The quantity Q1

models the net downward heat flux of solar radiation across the ocean surface, mi-
nus the upward flux of longwave radiation and latent heat from an ocean surface
at a temperature ϑ∗. The term Q2 represents the net upward flux of long wave
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radiation and sensible and latent heat per degree excess of ocean surface temper-
ature T∗TT over the atmospheric surface temperature ϑ∗. The downward heat flux
Qoa into the ocean, obtained from the surface heat parameterization as in Haney
(1971), leads to

Qoa = Q∗oSa(
y∗
L

) + μoa(ϑ∗ − T∗TT ) (6.36)

where Q∗o < Q∗a is the amplitude of the short wave flux absorbed by the ocean and
μoa is the air-sea heat exchange coefficient. There are some important physical
and quantitative differences between this formulation of the air-sea exchange used
here, and some implementations of coupled energy balance models. In (6.36) the
heat flux reaching the ocean surface has a large solar component, with the remain-
der related to air-sea interaction. If ϑ∗ is interpreted as surface air temperature,
then this solar contribution to the heat flux has to be taken into account. This is
consistent with Stocker et al. (1992) but contrasts with equation (2) in Chen and
Ghil (1996), where effectively it is assumed that the solar heat flux is absorbed
in the atmosphere. Boundary conditions for the ocean at the surface, z∗ = H ,
become again (6.11), with Qoa now given by (6.36). The dimensionless model
obtained in this way has several additional parameters which can be found in Di-
jkstra and Neelin (2000). The dimensional values used are shown in Table 6.2.

Parameter Value Parameter Value
L 1.5× 107 m αT 1.6×10−4 K−1

H 4.0× 103 m αS 7.6×10−4

Ra 107 Jm−2K−1 Al 216 Wm−2

Da 1013 WK−1 Bl 1.5 Wm−2

Q∗a 240 Wm−2 KHK 103 m2s−1

KV 7.3×10−5 m2s−1 AH 2.5 × 105 m2s−1

CpCC 4.2× 103 Jkg−1K−1 AV 1.8×10−2 m2s−1

Q∗o 180 Wm−2 μoa 10.5 Wm−2

ρ0 103 kgm−3 F0FF 3.3×10−7 ms−1

Table 6.2. Standard values of dimensional parameters for the coupled ocean-atmosphere model
in Dijkstra and Neelin (2000).

6.5.2.2 Asymmetric air-sea interaction
With the function γ in the model, the effect of the continental asymmetry can be

modelled and for constant γ = γ0 and Sa and FSFF symmetric around the equator,
the model is equatorially symmetric. In this case, for the values of the param-
eters as in Table 6.2 and the freshwater flux (6.32), the bifurcation diagram of
the coupled model is very similar to that in Fig. 6.23 (see Fig. 8 in Dijkstra and
Neelin (2000)). Over the whole domain, the ocean is a few degrees warmer than
the atmosphere, in agreement with observations (Peixoto and Oort, 1992).
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The effect of continental asymmetry is idealized to a latitudinally asymmetric
meridional distribution of the relative area of ocean and land by the γ function in
Fig. 6.25a. The larger region of air-sea interaction in the Southern ocean and the
reduced area in the northern ocean are taken into account by a piecewise linear
shape of γ. At the southern boundary the value of γ is taken as 0.4, which effec-
tively assumes that heat transports in the Atlantic overturning circulation influence
the atmosphere over 40% of the latitude circle, while the rest of the latitude circle
is passive and behaves like a land surface. Asymmetry due to the Southern Ocean
is likely underestimated by this, but even without this the effects are already sub-
stantial.
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Figure 6.25. (a) Shape of γ used in the standard case asymmetry case, the former including
an increase in the area of air-sea interaction due to the presence of the Southern Ocean. For
completeness, the value of γ0 = 0.125 used in the symmetric case is also plotted. (b) The P − E
curve using the data of zonally averaged profiles (dash-dotted). The symmetric component of this
flux is shown as the solid curve and the difference between the two is plotted as the dashed curve.

The zonally averaged freshwater flux over the Atlantic basin (Baumgartner and
Reichel, 1975; Zaucker et al., 1994) as in (6.32) is replotted in Fig. 6.25b as the
dash-dotted curve. Its symmetric component is shown as the solid curve and the
dashed curve is the difference between the two. The latter curve suggests that
asymmetry is introduced mainly in the tropics and subtropics. The degree of
asymmetry in the freshwater flux is described by a homotopy parameter p, with
p = 0 indicating the symmetric profile and p = 0.4 a near realistic E−P pattern,
according to Fig. 6.25b.

The bifurcation diagrams with varying p and the function γ of the ‘standard’
case in Fig. 6.25a are shown in Fig. 6.26. The overturning streamfunction value in
the centerpoint of the domain (ψ) is used as an indicator of the flow. This value is
plotted against the dimensionless salt flux strength σr = σ

σc
, where σc is the value

of σ at the first pitchfork bifurcation in the equatorially symmetric case. Along
the branches, stability to stationary perturbations is indicated by markers along
the branches, − (+) indicating an stable (unstable) branch of solutions.

The case p = 0 are the solutions for which the freshwater flux is still sym-
metric, but the effect of continental asymmetry is taken into account; this case is
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referred to as the ‘weakly’ asymmetric case. The bifurcation diagram is shown
as the dashed curve in Fig. 6.26. Due to the asymmetry of the continents, the
pitchfork bifurcation has disappeared and the NPP and TH have reconnected into
a branch, which is labelled NPP/TH. Similarly, the SPP branch and TH branch
have reconnected into the SPP/TH branch.

With an asymmetric freshwater flux, the southern part of the basin is freshened
with respect to the northern part, which tends to favor northern sinking. The saddle
node on the SPP/TH therefore moves to the right with increasing p. For p = 0.2,
the dot marks the position of this point and for p = 0.4, it is located at σr = 0.87.
Both asymmetries (continents and E −P ) cooperate in limiting the interval in σr
for which the southern-sinking branch exists. For larger p eventually the southern-
sinking branch moves quite far from the region of “realistic” σr values, which is
around σr ≈ 0.6.
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Figure 6.26. Bifurcation diagram as a function of the parameter controlling the strength of fresh-
water flux σr, for standard values of the parameters given in Table 6.2. The asymmetric ’standard’
case continental configuration (γ(y) as in Fig. 6.25a) is considered for several values of p, mea-
suring the degree of asymmetry of the freshwater flux. On the vertical axis, the dimensionless over-
turning streamfunction value ψ at the center of the grid (y∗ = L/2, z∗ = H/2) is shown. Points P
and L denote pitchfork bifurcation and saddle node bifurcation, respectively. NPP and SPP denote
northern and southern pole-to-pole circulation branches, and TH the thermally driven branch. The
dot marks the position of the saddle node bifurcation on the SPP/TH branch for p = 0.2. Letters
a–b show points for which solutions are shown in Fig. 6.27.

Because of the salinification of the northern part of the basin with increasing
p, the limit points (L1n and L2n) on the northern-sinking branch move to smaller
values of σr. This opens a window in σr where a unique northern-sinking branch
appears. Hence, both asymmetric air-sea interaction and asymmetric freshwater
flux induce a preference for the northern sinking branch. However, for p = 0.4
and in the range of realistic σr, multiple equilibria still occur due to the two limit
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points. Two solutions at marked locations in Fig. 6.26 are shown in Fig. 6.27
and correspond to a strong (Fig. 6.27a) and a weak (Fig. 6.27b) northern-sinking
solution. The latter solution is a slightly asymmetric version of the TH solution
and therefore labelled ATH. It is significant that the ATH solution branch has al-
most a pole to pole flow, but with weaker overturning circulation than the NPP/TH
solution.

(a)

(b)

Figure 6.27. Solutions at marked points (a) and (b) in Fig. 6.26. Left panel shows sea surface
temperature (dotted curve) and atmospheric surface temperature (solid curve). Right panel shows
latitude-depth plots of the streamfunction, scaled by its absolute maximum; contour levels are with
respect to this maximum. (a) NPP/TH branch, p = 0.4, σr = 0.51. (b) NPP/TH branch, p = 0.4,
σr = 0.54.

Transitions between these states due to finite-amplitude perturbations are pos-
sible for a small interval of σr. These transitions would thus be between states that
both have northern sinking, but simply weaker and stronger values. The zonally
averaged SST differs by less than 1◦C between the two solutions. When p = 1,
i.e., strong asymmetry in the freshwater flux, both limit points have shifted to
small σ (dash-dotted curve in Fig. 6.26) and the multiple equilibria are less likely
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to be relevant. In the latter case, a large interval of σr appears where the NPP/TH
solution is the only steady state.

6.5.2.3 Regime diagram
The results can be summarized into a schematic regime diagram (Fig. 6.28)

with on the horizontal axis the strength of the freshwater flux forcing σ. Three
different regimes can be distinguished and are listed below in the order that they
would be encountered while increasing the magnitude of the freshwater flux, con-
trasting the symmetric case, the weakly asymmetric case, and the realistically
asymmetric case. Panel (a) is the ’symmetric’ case, corresponding to the bifur-
cation diagram in Fig. 6.23. There is only a unique TH solution at small σ, and
multiple equilibria for larger σ where both SPP and NPP exist. The weakly ’asym-
metric’ case in panel (b) corresponds to symmetric E −P but asymmetric air-sea
exchange and hence with the bifurcation diagram for p = 0 in Fig. 6.26. Here, the
limit point on the SPP/TH branch is situated between L1n and L2n which gives
three different regimes of multiple equilibria. Panel (c) corresponds to the bifurca-
tion diagram with increasing p in Fig. 6.26 modelling an asymmetric E−P field.
Here, a regime with a unique NPP solution appears. The qualitative properties of
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Figure 6.28. Regime diagram of the coupled ocean atmosphere model according to the asymme-
try introduced through the continents (modelled by γ) and through a slightly asymmetric freshwater
flux. Three regimes can be distinguished which are named (a) ’symmetric’, with (1) TH only; (2)
NPP+TH+SPP; (3) NPP+SPP, (b) ’weakly asymmetric’, with (1) ATH only; (2) NPP+ATH; (3)
NPP+ATH+SPP; (4) NPP+SPP and (c) ’asymmetric’ with (1) ATH only; (2) NPP+ATH; (3) NPP
only; (4) NPP+SPP.

these regimes will tend to be robust, whereas it is possible that other parameters
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could affect which regime falls into the realistic range. Using this regime diagram,
one can summarize:

(i) Asymmetry about the equator due to continental configuration in the Atlantic
and due to the freshwater flux both tend to produce a preference for northern-
sinking solutions.

(ii) The separation of the SPP branch from the NPP/TH branch by these asym-
metries can create a significant region of parameter space where there is no
southern-sinking branch, but where there is a northern-sinking branch. The
salt advection feedback that was responsible for the bifurcation in the sym-
metric case acts to enhance the overturning in this NPP solution.

(iii) There is a region in the realistic part of parameter space with coexistence of the
NPP branch and an asymmetric version of the thermally driven branch. How-
ever, when full asymmetry is included, there can also be a significant range of
parameters where the NPP solution is unique and no multiple equilibria occur.

(iv) The role of the fractional region of air-sea interaction at each latitude on the
heat flux feedback of the THC has been neglected in many studies, but is sub-
stantial in this model. This effect of the continental configuration is important,
especially in the North Atlantic.

6.6. Zonally Averaged Models
In the two-dimensional models above important physics was neglected, such as

the effect of wind-stress forcing and rotation. In addition, in the non-hydrostatic
formulation used, solutions were obtained which are unstably stratified in some
regions convection is not resolved. At the next level of models, which is still far
from fully three-dimensional ocean models, the zonally averaged models appear.
In this section, an overview is given of the different models and the results these
models provide on the stability of the THC.

6.6.1. Scaling of the equations
In deriving the equations for the zonally averaged models and to prepare for

results of low resolution three-dimensional models in later sections, starting point
are the full equations in spherical coordinates as presented in section 2.1.2. In
the boundary conditions for the temperature and salinity (2.19), the downward
heat flux is prescribed as Qoa = BT (TSTT − T∗TT ) and the freshwater flux E − P
is converted to a prescribed salinity flux F0FF FSFF . For large scale motions with
typical horizontal scale the radius of the earth r0 and vertical scale D, with D �
r0, these equations can be reduced substantially. The equations (2.6) are non-
dimensionalized using scales

p∗ = −gDρ0z + 2Ωρ0Ur0p (6.37a)

ρ∗ = ρ0(1 +
2ΩUr0

gD
ρ) (6.37b)
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for pressure and density. Horizontal and vertical velocity are scaled with U and
DU/r0, respectively while temperature and salinity are scaled with typical val-
ues ΔT and ΔS. In the shallow water limit D/r0 → 0, the non-dimensional
equations become

ε

[
Du

dt
− uv tan θ

]
− v sin θ =

− 1
cos θ

∂p

∂φ
+

1
2
EV

∂2u

∂z2
+ EHLu(u, v) (6.38a)

ε

[
Dv

dt
+ u2 tan θ

]
+ u sin θ =

−∂p
∂θ

+
1
2
EV

∂2v

∂z2
+ EHLv(u, v) (6.38b)

∂p

∂z
= Ra(T − λS) (6.38c)

∂u

∂φ
+
∂(v cos θ)

∂θ
+ cos θ

∂w

∂z
= 0 (6.38d)

DT

dt
= LT (T ;PHP ) +

∂

∂z

(
PVPP

∂T

∂z

)
(6.38e)

DS

dt
= LT (S;PHP ) +

∂

∂z

(
PVPP

∂S

∂z

)
(6.38f)

where a linear equation of state has been assumed and

D

dt
=

∂

∂t
+

u

cos θ
∂

∂φ
+ v

∂

∂θ
+ w

∂

∂z

LT (Φ;PHP ) =
1

cos θ

[
∂

∂φ

(
PHP

cos θ
∂Φ
∂φ

)
+

∂

∂θ

(
PHP cos θ

∂Φ
∂θ

)]

Lu(u, v) = ∇2
Hu−

u

cos2 θ
− 2 sin θ

cos2 θ

∂v

∂φ

Lv(u, v) = ∇2
Hv −

v

cos2 θ
+

2 sin θ
cos2 θ

∂u

∂φ

representing the horizontal diffusion (mixing) of a scalar Φ and frictional terms in
the horizontal momentum equations.

With this scaling, the boundary conditions at bottom of the domain (z = −1)
become

u = v = w = 0 ,
∂T

∂z
=
∂S

∂z
= 0 (6.40)

The surface boundary conditions (2.18) at z = εFη can be written as

αττ
φ = EV

∂u

∂z
(6.41a)

αττ
θ = EV

∂v

∂z
(6.41b)
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w = εF
Dη

dt
(6.41c)

∂T

∂z
= −Bi(T − TSTT ) (6.41d)

∂S

∂z
=

σ

λ
FSFF (6.41e)

where the scaling of the sea surface height is derived from continuity of pressure.
The parameters in these equations are the Rayleigh number Ra, the vertical and
horizontal Ekman number EV and EH , the wind-stress coefficient ατ , the verti-
cal and horizontal inverse Péclet numbers´ PVPP and PHP , the Biot number Bi, the
rotational Froude number F and the freshwater flux strength σ. Expressions for
these parameters are

Ra =
αTΔTgD
2ΩUr0

; EV =
AV

2ΩD2
; EH =

AH
2Ωr2

0

; ατ =
τ0ττ

2Ωρ0DU

σ =
αSDF0FF

αTΔTKV
; λ =

αSΔS
αTΔT

; PHP =
KHK

Ur0
; PVPP =

KV r0

UD2
(6.42)

Bi =
BT r0

UD
; ε =

U

2Ωr0
; F =

4Ω2r2
0

gD

With values of U = 10−2 ms−1, L = 1000 km and D = 5 km, typical values
of ε = 10−5 and F = 102 are obtained. Hence, the value of ε is very small
which justifies neglecting the effects of inertia on these scales. Moreover, the
product εF is also a small parameter. Hence, at these scale the deformation of the
ocean atmosphere boundary does not play a role which justifies the application of
the surface boundary conditions at z = 0 and also the ‘rigid-lid approximation’
w = 0 (Huang, 1993).

6.6.2. Zonal averaging
With the approximations as mentioned above, the dimensional equations (2.6)

for a flat bottom ocean basin, which form the starting point of the zonally averaged
equations become

−fv∗ = − 1
ρ0r0cosθ

∂p∗
∂φ

+ AHLu(u∗, v∗) +AV
∂2u∗
∂z∗2

(6.43a)

fu∗ = − 1
ρ0r0

∂p∗
∂θ

+ AHLv(u∗, v∗) +AV
∂2v∗
∂z∗2

(6.43b)

∂p∗
∂z∗

= −ρ0g(1 + ρr) (6.43c)

∂w∗
∂z∗

+
1

r0 cos θ
(
∂u∗
∂φ

+
∂(v∗cosθ)

∂θ
) = 0 (6.43d)

∂T∗TT
∂t∗

+
u∗

r0 cos θ
∂T∗TT
∂φ

+
v∗
r0

∂T∗TT
∂θ

+ w∗
∂T∗TT
∂z∗

=
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1
r2

0

LT (T∗TT ;KHK ) +
∂

∂z∗

(
KV

∂T∗TT
∂z∗

)
(6.43e)

∂S∗
∂t∗

+
u∗

r0 cosθ

∂S∗
∂φ

+
v∗
r0

∂S∗
∂θ

+ w∗
∂S∗
∂z∗

=

1
r2

0

LT (S∗;KHK ) +
∂

∂z∗

(
KV

∂S∗
∂z∗

)
(6.43f)

ρ∗ = ρ0(1 − αT (T∗TT − T0TT ) + αS(S∗ − S0)) (6.43g)

with f = 2Ω sin θ and the reduced density ρr = (ρ∗ − ρ0)/ρ0. At the surface
z∗ = 0, the dimensional boundary conditions are

ρ0AV
∂u∗
∂z∗

= τ0ττ τ
φ (6.44a)

ρ0AV
∂v∗
∂z∗

= τ0ττ τ
θ (6.44b)

w∗ = 0 (6.44c)

ρ0CpCC KV
∂T∗TT
∂z∗

= BT (TSTT − T∗TT ) (6.44d)

KV
∂S∗
∂z∗

= F0FF FSFF (6.44e)

At the bottom boundary (z∗ = −D) and continental boundaries, no-slip boundary
conditions are prescribed and there is no-flux of heat and salt.

6.6.2.1 Procedure
Within this section, dimensional quantities are used throughout but the star

subscript is suppressed because of clarity. For zonal averaging over a basin with
zonal extent Δφ = φe−φw, it is convenient to introduce local variables x, y such
that x = φr0 cos θ and y = r0 θ. Then a zonal averaging operator is introduced
through

u =
1
L

∫ xw+L

x

∫∫
w

u dx (6.45)

where xw = φwr0 cos θ and L = r0 cos θ(φe − φw). In terms of the local coordi-
nates, the zonally averaged momentum and continuity equations become

−fv = − Δp
ρ0L

+ (AHux)x + (AHuy)y + (AV uz)z (6.46a)

fu = − 1
ρ0

∂p∂

∂y
+ (AHvx)x + (AHvy)y + (AV vz)z (6.46b)

∂p∂

∂z
= −ρ0g(1 + ρr) (6.46c)

0 =
∂w

∂z
+

1
cos θ

∂(v cos θ)
∂y

(6.46d)
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with subscripts (x, y and z) indicating differentiation. The quantity Δp is the
pressure difference between the eastern and western boundary. The system of
equations (6.46) is not closed and the quantities (AHux)x, (AHvx)x and Δp have
to be parameterized. In addition, an expression for the zonal velocity u in (6.46b)
has to be obtained. If each of these quantities is parameterized in terms of the zon-
ally averaged meridional and vertical velocity and density field, then effectively
a model with two space dimensions is obtained which incorporates the effects of
rotation and wind-stress forcing.

Technical box 6.2: Closure
problem

The different types of closure are explained in detail in Wright et al. (1998). The
first term to parameterize in (6.46b) is the zonally averaged zonal mixing of mo-
mentum represented by (AHvx)x. Immediately, this term can be written as

(AHvx)x =
AH
L

∂v

∂x
|xw+L
xw

Consider in Fig. 6.29 a sketch of the flow field, with an approximately inviscid in-
terior coupled to a frictional western boundary layer, the latter having a thickness
δM . Clearly, meridional velocity gradients are largest near the western boundary
and by defining a boundary layer averaged velocity vδ through

vδ =
1
δM

∫ xw+δM

x

∫∫
w

v dx

the zonal mixing of meridional momentum can be approximated by

(AHvx)x ≈ −
AH
L

Γ1
vδ − 0
δM

where Γ1 is a O(1) constant. It remains to relate vδ to v, but this can be easily
done through the overall mass balance

δMv
δ ≈ vL

The second term to parameterize in (6.46b) is the zonally averaged meridional
mixing of meridional momentum represented by the term (AHvy)y . Assuming
that effects of variations on the horizontal basin scale are small in evaluating the
dominant contribution of this term in the western boundary layer, then

(AHvy)y ≈ AHvyy
The last term in (6.46b) to parameterize is the term fu since (6.46b) is dropped.
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Figure 6.29. Sketch of the flow domain with the interior flow and the western boundary layer
having a thickness δ = δM (Wright et al., 1998).

This is done by writing first

fu+
1
ρ0

∂p∂

∂y
= −f(ug − u)

where ug is the geostrophic velocity fug = −py/ρ0. Next, the term in the right
hand side is written as

ug − u ≈
(L− δM )(uig − ui) + δM (ubg − ub)

L

where the superscripts i and b indicate interior flow and boundary layer flow,
respectively. In the interior, the velocity is in geostrophic balance and hence the
first term in the nominator is zero. Defining Γ2 = (ubg−ub)/ug, the term f(u−ug)
can be rewritten as

f(u− ug) = f
δMΓ2

L
ug = −δMΓ2

ρ0L

∂p∂

∂y

Using (6.46c) differentiated to y, i.e.

∂2p

∂y∂z
= −ρ0g

∂ρr
∂y

differentiation of (6.46b) to the vertical coordinate z leads to (6.47) with A∗H =
AHL/(Γ2δM ) and A∗V = AV L/(Γ2δM ).
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The approach followed by Wright and Stocker (1992) is to drop (6.46a) and to
rewrite (6.46b), under reasonable approximations of the western boundary layer
structure (see Technical Box 6.3), as

A∗Hvzyy +A∗V vzzz −
Γ1A

∗
H

δ2
M

vz = −g∂ρr
∂y

(6.47)

where Γ1 = O(1) is constant, δM is a measure of the thickness of the western
boundary layer and A∗V and A∗H are modified mixing coefficients.

In the approach taken by Marotzke et al. (1988), effectively two terms in (6.47)
are neglected to give

A∗V vzzz = −g∂ρr
∂y

(6.48)

which is referred to as the ‘frictional’ closure. This equation can be directly ob-
tained by putting u = 0 in (6.46b), neglecting (AHvx)x and eliminate the pressure
from (6.46b) and (6.46c). It is therefore equivalent to neglecting the effect of ro-
tation a priori and using a modified vertical friction coefficient.

In the approach taken by Wright and Stocker (1992), the two frictional terms
are neglected in (6.47) giving

Γ1A
∗
H

δ2
M

∂v

∂z
= g

∂ρr
∂y

(6.49)

which is written in Wright and Stocker (1992) as

∂v

∂z
= ε0

g

r0Ω
∂ρr
∂y

; ε0 =
r0Ωδ2

M

Γ1A
∗
H

(6.50)

This closure is referred below as the ‘geostrophic’ closure, since elements of the
geostrophic balance and western boundary current structure are taken into ac-
count. The usefulness of this parameterization has been shown in Wright and
Stocker (1992) and from a comparison with three-dimensional models, a value of
ε0 ≈ 0.1 is suggested. An implication of this closure is that there exists a linear
relation between the zonal density difference Δρr over the basin and the merid-
ional density gradient. In a more rigorous analysis based on vorticity dynamics,
Wright et al. (1995) have demonstrated that a relation between the east-west den-
sity difference and the zonally averaged meridional density gradient exists more
generally, but it is a more complicated one than (6.49).

In principle, 2-dimensional models can also be considered as special cases of
zonally averaged models with u = 0 and all zonal derivatives being equal to zero.
Models used by Sakai and Peltier (1995) and Vellinga (1996) are then obtained
which are hydrostatic versions of the two-dimensional Boussinesq models.

6.6.2.2 Convective adjustment
In hydrostatic ocean models, adaptations are needed when the stratification be-

comes locally (statically) unstable. The effects of convection have to be parame-
terized and several ad-hoc procedures, generally referred to as convective adjust-
ment, are used. In all these procedures, the temperature and salinity fields are
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locally adjusted in such a way that a stable stratification is achieved. In the first
procedure, which we will indicate by classical adjustment (CA), the temperature
and salinity are explicitly mixed in adjacent vertical levels of the water column
if the density stratification is unstable resulting in equal temperature and salinity
for those levels. This procedure has to be repeated a number of times at each time
step in the evolution of the flow, as an iteration towards complete removal of static
instabilities (Cox, 1984). A variation of this technique is suggested by Rahmstorf
(1995a): groups of levels in the water column are treated as one convective re-
gion. The latter procedure guarantees that the liquid is stably stratified after the
procedure is terminated. This occurs within one time step of the model, and hence
it is assumed that the time scale of convective mixing is at most equal to the time
step of the numerical model. Furthermore, it is assumed that the convection only
mixes quantities vertically; no horizontal mixing is involved.

The other procedure of convective adjustment is indicated by implicit mixing
(IM) and assumes that the effect of convection on a sub-grid scale can be modelled
by a large vertical diffusion coefficient for heat and salt (Cox, 1984). For example,
the vertical mixing of heat in (6.9c) is parameterized as

FTFF ∗ =
∂

∂z∗
((KV 0 +KV c)

∂T∗TT
∂z∗

) (6.51)

where KV 0 is the background value of the vertical mixing coefficient and KV c is
an extra vertical diffusion representing convection, which becomes large in areas
with an unstable stratification and zero otherwise.

6.6.3. Bifurcation diagrams
Results for a zonally averaged model using the ‘geostrophic’ closure were first

presented in Wright and Stocker (1991), using a domain [-80◦S,80◦N] and a fixed
ocean basin depth of 5000 m. Under equatorially symmetric restoring conditions
for temperature and salinity, a steady state is obtained very similar to the TH state.
Next, the freshwater flux is diagnosed from this solution and used as forcing under
mixed boundary conditions. The TH state is unstable and eventually a pole-to-
pole solution is found.

A bifurcation analysis of the model as used in Wright and Stocker (1991) was
performed by Vellinga (1996). The dimensional surface boundary condition for
salinity was written as (cf. (6.11b))

KV
∂S∗
∂z∗

= F0FF FSFF (y∗) (6.52)

To obtain the shape of the freshwater flux, steady states of the model are first ob-
tained with a restoring condition for salinity using standard values of parameters.
Next, the salt flux was diagnosed and used as the forcing function FSF . The dimen-
sionless parameter σ = F0FF H/(KV ΔS) was used as control parameter, where ΔS
is a characteristic salinity difference. The value σ = 1 corresponds to the solution
for which the freshwater flux was obtained under restoring conditions.
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The TH state thus obtained becomes unstable through a pitchfork bifurcation
at σ = 1.07. The fact that the bifurcation point need not always be situated
below σ = 1 means that a switch from restoring to mixed boundary conditions
is not necessarily accompanied by loss of stability of the TH state. The general
features of the symmetric and asymmetric solutions are much like those of the
2D-Boussinesq model. When the pole-to-pole cell has grown to a size that it
occupies nearly all of the basin, a further increase of the salt flux hardly alters
the flow near its rising branch. This qualitatively similar behaviour suggests that
the essentials of symmetry breaking of the thermally-dominated circulation are
not in the dynamics, but can be deduced from the transport equations for heat and
salt. This is compatible with the physical mechanism of symmetry breaking as
described in section 6.4.2. Only a sufficiently strong meridional velocity response
to a meridional density gradient is required to break the symmetry.

No further bifurcation analysis has been performed on the these type of models
because of the dynamic similarities to the 2D-Boussinesq type models. How-
ever, much modelling has been done using the zonally averaged models with a
‘geostrophic’ closure. In Stocker and Wright (1992), such a model was extended
to a two-basin situation of the Atlantic and the Pacific. Under ‘realistic’ (restoring)
salinity forcing, a global thermohaline circulation is found with strong interbasin
exchange. The ‘conveyor-like’ state is stable under mixed boundary conditions
and is maintained by the net evaporation in the Atlantic and net precipitation in
the Pacific. By perturbing this state under mixed boundary conditions it is shown
that if perturbations are big enough, different steady states can be reached.

Further extensions of these models have been described in Wright and Stocker
(1992), where the sensitivities of a three-basin version are investigated and in
Stocker et al. (1992) where a climate model, containing a zonally averaged model
as ocean component, is developed. Such a global ocean model has also been cou-
pled to a simple atmosphere model and thermodynamic sea-ice model (Ganopol-
sky et al., 1998). Much work is currently being performed with these type of
models to study climate changes on long time scales.

Bifurcation analysis has also been performed on the 2D hydrostatic Navier-
Stokes model (Vellinga, 1996) using the IM-type convective adjustment (6.51).
The dimensional equations of this model are

v∗
∂v∗
∂y

+ w∗
∂v∗
∂z∗

= − 1
ρ0

∂p∗
∂y∗

+

+AH
∂2v∗
∂y∗2

+ AV
∂2v∗
∂z∗2

(6.53a)

0 = − 1
ρ0

∂p∗
∂z∗
−
(
ρ∗ − ρ0

ρ0

)
g (6.53b)

∂w∗
∂z∗

+
∂v∗
∂y∗

= 0 (6.53c)

∂T∗TT
∂t∗

+ v∗
∂T∗TT
∂y∗

+ w∗
∂T∗TT
∂z∗

=
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∂

∂y∗

(
KHK

∂T∗TT
∂y∗

)
+

∂

∂z∗

(
KV

∂T∗TT
∂z∗

)
(6.53d)

∂S∗
∂t∗

+ v∗
∂S∗
∂y∗

+ w∗
∂S∗
∂z∗

=

∂

∂y∗

(
KHK

∂S∗
∂y∗

)
+

∂

∂z∗

(
KV

∂S∗
∂z∗

)
(6.53e)

These equations are solved on a rectangular geometry with lateral walls at y∗ =
±L, a flat bottom at z∗ = −D and the ocean-atmosphere interface at z∗ = 0.
Slip conditions are assumed on the lateral and bottom boundaries and except at
the surface, no flux conditions are applied. The dimensional surface boundary
conditions for salinity are similar as in (6.52).

The pitchfork bifurcation point P is located at σ = 0.96 (remember that σ = 1
corresponds to the restoring solution) and only one of the asymmetric branches
is shown (Fig. 6.30a). A more detailed inset (dashed box in (a)) is plotted in

(a) (b)

Figure 6.30. (a) Bifurcation diagram as presented in Vellinga (1998) for the hydrostatic 2D
Navier-Stokes equations. (b) Inset of the region inside the dashed box of (a). Stable states are
indicated by solid curves, unstable states by dotted curves. The pitchfork bifurcation point is indi-
cated by ‘P’, Hopf bifurcations by ‘H’ and saddle-node bifurcations by ‘L’.

Fig. 6.30b. It appears that for stronger flows (larger σ), convective adjustment
causes problems; these were investigated in more detail in Vellinga (1998). Trac-
ing the branch of asymmetric solutions in σ, the steady solution becomes unstable
to oscillatory modes in several Hopf bifurcation points ‘H’, the first one occurring
at σ = 1.3 in Fig. 6.30b. Shortly after, a saddle-node bifurcation is encountered
(marked ‘L’ in Fig. 6.30b). This point is the beginning of a parameter regime
in which the structure of the bifurcation diagram becomes rather complicated:
the system undergoes a big loop through parameter space in which closely knit
pairs of Hopf and saddle-node bifurcations occur regularly. Eventually, the so-
lution reaches a more saline dominated regime along the indicated sections (2)
and (3). This problematic and incorrect bifurcation behavior is not seen in the
2D-Boussinesq models.
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The origin of these artificial multiple steady states was further investigated in
Vellinga (1998). The regular occurrence of saddle-node bifurcations is not re-
flecting a real physical process but is caused by the way in which convection is
represented in the model. It demonstrates the extreme sensitivity of the flow to
finite-amplitude perturbations under the convective adjustment procedure (which
only mixes heat and salt in columns downward). This sensitivity can already be
deduced from the simple Welander (1982) model (section 6.2), where a finite-
amplitude perturbation can induce a transition between a non-convective and con-
vective state under only vertical transport. These problems do not occur in the
2D-Boussinesq model. The fact that the solutions are not completely stably strati-
fied in the latter models, does not seem to have any effect on the overall bifurcation
diagram. The results give a warning that convective adjustment may be responsi-
ble for spurious equilibria (Vellinga, 1998). Similar problematic model behavior
due to convective adjustment was discussed in Cessi (1996).

6.7. Three-Dimensional Models
Much is now known about the bifurcation diagrams of three-dimensional mod-

els of the THC. For the presentation of these results and to connect them to results
from traditional modeling approaches, it is useful to define a hierarchy of geomet-
rical situations (Fig. 6.31). The single-hemispheric (SH) configuration, with and
without a representation of continental geometry (Fig. 6.31a-b), has been used ex-
tensively to study decadal-to-multidecadal variability in the North Atlantic and the
dynamics of the flows will be presented in the sections 6.7.1 and 6.7.2. Both this
configuration and the next configuration in the hierarchy, the double-hemispheric
(DH) configuration, with an without a representation of the Antarctic Circumpo-
lar Current (Fig. 6.31c-d), have been studied to investigate the equilibria of the
Atlantic circulation (section 6.7.3). In the multibasin (MB) and global geome-
try (Fig. 6.31e-f), results have focussed on the different multibasin flow patterns
and transitions between these flows; the results are presented in section 6.7.4.
Note that in all the three-dimensional models considered below, the full equations
(6.38) with boundary conditions (6.40) and (6.41) are solved. In nearly all cases,
the surface forcing is distributed as a body forcing in the top layer of the model.

6.7.1. The SH configuration: thermal flows
The simplest flows are those that are only forced by a steady zonally-

independent meridional temperature gradient (no wind-stress forcing) and in
which the salinity is constant. Because there can be no salt-advection feedback
(section 6.2) in these flows, one does not expect multiple equilibria to occur. How-
ever, there are some interesting Hopf bifurcations through which these flows go
unstable and spontaneous oscillatory behavior occurs. This transitional behavior
was first noticed in Greatbatch and Zhang (1995) and Chen and Ghil (1995) and
later extensively investigated by Huck and co-workers in a series of papers (Huck
et al., 1999; Colin de Verdiere and Huck, 1999; Huck and Vallis, 2001). The`
linear stability analyses showing that the Hopf bifurcations actually existed were
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(a) (b) (c)

(d) (e) (f)

Figure 6.31. Sketch of the hierachy of geometrical configurations considered in 3D models of
the THC. (a) single-hemispheric basin (SH) without continents, (b) single-hemispheric basin with
continents, (c) double-hemispheric (DH) basin without a southern channel, (d) double-hemispheric
basin with an southern channel, (e) multi-basin (MB) configuration, and (f) glMM obal (low-resolution)
configuration.

presented in Huck and Vallis (2001) and Te Raa and Dijkstra (2002). We will
discuss many of these results after presenting the bifurcation analysis proposed in
Te Raa and Dijkstra (2002).

6.7.1.1 The multidecadal mode
The geometrical configuration used in Te Raa and Dijkstra (2002) is an ideal-

ization of the Atlantic sector basin with (φ, θ) ∈ [φW = 286◦, φE = 350◦] ×
[θS = 10◦N, θN = 70◦N] having a constant depth D = 4 km. The values of di-
mensional and dimensionless parameters that are used are provided in Table 6.3.
These parameters are fairly standard in low-resolution three-dimensional models,
except for the value of AH which is a factor 100 larger because of numerical
reasons. The IM variant of convective adjustment was applied with K c

V as in Ta-
ble 6.3 (it is also relatively small for numerical reasons). The horizontal resolution
of the model is 4◦ horizontally and the model has 16 layers in the vertical. The
prescribed surface temperature TSTT is idealized as

TSTT (θ) = 10 cos(π
θ − θS
θN − θS

) (6.54)

such that there is a meridional temperature difference of 20◦C over the basin.
Along the branches of steady states computed, the meridional overturning

streamfunction ΨM and zonal overturning streamfunction ΨZ are monitored.
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2Ω = 1.4 · 10−4 [s−1] r0 = 6.4 · 106 [m]
D = 4.0 · 103 [m] U = 1.0 · 10−1 [ms−1]
ρ0 = 1.0 · 103 [kgm−3] g = 9.8 [ms−2]
αT = 1.0 · 10−4 [K−1] BT = 6.3 · 10−4 [ms−1]
AH = 1.6 · 107 [m2s−1] AV = 1.0 · 10−3 [m2s−1]
KHK = 1.5 · 103 [m2s−1] KV = 2.3 · 10−4 [m2s−1]
T0TT = 15.0 [K] Kc

V = 3.3 · 10−3 [m2s−1]

Ra = 4.2 · 10−2 PHP = 2.3 · 10−3

EH = 2.7 · 10−3 PVPP = 9.2 · 10−4

EV = 4.3 · 10−7 Bi = 1.0 · 101

Table 6.3. Standard values of parameters used in the numerical calculations of Te Raa and Dijk-
stra (2002). The parameter BT is given by BT = D/τTττ , where τTττ = 75 days is the restoring time
scale.

These are defined (in nondimensional quantities) as∫ φE

φ

∫∫
W

v cos θ dφ =
∂ΨM

∂z
;
∫ φE

φ

∫∫
W

w cos θ dφ = −∂ΨM

∂θ
(6.55)

and ∫ θN

θ

∫∫
S

u dθ = −∂ΨZ

∂z
;
∫ θN

θ

∫∫
S

w dθ =
∂ΨZ

∂φ
(6.56)

With the scaling used in section 6.6.1, the dimensional volume transport Ψ∗ is
given by Ψ∗ = r0UD Ψ (for both zonal and meridional overturning).

The steady state at standard values of the parameters has a maximum merid-
ional overturning of 20 Sv (Fig. 6.32a) and shows the typical unicellular structure
with sinking confined to the northernmost part of the domain. In Fig. 6.32c and
Fig. 6.32e vector plots of the horizontal circulation for certain sections are shown,
superposed on contour plots of the vertical velocity. The surface circulation is
anti-cyclonic (Fig. 6.32c) with upward vertical velocities at the western part of
the basin. A reversed flow occurs near the bottom (Fig. 6.32e), consistent with the
overturning flow. A section of temperature in a north-south vertical plane shows
a ‘thermocline’ in the upper 1000 m, with slight static instabilities in the northern
part of the domain (Fig. 6.32b). Surface temperatures show small advective de-
partures (Fig. 6.32d) from the zonally uniform state, while at depth there is only
very little variation. The surface heat flux QT of this steady state is shown in
Fig. 6.32f and has a maximum amplitude of 45 Wm−2. The heat flux is negative
(positive) in the northern (southern) half of the basin with a slight signature of the
western intensification of the ocean flow. The particular state in Fig. 6.32 is also
a solution of the steady equations when the flow is forced by the prescribed heat
flux QT . In other words, this heat flux is needed to maintain the circulation with
a surface temperature which closely matches the imposed temperature TST .
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(a) (b)

(c) (d)

(e) (f)

Figure 6.32. Steady-state solution at standard values of the parameters. (a) Meridional overturn-
ing streamfunction (in Sverdrups). (b) Temperature (dimensionless) for a north-south vertical plane
through the middle of the basin (φ = 318◦). The dimensional temperature can be obtained from
T∗TT = 15.0 + T . (c) Velocity (dimensionless) near the surface (at 41 m depth). In this plot, vectors
indicate the horizontal velocity, (u, v) and contours represent the dimensionless vertical velocity,
w. Solid lines represent upwelling (flow out of the plane), dashed lines downwelling (flow into the
plane). The maximum dimensional horizontal velocity is 1.7 · 10−2 ms−1, the maximum amplitude
of the vertical velocity is 1.8 · 10−6 ms−1 (downwelling). (d) Temperature near the surface. (e)
Velocity at z = −3200 m. Maxima are 5.5 · 10−3 ms−1 for the horizontal and 2.1 · 10−5 ms−1

(downwelling) for the vertical velocity. (f) Surface heat flux QT (in Wm−2), diagnosed from the
solution obtained under restoring boundary conditions. Solid lines represent heat gain from the
atmosphere, dashed lines heat loss to the atmosphere.
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If one considers the linear stability of this steady state under restoring boundary
conditions, such that temperature perturbations are considerably damped at the
surface, it turns out that this state is linearly stable, because all eigenvalues have
negative real part. The least damped mode has a centennial time scale of about
450 yr. One can also consider the stability of the steady state under the prescribed
heat flux forcing QT . In this way, the temperature anomalies are not damped at
the surface (Greatbatch and Zhang, 1995). Under this heat flux forcing condition,
the state in Fig. 6.32 is unstable to a mode with an oscillation period P ≈ 65
years; this is the multidecadal mode.

The subsurface vertical velocities (Fig. 6.33a,c,e,g) and subsurface tempera-
ture anomalies (Fig. 6.33b,d,f,h) of this mode are plotted over nearly half of the
oscillation period where in each plot the time scale in the figure caption is di-
mensional. The vertical velocity anomalies have their largest amplitudes near the
northern boundary and propagate westwards (Fig. 6.33). The positive tempera-
ture anomaly at the surface, present at t = 0, follows the same propagation as
the vertical velocities near the northern boundary (Fig. 6.33). Along the southern
boundary, the anomalies are relatively weak and propagate eastwards.

The dependence of the growth rate and period of the multidecadal mode on the
horizontal mixing of heat, the coefficient KH , was determined. For five different
states, the surface heat flux was diagnosed and the stability of the steady state
determined under prescribed flux conditions. The growth rate (dashed) and period
(drawn) corresponding to the multidecadal mode for the five different values of
KHK are shown in Fig. 6.34a. The growth rate crosses the zero-axis at KH =
1670 m2s−1. This indicates that a supercritical Hopf bifurcation occurs with
decreasing KH ; the period at criticality is about 69 yr. For KH > 1670 m2s−1,
the steady state is (linearly) stable, but for KH < 1670 m2s−1 it is unstable. The
growth rate increases for smaller KH and the period shortens slightly, being about
50 years at KH = 800 m2s−1.

The location of the Hopf bifurcation defines the parameter value ofKH at fixed
KV = 2.3 × 10−4 (see Table 6.3) bounding a steady flow regime and an oscilla-
tory regime. By following the path of this Hopf bifurcation in another parameter,
a regime diagram in a two-parameter plane is obtained. In the (KV , KHK ) param-
eter plane such a diagram (based on only a limited number of points) is plotted
in Fig. 6.34b. The regime below the curve, marked with the open squares, is the
oscillatory regime. Slightly below this curve, periodic orbits of multidecadal pe-
riod are expected. Increasing KH damps the multidecadal mode, while increasing
KV has a destabilizing effect. The effect of KV is mainly through the changes of
the steady-state overturning, which increases with increasing KV . The standard
values of parameters are also indicated in Fig. 6.34b. The point labelled with a
diamond is the standard parameter case, which is in the oscillatory regime. The
period of the oscillation increases with decreasing KV but remains in the multi-
decadal range.

The physical mechanism of oscillation of the multidecadal mode has been anal-
ysed in Colin de Verdière and Huck (1999) and Te Raa and Dijkstra (2002). In`
the latter paper, a detailed analysis is presented and the original paper should
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.33. Patterns of the multidecadal mode. Vertical velocity perturbations w̃ (a,c,e,g) and
temperature perturbations T̃ (b,d,f,h) both at z = −19 m at (a-b) t = 0 yr, (c-d) t = 8.1 yr, (e-f)
t = 16.3 yr, (g-h) t = 24.4 yr. The plots are 1/8th period apart.
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Figure 6.34. (a) Period (in years, solid line) and growth rate (dimensionless, dashed line) as a
function of the horizontal diffusivity KH . The left vertical axis is for P , the right vertical axis for
σr . (b) Regime diagram in theKV -KH plane for the interdecadal oscillation under prescribed-flux
conditions. Open squares denote the values of KH for which the Hopf bifurcation occurs. Below
this curve , the steady state is unstable and oscillatory behavior is found; above this curve it is
stable. The filled squares give the oscillation period at Hopf bifurcation. The point labelled with a
diamond indicates the standard values of KV and KH .

be consulted for a full understanding of the energetics. There is a phase differ-
ence between the two terms in the anomalous buoyancy production, <w̄T̃ > and
<w̃T̄ >, where the quantities with a bar (tilde) refer to the steady state (perturba-
tions). This, in turn, originates from the westward propagation of the temperature
anomalies and the interplay of changing zonal and meridional temperature gradi-
ents with subsequent responses of the zonal and meridional overturning.

The physical mechanism can be summarized with help of Fig. 6.35. A warm

(a) (b)

Figure 6.35. Schematic diagram of the oscillation mechanism associated with the unstable mul-
tidecadal mode. The quanTT tities Ψ̃M and Ψ̃Z are the meridional and zonal overturning anomalies,
respectively. The phase difference between (a) and (b) is π

2
; from Te Raa and Dijkstra (2002).

anomaly in the north-central part of the basin causes a positive meridional per-
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turbation temperature gradient, which induces – via the thermal wind balance –
a negative zonal overturning perturbation Ψ′Z (Fig. 6.35a). The anomalous anti-
cyclonic circulation around the warm anomaly causes cold water advection to the
east and warm water advection to the west of the anomaly, resulting in westward
phase propagation of the warm anomaly. The anomalous downwelling associated
with the zonal overturning perturbation is consistent with this westward propa-
gation, and the anomalous upwelling leads to a cold anomaly in the east. Due
to the westward propagation of the warm anomaly, the zonal perturbation tem-
perature gradient becomes negative, inducing a negative meridional overturning
perturbation Ψ′M (Fig. 6.35b). The resulting upwelling (downwelling) perturba-
tions along the northern (southern) boundary cause a negative meridional pertur-
bation temperature gradient, inducing a positive zonal overturning perturbation,
and the second half of the oscillation starts. The crucial elements in this oscilla-
tion mechanism are the westward propagation of the temperature anomalies and
the phase difference between the zonal and meridional overturning perturbations.
The time scale of the oscillation depends on the basin crossing time, while the
growth is related to the correlation of density anomalies — generated by the cir-
culation anomalies — and those that cause them (Colin de Verdière and Huck,`
1999; Te Raa and Dijkstra, 2002).

6.7.1.2 Finite-amplitude flows
The Hopf bifurcation associated with the destabilization of the steady thermal

flows is very robust and must lead to finite-amplitude flows with multidecadal
variability. Several of these flows have been obtained in so-called planetary, or
frictional geostrophic models (FGM). In an FGM, the inertia terms and the lo-
cal accelerations are put to zero, and a rigid-lid surface condition is used. In the
momentum equations, also simplifications are usually made in the form of lin-
ear friction (Salmon, 1986; Colin de Verdière, 1988; Colin de Verdi`` ere and Huck,`
1999) and no details of the continental geometry and bottom topography are in-
cluded.

Using an FGM, where the flow is forced only by a zonally independent sta-
tionary heat flux (no freshwater flux), Greatbatch and Zhang (1995) found an
oscillation with a period of about 50 years. The flow is characterized by changes
in the MOC of about 7 Sv around a mean of 15 Sv. During the oscillation, the SST
anomalies have largest amplitude in the small sinking region (of the mean state)
and smaller amplitude over the larger upwelling regions. Robustness of these mul-
tidecadal oscillations to many physical processes was demonstrated in Colin de
Verdiere and Huck (1999). For example, they showed that both the` β-effect and
convective adjustment were not essential for the multidecadal variability to occur.

Specific transient solutions of the GFDL Modular Ocean Model (MOM),
strongly connected to the results in Te Raa and Dijkstra (2002), were presented in
Te Raa et al. (2004). MOM implements the full primitive equations on a specified
domain on the sphere and solves these in time using an explicit time-marching
scheme. A full description of this model, its capabilities and post-processing fea-
tures is given in Pacanowski (1996) and serves also as a user manual of the model
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(see http://www.gfdl.gov/MOM/MOM.html). For a more detailed description on
the numerics of the model, see Griffies (2004). The many configurations used in
Te Raa et al. (2004) mainly differ in the choice of domain, mixing coefficients,
resolution and surface forcing.

Finite-amplitude multidecadal flows in the simplest case (without continental
and bottom topography, without wind forcing and with constant salinity) were
computed for KH = 700 m2s−1 and other parameters as in Table 6.3. The resolu-
tion used was the same as in Te Raa and Dijkstra (2002). The steady-state MOC
under restoring conditions has an amplitude of 21 Sv with the velocity and tem-
perature fields similar to those in Fig. 6.32. The heat flux through the surface at
t = 3000 yr was diagnosed and then prescribed as a boundary condition instead
of the restoring condition. The model is integrated for another 3000 yr under this
prescribed heat-flux forcing. About 1000 yr after the switch in boundary condi-
tion, a multidecadal oscillation with a period of 45 yr appears in the MOC. The
oscillation finally equilibrates with a peak-to-peak amplitude of about 10 Sv. The
same results were obtained at a higher resolution of 2◦ × 2◦ in the horizontal and
24 levels in the vertical.

The oscillation is characterized by large-scale temperature anomalies, having
maximum amplitude near the surface, which propagate in a northwestward di-
rection. The spatial patterns and propagation characteristics of these temperature
anomalies strongly resemble those of the multidecadal mode in Fig. 6.33. To
investigate whether the finite-amplitude multidecadal oscillaton found is indeed
caused by the multidecadal mode, phase differences between meridional Ψ ′M and
zonal Ψ′Z overturning anomalies and between north-south and east-west tempera-
ture differences were computed. The north-south temperature difference ΔTNT −S
was defined as the zonal average of ΔT̂NT −S , with

ΔT̂NT −S(φ) =
∫ 0

z

∫∫
=−1500/D

∫ θN

θ

∫∫
S

1
sin θ

∂T ′

∂θ
dθ dz, (6.57)

where T ′ the difference between the total temperature and the time-mean temper-
ature field. Similarly, ΔTET −W is the meridional average of ΔT̂ET −W , with

ΔT̂ET −W (θ) =
∫ 0

z

∫∫
=−1500/D

∫ φE

φ

∫∫
W

1
sin θ

∂T ′

∂φ
dφ dz. (6.58)

A plot of ΔTNT −S and ΔTET −W over two oscillation periods at the end of the
simulation is presented in Fig. 6.36a. The spatially-averaged meridional and zonal
overturning anomalies for the same time interval are given in Fig. 6.36b. As can
be seen, ΔTET −W leads ΔTNT −S by about 15 yr, which is one-third of an oscil-
lation period. The spatially averaged meridional overturning lags ΔTET −W by
about 2 yr, and the spatially averaged zonal overturning by about 11 yr. The fea-
tures that characterized the multidecadal mode, namely the westward propagation
of temperature anomalies in the north and the phase difference between zonal
and meridional overturning, are thus also found in the finite-amplitude oscilla-
tion in the MOM model. Therefore, we can conclude that this finite-amplitude
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Figure 6.36. (a) Zonally averaged north-south temperature difference ΔTNT −S (solid line) and
meridionally averaged east-west temperature difference ΔTET −W (dashed line), averaged over the
upper 1438 m, during the last part of the integration for the MOM simulation withAH = 1.6×107

m2s−1 and KH = 7.0×102 m2s−1. (b) Time series of the spatially averaged meridional overturn-
ing perturbation Ψ′M (dashed line) and the spatially averaged zonal overturning perturbation Ψ′Z
(solid line).

multidecadal oscillation is caused by the destabilization of the steady flow by the
multidecadal mode; it is the periodic orbit coming from the Hopf bifurcation.

Te Raa et al. (2004) showed that the oscillatory flow due to multidecadal mode
can be followed from the idealized case above — where it appears in a relatively
viscous flow in a basin with a simple geometry under only thermal forcing —
towards a complex flow in a more realistic domain. In a series of MOM simula-
tions, the horizontal eddy viscosity was decreased by two orders of magnitude to a
value commonly used in coarse-resolution ocean models (AH = 1.6 · 105 m2s−1,
compare the value in Table 6.3). Next, a ‘realistic’ North-Atlantic continental
geometry was added and finally also bottom topography and wind forcing were
included. Along this model path, the main propagation direction of temperature
anomalies in the oscillation remains (north)westward and phase differences re-
main such that Ψ′M slightly lags ΔTET −W , whereas Ψ′Z lags ΔTNT −S by slightly
more than half an oscillation period; Ψ′M always lags Ψ′Z .

6.7.2. The SH configuration: thermohaline flows
The immediate extension of the results in the previous subsection is the rep-

resentation of the salt transport. In most cases, a mixed boundary formulation
has been used (Cai, 1995) or the ocean is coupled to an energy balance atmo-
spheric model with a prescribed freshwater flux (Chen and Ghil, 1996). Te Raa
and Dijkstra (2003b) showed that the multidecadal mode also persists in a such a
coupled ocean-atmosphere model and its growth rate is affected by the freshwater-
flux pattern and strength. In Chen and Ghil (1996), the corresponding sustained
decadal-to-multidecadal variability was found. In the next subsection, we will
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focus on the main new elements that are introduced through the presence of the
salinity field: these are multiple equilibria and a new class of centennial modes.

6.7.2.1 Multiple equilibria and new internal modes
In Dijkstra et al. (2001), the bifurcation diagram for the single-hemispheric

thermohaline flows under mixed boundary conditions was presented. The temper-
ature forcing was of restoring type with TSTT as in (6.54) and the surface freshwater
flux FSFF was taken as

FSFF (θ) = − 1
cos θ

cos
(
π
θ − θS
θN − θS

)
(6.59)

where θS = 10◦N and θS = 74◦N and there is no wind forcing.
When the dimensionless strength of the freshwater flux, σ (section 6.6.1), is

increased, a saddle-node bifurcation occurs on the branch of the TH solution. The
flow changes from a northern-sinking (TH) solution — through a two-cell solu-
tion — to a southern-sinking (SA) solution. The bifurcation diagram (Fig. 6.37)
consists of two back-to-back saddle-node bifurcations, qualitatively similar to that
of the two-box Stommel (1961) model (section 3.1).

Figure 6.37. Bifurcation diagram showing the absolute maximum meridional overturning ΨM of
the flow in a single-hemispheric basin with the nondimensional strength of the freshwater flux σ as
control parameter (Dijkstra et al., 2001). The drawn branches represent stable steady states, while
the steady states on the dashed branch are unstable. The branches are separated by saddle-node
bifurcations which are indicated by the filled circles. In the case shown here, the multiple equilibria
regime in σ is very small.

By investigating the linear stability of the steady states for values of σ smaller
than those at the saddle-node bifurcation on the TH branch, two types of damped
centennial modes were found (Te Raa and Dijkstra, 2003a). One type of modes,
say C1, appears also in pure thermal flows, but in the second type of modes, say
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C2, also salinity perturbations play a role. The imaginary and real parts of mode
C2 are shown in Fig. 6.38. To characterize this mode, the meridional overturning
streamfunction and the zonally averaged temperature and salinity field are plotted.
There is a strong positive meridional overturning anomaly in most of the basin

(a) (b)

(c) (d)

(e) (f)

Figure 6.38. Imaginary (left) and real (right) parts of the eigenvector corresponding to the cen-
tennial mode C2 (Te Raa and Dijkstra, 2003a). (a) and (b) Meridional overturning streamfunction.
(c) and (d) Zonally averaged temperature. (e) and (f) Zonally averaged salinity.

(Fig. 6.38a), except in the southern part, where there is a weak negative anomaly
near the surface. Half a period later, the negative overturning anomaly occupies
the whole basin (Fig. 6.38b).

For the existence of both type of centennial modes, the advection of density
anomalies by the steady state THC is essential. For mode C1, the density per-
turbation is completely determined by temperature, even if salinity perturbations
are allowed, whereas for mode C2, both temperature and salinity determine the
density. It was shown that the oscillation period is mainly determined by the over-
turning time scale of the steady-state flow and that the modes can be followed to a
two-dimensional nonrotational situation (Te Raa and Dijkstra, 2003a). The latter
suggests that the oscillations are caused by the same physics as the overturning os-
cillations in section 6.4.2 (Dijkstra and Molemaker, 1997). Although propagation
characteristics are different in the three-dimensional version of the mode, these
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changes are not essential for the existence of the mode. The latter does, for ex-
ample, not hold for the multidecadal mode, which is absent in a two-dimensional
situation.

The centennial modes and multidecadal mode have their origin in the inter-
action of so-called stationary SST modes (Dijkstra, 2005). The latter modes are
the eigenfunctions of the linear stability problem of the no-flow solution in the
single-hemispheric basin. If one considers only a thermal forcing field, these
modes can be ordered (n,m, l) where the numbers refer to the number of zeroes
of the eigenmode in either zonal, meridional and vertical direction, respectively.
At small thermal forcing, mergers between nonoscillatory SST modes occur to
give rise to oscillatory modes. These mergers are similar to those which occurred
in the barotropic QG model of wind-driven ocean circulation, where they lead to
the gyre mode (section 5.5). With an increasing meridional temperature difference
over the basin, say ΔT , first a merger occurs between the (0, 0, 1) mode and the
(1, 0, 0) mode which leads to the multidecadal mode. For a slightly larger ΔT ,
the (0, 1, 0) SST mode and the (0, 1, 1) SST mode merge to give rise to the least-
damped centennial mode. While the growth factor of the centennial mode (CM)
remains negative for larger ΔT , that of the multidecadal mode (MM) eventually
becomes positive.

Note that the type of merger explains why the CM is found in 2D models (Di-
jkstra and Molemaker, 1997; Te Raa and Dijkstra, 2003a), but the MM is not. The
CM is a merger between two modes which have no zonal structure (the (0, 1, 0)
and (0, 1, 1) modes). These SST modes will also be present in 2D models and
hence a merger can occur. The MM is a merger between one mode with has zonal
structure and one which has not; the (1, 0, 0) SST mode is certainly absent in 2D
models. Hence, a merger needed to obtain the MM cannot occur in these models
and the MM mode is essentially three-dimensional.

Based on the origin of the oscillatory modes as mergers of the SST modes one
can guess the classes of oscillatory modes present when salinity is included. Note
that in the zero forcing limit, the classes of SST modes and SSS modes (solutions
to the diffusion equation for salinity) are totally decoupled and the algebraic mul-
tiplicity of the eigenvalues is two. When the background flow is only thermally
forced and its stability is considered under prescribed-flux conditions, mergers
between the SST modes give rise to the MM and CM modes as above. However,
mergers of SSS modes and between SSS and SST modes are also possible giving
rise to the additional class of CMs found in Te Raa and Dijkstra (2003a). Because
of the absence of a mean salinity gradient in Te Raa and Dijkstra (2003a), this
new class of modes remained damped.

6.7.2.2 Finite-amplitude flows
The single-hemispheric thermohaline flows have been extensively analysed in

a series of papers (Marotzke, 1991; Weaver and Sarachik, 1991) employing the
MOM model and the different results were compared and further analysed in
Weaver et al. (1993). In the latter study, three different zonally independent sur-
face salinity profiles are used in the spin-up of the model under restoring boundary
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conditions, labelled A, B and C in Fig. 6.39a. For each of these profiles a (quasi-)
steady state is found and the freshwater flux is diagnosed. The zonally averaged
part of this flux is shown in Fig. 6.39b. For each situation A-C, two trajectories

(a) (b)

Figure 6.39. (a) Surface salinity profiles (which are zonally independent) used in simulations
under restoring boundary conditions in Weaver et al. (1993). (b) Zonally averaged freshwater flux
of the steady state calculated with the restoring conditions in (a).

of the model were computed under mixed boundary conditions. One trajectory
starts from the state at the end of the spin-up and the other starts from the ocean
at rest. For case A, both trajectories end up in the same equilibrium state which
is also the equilibrium state after spin-up. The flow consists of one overturning
cell with sinking in the north and with a volume transport of about 12 Sv. For
case B, both trajectories give different states (shown in Fig. 6.40) with different
overturning strengths (about 9 and 12 Sv). The surface circulation is quite similar
over most of the domain, showing the wind-driven transport in the form of Ekman
cells. The solutions differ most in the extent of the sinking region at the northern
boundary being much smaller in the case of stronger overturning (Fig. 6.40b). For
case C, the restoring solution (Fig.6.41a) is unstable under mixed boundary con-
ditions and both trajectories have a complicated temporal dependence but end up
(after about 10,000 years) in a (quasi-) steady state shown in Fig.6.41b. For the
latter solution, now a second cell has developed near the northern boundary and
the strong downwelling region has been moved southward. Along the northern
boundary 9 Sv of water is transported upwards.

These studies show the sensitivity to the shape and magnitude of the freshwater-
flux strength on the type of equilibria found. In view of the bifurcation diagram in
Fig. 6.37, the different equilibria can only be interpreted as being caused by small
differences in convection sites as explained in section 6.6 (Vellinga, 1998). If the
flows would be in the multiple equilibria regime, the only transition which could
happen is that from a TH to a SA solution.

The temporal behavior in case C above has been investigated in Weaver and
Sarachik (1991) and Weaver et al. (1993). The time series of the net basin-
averaged surface heat flux is presented in Fig. 6.42a, starting from an initial ocean
at rest and ending in the same state as presented in Fig. 6.41b. A Fourier spec-
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(a) (b)

Figure 6.40. Two equilibrium solutions found for case B of Weaver et al. (1993) under the same
mixed boundary conditions, but different initial conditions. (a) Equilibrium state found with the
spin-up (restoring) solution as initial condition. (b) Equilibrium state found from an initially mo-
tionless ocean.

(a) (b)

Figure 6.41. (a) Equilibrium state found after restoring conditions in case C of Weaver et al.
(1993). This solution is unstable under mixed boundary conditions and the equilibrium state found
after 10,000 years of integration is shown in panel (b).

trum of this time series (Fig. 6.42b) shows significant energy in the decadal-to-
multidecadal range. Weaver et al. (1993) demonstrated that the temporal behavior
towards the steady state (Fig.6.41b) remains robust when the vertical viscosity is
increased although in that case higher frequency motions are more damped. Sea-
sonally varying forcing has no profound effect on the decadal variability and also
with stochastic forcing in the freshwater flux, the decadal variability remains a
dominant mode of variability.

Signatures of multidecadal variability are subsequently studied in Weaver and
Hughes (1994). A single hemispheric basin, low resolution MOM-type model
is used which captures features of the continental boundaries surrounding the
Atlantic ocean. The model is forced by observed surface temperature (Levitus,
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(a) (b)

Figure 6.42. (a) Trajectory computed in case C of Weaver et al. (1993) starting from an initial
state at rest; displayed is the net basin averaged surface heat flux H . (b) Power spectrum (with
power spectral density P versus frequency) of the time-series in (a).

1982), observed freshwater flux (Schmitt et al., 1989) and wind forcing (Heller-
man and Rosenstein, 1983). After an initial spin-up, the model solution settled
down into a periodic orbit with a period of about 22 years. There appears to be
a slow phase of the oscillation associated with the decrease of the basin averaged
surface heat flux followed by a fast phase of increase of this quantity. The mech-
anism of this variability is associated with large changes in convective activity in
the Labrador Sea region of the model, leading to changes in the northward heat
transport. In the slow phase of the oscillation, the Labrador Sea region is cooling
while weak overturning occurs at the southwest boundary of Greenland. During
the strong phase of the oscillation the deep water formation region moves to the
Labrador Sea, once the cooling process and zonal overturning have set-up a suffi-
ciently strong zonal pressure gradient. Patterns of the SST-anomaly show largest
amplitude in the western North Atlantic with maximum amplitude of about 1.2◦C.
It was shown that this variability is insensitive to the freshwater-flux forcing and
wind-stress forcing and seems to be caused by processes involving the surface
heat flux, convection and the overturning circulation, but the precise details are
unclear.

In the FGM study of Winton and Sarachik (1993), the mean overturning is ther-
mally direct with sinking in the north and upwelling at the southern boundary. An
oscillation with a period in the order of the overturning time scale is found, with a
period of about 250 year, and is termed a loop oscillation. The mechanism of the
loop oscillation is related to advection of salinity anomalies along the mean over-
turning flow similar to that in Welander (1986). The presence of a positive salinity
anomaly at low latitudes will decrease the overturning circulation. As a conse-
quence, surface water is exposed longer to the freshwater forcing and becomes
more saline at low latitudes. However, the salinity anomaly propagates with the
flow, it reaches higher latitudes and eventually accelerates the circulation. It then
escapes the freshening effect of the freshwater flux at higher latitudes. Simultane-
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ously, a negative salinity anomaly develops at lower latitudes and the cycle starts
all over again. It appears that the occurrence of these oscillations is very sensitive
to the shape of the freshwater forcing profile. Moreover, the occurrence of the
oscillation appears sensitive to the nonlinear nature of the equation of state used.

In simulations with a very strong freshwater flux at high latitudes, short peri-
ods of very strong overturning are found, which succeed long periods of collapsed
overturning. These events are called flushes and the mechanism which has been
proposed is essentially diffusive in nature. In Weaver et al. (1993), the circu-
lation under restoring conditions (Fig. 6.43a) is unstable under mixed boundary
conditions and eventually collapses (Fig. 6.43b). This collapse is referred to as
the Polar Halocline Catastrophe (PHC) and is associated with the spreading of a
tongue of low-salinity water equatorward. The circulation stays in the collapsed

(a) (b)

Figure 6.43. (a) Steady state after restoring conditions in a slightly northward extended basin.
(b) Collapsed state which results under mixed boundary conditions (Weaver et al., 1993).

state for about 2000 years and the low-latitude ocean absorbs an enormous amount
of heat. Through vertical diffusion this heat reaches the low latitude deeper lay-
ers and through horizontal diffusion it reaches the deep layers at high latitudes.
Meanwhile, the high-latitudes surface water remains cold through the atmospheric
forcing. If the deep water becomes sufficiently warm at high latitudes, the water
column becomes statically unstable and the induced overturning is so violent that
the ocean looses all the heat stored over the period of collapse in only a few
decades. After this flush, the freshening effect at high latitudes dominates again
and the circulation collapses once more, explaining the oscillatory nature of these
flushes.

In Marotzke (1991), flushes do not appear when wind forcing is included be-
cause the wind-driven poleward salt transport is sufficient to create dense enough
polar water, such that convection is maintained. They do occur when the wind
forcing is absent. However, in Weaver and Sarachik (1991), flushes do occur
even with wind forcing since the high-latitude freshening is not compensated by
the wind-driven salt transport. Winton and Sarachik (1993) find similar variabil-
ity, which they call deep-decoupling oscillations, in an FGM. Each oscillation is
comprised of three stages: (i) a decoupling period with a weak MOC and simi-
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lar properties as the collapsed state discussed above, (ii) a flush, and (iii) a stage
where the MOC recovers. With increasing strength of the freshwater flux, the
decoupled phase becomes longer and the flush becomes more energetic.

6.7.3. The DH configuration: thermohaline flows
As will be explained in section 6.7.3.2, the discovery of multiple equilibria in

the equatorially symmetric set-up was the! result (Bryan, 1986) which has stim-
ulated nearly of the research on the stability of the THC. In this section, we have
chosen to present these important results after the relevant bifurcation diagrams,
which are presented next.

6.7.3.1 Bifurcation diagrams
Bifurcation diagrams for the equatorially-symmetric double-hemispheric con-

figuration were computed in Weijer and Dijkstra (2001). The patterns of surface
temperature TSTT and surface freshwater flux FSFF are prescribed as

TSTT (θ) = cos π
θ

θN
(6.60a)

FSFF (θ) =
1

cos θ
cos π

θ

θN
(6.60b)

over the domain (φ, θ) ∈ [φW = 286◦, φE = 350◦]× [θS = 60◦S, θN = 60◦N].
The forcing is such that the meridional equator-to-pole temperature difference is
equal to 20◦C. The wind-stress forcing considered is an idealized profile for the
Atlantic mimicking a double-gyre wind stress in each hemisphere, i.e., in dimen-
sionless form

τφ(θ) = −τ cos 4π
θ − θS
θN − θS

(6.61a)

τ θ = 0 (6.61b)

The dimensional temperature profile TSTT , zonal wind stress τφ and the freshwater
flux FSFF are shown in Fig. 6.44.

In the model used in Weijer and Dijkstra (2001), the horizontal resolution in
4◦ and the number of equidistant vertical levels is 16. In the case wind forcing
is absent (τ = 0) and other parameters similar to those in Table 6.3, (part of) the
bifurcation diagram is plotted in Fig. 6.45. Here, the absolute maximum of the
meridional overturning streamfunction Ψm is plotted versus σ. Again, the TH
solution becomes unstable at the pitchfork bifurcation P and branches of asym-
metric solutions appear. Note that, because of the norm chosen, both the NPP and
SPP solutions have the same value of Ψm. At the saddle-node bifurcation L1, the
asymmetric branches become unstable but they regain stability through a second
saddle-node bifurcation L2. The MOC increases strongly with σ on this branch.

From the linear stability analysis of the steady states, the pattern of the mode
destabilizing the TH state at the symmetry-breaking pitchfork bifurcation is de-
termined from the eigenvector at P . Properties of the steady state flow at P are
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Figure 6.44. Plot of the pattern of the forcing functions for wind stress τφ, the atmospheric
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Figure 6.45. Bifurcation diagram in the control parameter σ. The asymmetric (NPP/SPP) solu-
tions become unstable at the saddle-node bifurcation L1 but regain stability at L2. The saddle-node
bifurcations close to σ = 0.25 reflect only minor rearrangements of the steady-state flow patterns.

plotted in Fig. 6.46. In addition to zonally averaged profiles of T , S and ρ (panels
a-c), the overturning streamfunction (panel d) and the velocity fields at 100 m and
3000 m depth (panels e and f) are shown. All fields are equatorially symmetric
and the density field is stably stratified except at high latitudes. The main down-
welling is confined to small areas in the north- and south-eastern corners of the
domain.

The same fields for the most unstable eigenvector at the pitchfork bifurcation
P (in Fig. 6.45) are shown in Fig. 6.47. The eigenvector plotted here will fa-
vor a transition to a SPP state. Despite the zonal structure that results from the
presence of rotation, the zonally averaged structures of the destabilizing pertur-
bation are strikingly similar to those in purely two-dimensional models (Dijkstra
and Molemaker, 1997) or zonally averaged models (Vellinga, 1996). Both the
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(a) (d)

(b) (e)

(c) (f)

Figure 6.46. Steady state at the pitchfork bifurcation P in Fig. 6.45. Shown are the zonally av-
eraged fields of (a) temperature T , (b) salinity S, and (c) density, as well as (d) the meridional
overturning streamfunction Ψ, and the velocity fields at (e) 100 m and (f) 3000 m depth. Dimen-
sional temperature and salinity can be computed from T ∗ − 15 = T and S∗ − 35 = S.

salinity and the temperature perturbations have a bi-polar structure (Fig. 6.47a-
b), which is positive in the Southern Hemisphere, and negative in the Northern
Hemisphere. This gives rise to an equatorially anti-symmetric density perturba-
tion (Fig. 6.47c). Its mainly positive sign in the Southern Hemisphere shows that
it is dominated by salinity. This bi-polarity of the anomalous density field sets up
an inter-hemispheric pressure difference at depth. This pressure gradient gener-
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(a) (d)

(b) (e)

(c) (f)

Figure 6.47. Most unstable eigenvector at the pitchfork bifurcation P in Fig. 6.45, destabiliz-
ing the steady TH state (Fig. 6.46). Same fields as in Fig. 6.46. Although the amplitude of the
eigenvector is undetermined, the amplitudes of the individual fields are mutually consistent. The
perturbation shown will favor a transition to an SPP state, but note that also the sign-reversed
version of this perturbation is an eigenvector, and this will favor a transition to an NPP state.

ates deep cross-equatorial flow that is confined to the viscous western boundary
layer (Fig. 6.47f). A return flow at shallower levels is established by continuity
(Fig. 6.47e). Furthermore, the density at the surface and at depth increases south-
ward and, through the thermal wind balance, this sets up a zonal flow. In the
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Southern Hemisphere, this flow is eastward at the surface and westward at depth,
in the north it is the other way around (Fig. 6.47e-f).

The MOC perturbation advects heat and salt from (sub)tropical regions south-
ward, and enhances the thermal and saline anomalies on that hemisphere. When
the meridional salinity gradient is strong enough, the density perturbation that
initially generated the overturning anomaly, is amplified. The surface salt flux
amplitude σ must therefore exceed a critical value for the TH state to become
unstable.

6.7.3.2 Finite-amplitude flows
The issue of multiple equilibria in ocean models was addressed in a double-

hemispheric set-up in Bryan (1986) using the MOM model and has been repro-
duced in Weaver and Sarachik (1991). Bryan (1986) first used the freshwater
flux and solution of a single-hemispheric version of the model (over the domain
0-90◦N) which was obtained under restoring conditions with observed salinity.
This solution and the surface forcing were reflected through the equator to pro-
vide a full basin solution as initial condition (Fig. 6.48a). The freshwater flux
of this state was diagnosed and used in subsequent runs under mixed boundary
conditions.

When a negative salinity anomaly of 1 psu is (instantaneously) added poleward
of 45◦S, the deep convection in the Southern Hemisphere is interrupted. The
residence time of water parcels in the surface layer increases and leads through the
convective feedback to a collapse of the circulation in the Southern Hemisphere
and within 50 years a pole-to-pole circulation is reached (Fig. 6.48b) with sinking
in the north. Adding a positive salinity anomaly of 2 psu in the same region
(poleward of 45◦S) induces an intensification of the meridional overturning, which
leads to a southern-sinking solution through the advective feedback mechanism in
about 200 years (Fig. 6.48c). A similar simulation using an initial condition of
a 2 psu salinity anomaly in the northern region gives a northern-sinking solution
(Fig. 6.48d).

More recent studies looked more systematically to the structure of solutions of
the MOM model. In Klinger and Marotzke (1999), a clever way is found to deter-
mine asymmetric states under equatorially symmetric conditions by varying the
temperature differences over the northern and southern part independently. Sev-
eral equilibria are found in a double-hemispheric configuration and for the case
when the equator-to-pole temperature difference is the same in both hemispheres,
the structure of equilibria again appears to arise through a (subcritical) pitchfork
bifurcation. A case with a smaller temperature difference in the Northern Hemi-
sphere leads to several different asymmetric states and the bifurcation diagram
is more complicated. However, precise statements on the bifurcation structure
and symmetry breaking cannot be obtained through a multiple of time-dependent
simulations, since the unstable steady states will always remain hidden.
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(a) (b)

(c) (d)

Figure 6.48. Meridional overturning streamfunction of equilibrium states under mixed boundary
conditions in Bryan (1986), obtained from different initial conditions. (a) Reference state under
restoring boundary conditions. (b) Circulation after a negative 1 psu salinity perturbation south-
ward of 45◦S. (c) Circulation after a positive 2 psu salinity perturbation southward of 45◦S. (d)
Circulation after a positive 2 psu salinity perturbation northward of 45◦N.

6.7.4. Multi-basin and global models
As a next step in the model hierarchy, we proceed to models where aspects of

interbasin transport are represented. Again, bifurcation diagrams are presented
first (section 6.7.4.1) and these results are followed by those of low-resolution
ocean models (section 6.7.4.2).

6.7.4.1 Bifurcation diagrams
As a first step towards a multi-basin set-up, the bifurcation diagram of the At-

lantic configuration with an open southern channel (Fig. 6.31d), referred to as the
‘open’ case, was presented in Dijkstra et al. (2003). This is an imperfection of the
equatorially double-hemispheric case discussed in the previous section (referred
to as the ‘closed’ case). The equatorial symmetry is broken as soon as the southern
channel is opened and the different branches of equilibria disconnect. Branches
of solutions are again determined versus the dimensionless amplitude of the fresh-
water forcing σ, with the pattern as in (6.32). The main results are schematically
summarized in Fig. 6.49.

The results for the ‘closed’ case (thermohaline forcing, no wind) are shown in
Fig. 6.49a with the pitchfork bifurcation in the relevant range of σ. Note that this
bifurcation is now subcritical in accordance with the results in section 6.5.1. It is
the shape of the freshwater flux which determines this property of the pitchfork
and a physical explanation is given in Dijkstra et al. (2003). The changes in bi-
furcation diagram between the idealized ‘closed’ and ‘open’ cases demonstrates
the impact of opening the Southern Ocean (compare Fig. 6.49a and Fig. 6.49b).
Even without wind, the open southern channel gives a preference for the northern-
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sinking solution as the southern-sinking solution becomes an isolated branch. The
physical reason for this preference is that the southern passage reduces the zonal
pressure gradient that can be sustained and thus decreases the meridional overturn-
ing circulation of the southern-sinking solution. In the idealized ‘open’ case, the

Depends on E-P

Multiple equilibria

Not relevant to climate

Single equilibrium

Multiple
equilibriaq

pp

σ σ

Symmetric

Small Asymmetry

Modest Asymmetry

Realistic Asymmetry

(a)

(b)

(c)

(d)

1
σ 2σ

Figure 6.49. Sketch of different bifurcation diagrams relating the symmetric ‘closed’ case to
the strongly-asymmetric, realistic Atlantic basin case. For each, a measure of the equatorially-
asymmetric component of the overturning is shown as a function of the freshwater-flux parameter
σ. (a) For latitudinally symmetric boundary conditions. The subcritical pitchfork requires fairly
realistic latitude structure of the freshwater flux FSFF as in (6.32). (b) With a slight latitudinal asym-
metry introduced, such as opening the Southern Ocean. The back-to-back saddle node bifurcation
diagram appears in the interval from σ1 to σ2. (c) With larger latitudinal asymmetry, such as
including winds (but at smaller than observed strength) of the Southern Ocean. (d) Including all
sources of asymmetry. The region of the multiple equilibria regime and unique regime are indicated.

effect of including wind stress, driving an ACC and associated Ekman circulation
in the southern ocean, is dramatic. With increasing wind stress, the southern-
sinking branch shrinks through an isola (Fig. 6.49c) into a single point and finally
disappears completely (Fig. 6.49d). This indicates that the open Southern ocean
with wind forcing is an important factor in the structure of THC equilibria.

The bifurcation diagram of a global ocean model with full bottom topography,
realistic continental geometry and coupled to an energy balance model of the at-
mosphere, was presented in Weijer et al. (2003). This model has a 4◦ horizontal
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resolution and 12 vertical levels and after discretization a dynamical system with
280,000 degrees of freedom appears. With a diagnosed freshwater forcing F 1

SF
determined from a steady state under restoring conditions to the Levitus salin-
ity climatology (Levitus, 1994), the equilibrium state is unique. The strength of
the Atlantic meridional overturning of this state is that of the point labelled A in
Fig. 6.50a.

An anomalous freshwater flux is added over a local region near Newfoundland
(the domain P = (φ, θ) ∈ [300◦, 336◦]× [54◦, 66◦]) with an amplitude γpγ (in Sv)
and the freshwater flux forcing is given by

FSFF = F 1
SF (φ, θ) + γpγ F

2
SF (φ, θ) (6.62)

with F 2
SF = 1 in P and zero elsewhere. For this case, the bifurcation diagram

as in Fig. 6.50a results. It is represented as a plot of the maximum value of the
Atlantic meridional overturning streamfunction (Ψatl) of the steady solutions of
the model versus the strength γpγ of the perturbation freshwater flux. For clarity,
each point on the curve represents a steady global ocean circulation pattern which
is a solution of the full three-dimensional primitive equations. By solving for a
giant generalized eigenvalue problem, also the linear stability of each steady state
is determined. Linearly stable states are indicated by a solid linestyle, whereas
unstable steady states have a dashed linestyle. Three steady states exist for γp =
−0.15 Sv (states B, C and D in Fig. 6.50a) of which B and D are stable and state
C is unstable. When γpγ is smaller than -0.19 Sv, another unique regime appears
with a reverse Atlantic MOC state (state E in Fig. 6.50a), the latter having strong
southern sinking (Weijer et al., 2003).

When there is only a single steady state for the values of the parameters cho-
sen, say indicated by A, this state is globally stable. When this flow is subjected
temporarily to a freshwater-flux perturbation, the MOC will decrease. As soon as
the forcing has disappeared, however, the MOC will recover to that of the orig-
inal state A. However, when there are more stable equilibria, say states B and
D, the situation is different. When the anomalous forcing is applied to the state
B, the state which is reached at the time the forcing is removed may evolve to-
wards the state D. In this way, a transition takes place which can be viewed as a
finite-amplitude instability (section 2.4) of state B (Dijkstra et al., 2004).

The stability of the global ocean circulation was studied in a course-resolution
(5◦ horizontally) ocean-only model by Weijer and Dijkstra (2003). Several stable
modes with a a millennial time scale were found. The pattern of the buoyancy
anomaly propagates over the time-mean global ocean flow. Such internal oscilla-
tory modes may be at the origin of the Dansgaard-Oeschger oscillations, as was
suggested by Sakai and Peltier (1997) and Sakai and Peltier (1999) and more re-
cently by Timmermann et al. (2003).

6.7.4.2 Finite-amplitude flows
Marotzke and Willebrand (1991) used an idealized configuration of the MOM

model consisting of two similar ocean basins (from 48◦S-64◦N), mimicking the
Atlantic and Pacific basin. These basins are connected in the south by a channel
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Figure 6.50. (a) Bifurcation diagram of the global ocean circulation as a plot of the maximum
meridional Atlantic meridional overturning of the steady states versus the anomalous freshwater-
flux strength γpγγ in Sv. (b) Pattern of the meridional overturning streamfunction in the Atlantic for
the state B in (a); contour values are in Sv. (c) Similar as (b) but for state C. (d) Similar as (b) but
for state D.

(from 64◦S-48◦S) with specified transport, representing the ACC, the latter in-
ducing a north-south asymmetry. Similar simulations have been done as in Bryan
(1986), using the solution obtained under restoring conditions (in an equatorially
symmetric version of the model) as reference. The diagnosed freshwater flux of
this solution is equatorially asymmetric and the model has been run under mixed
boundary conditions using different initial conditions.

Under mixed boundary conditions, four different types of equilibria have
been found. There is a solution with northern sinking in both basins, termed
the northern-sinking solution (Fig. 6.51a), with a global meridional overturning
strength of 36 Sv. By inducing negative (positive) buoyancy perturbations in the
Atlantic (Pacific), a conveyor type of circulation was found; the Atlantic MOC of
the solution is shown in Fig. 6.51b and the Pacific MOC in Fig. 6.51c. Also a
so-called ‘inverse conveyor’ could be found; this is a conveyor solution with the
roles of Pacific and Atlantic interchanged. Finally, a southern-sinking state could
be found (Fig. 6.51d), with sinking in the south in both ocean basins. When a
strong asymmetric freshwater-flux forcing is considered, the spin-up solution is
unstable under mixed boundary conditions, a polar halocline catastrophe occurs,
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and eventually a southern-sinking solution is obtained. The diagnosed freshwater
flux shows high precipitation over the Northern Hemisphere such that a northern-
sinking state cannot exist in this case.

(a) (b)

(c) (d)

Figure 6.51. Equilibrium states under mixed boundary conditions in Marotzke and Willebrand
(1991), obtained from different initial conditions. (a) Global MOC of the northern-sinking solution.
(b) Conveyor belt, Atlantic MOC. (c) Conveyor belt, Pacific MOC. (d) Global MOC of the southern-
sinking solution.

A similar MOM configuration was used in Weaver et al. (1994) but the extent
of Pacific and Atlantic was different and a fully prognostic ACC-channel flow
was included. The procedure of computation was similar to that in Marotzke
and Willebrand (1991) and three different solutions of the Atlantic MOC were
found. A ‘normal’ conveyor solution (Fig. 6.52a), a weak conveyor (Fig. 6.52b)
and a strong conveyor (Fig. 6.52c). For these three equilibrium flows, the Pa-
cific circulation is quite the same. They did not find northern sinking and inverse
conveyor solutions, likely because of a more limited northward extension of the
Pacific basin. When stochastic noise is added to the freshwater flux, the ‘normal’
conveyor solution displays variability on decadal-to-centennial time scales. With
increasing amplitude, this state collapses and also flushes appear, similar to those
in the single-hemispheric models discussed in section 6.7.2.

The effect of slightly more realistic surface boundary conditions for the temper-
ature was considered in Rahmstorf (1995a) using a configuration similar to that
in Marotzke and Willebrand (1991). With this new boundary condition for the
heat flux, which is derived from an energy balance model, there is a stronger scale
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Figure 6.52. Atlantic meridional overturning streamfunction of three different equilibrium solu-
tions in Hughes and Weaver (1994).

selectivity of the atmospheric response to SST anomalies than in the traditional
restoring boundary condition. With this new boundary condition, the conveyor
solution is more stable than under the more traditional conditions. In this configu-
ration, also different equilibria associated with the convective feedback have been
found (Rahmstorf, 1994). The Atlantic MOC patterns of the different states are
plotted in Fig. 6.53, and differ by small details of the flow in the northern part of
the basin. The actual differences come from changes in the pattern of sites where
mixing occurs due to the convective adjustment procedure.

The global version of the MOM, incorporating fairly realistic geometry, has
been used by England (1993) and later by Rahmstorf (1995b) to study the stability
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Figure 6.53. Atlantic meridional overturning streamfunction of three different ‘conveyor’ solu-
tions due to different convection patterns (Rahmstorf, 1994).

of THC. The circulation was driven by a prescribed freshwater flux, wind-stress
forcing and instead of a prescribed temperature, a zeroth order model of ocean-
atmosphere interaction was used. The freshwater flux forcing was changed by
adding slowly varying perturbations at different locations and the behavior of the
THC was monitored. When the freshwater flux was added in the northern North
Atlantic with a magnitude of 0.05 Sv per 1,000 years, a response as shown in
Fig. 6.54 was obtained. On the vertical axis, the amount of North Atlantic Deep
Water is plotted while on the horizontal axis, the freshwater forcing is shown (in
Sv). With increasing freshwater forcing, the strength of the MOC decreases. At
some point, the overturning rapidly decreases, while convective transitions cause
the wrinkles in the curve. When the freshwater input is reversed, hysteresis oc-
curs and it takes a negative freshwater (i.e., salt) input obtain a MOC state with
strong northern sinking. A nice overview of the role of the hysteresis behavior
of the THC in paleoclimate variability and its relevance to climate change is pro-
vided in Rahmstorf (2000). Transitions between the THC, involved in a so-called
stochastic resonance, are suggested as a mechanism for the Dansgaard-Oeschger
oscillations during the last glacial (Ganopolsky et al., 2001).
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Figure 6.54. Trajectories computed with the global version of the MOM (Rahmstorf, 1995b). On
the vertical axis the amount of NADW is plotted while on the horizontal axis, the strength of the
freshwater forcing perturbation (in the northern North Atlantic) is plotted (in Sv).

The Large Scale Geostrophic (LSG) model was suggested by Hasselmann
(1982) and subsequently developed, tested and used by Maier-Reimer et al.
(1993). The idea behind the model is to filter the fast time scale phenomena
(which are not relevant for the changes in the ocean on large space and time
scales). This is done by retaining the time derivatives in the temperature and salin-
ity equations and by diagnosing the velocity using planetary geostrophy. Inertia
is completely neglected in the momentum balance as are the local accelerations.
The free surface is treated prognostically, and the barotropic part of the equations
is integrated with an implicit time-marching scheme to allow relatively large time
steps. Prahl et al. (2003) use a version of the LSG model to investigate the width
of the THC hysteresis versus the diapycnal mixing coefficient of heat and salt,
KV . They show that, under a constant surface freshwater flux, it decreases with
decreasing KV and eventually seems to disappear at very small KV values.

Variability in the global LSG model has been investigated in Mikolajewicz and
Maier-Reimer (1990). The model is spun-up using restoring conditions on the
surface salinity and temperature and annual-mean wind stress. The barotropic
streamfunction of the state obtained after 3800 year of integration is shown in
Fig. 6.55a and the Atlantic MOC in Fig. 6.55b. The freshwater flux is derived
from the situation at spin-up and the circulation is continued under mixed bound-
ary conditions; it is found that the circulation is stable. Subsequently, a stochastic
component is added to the freshwater flux (as seen in Fig. 6.56a) and the response
of the NADW outflow at 30◦S is plotted in Fig. 6.56b. Low-frequency variability
is found and linked due to integration of high frequency surface forcing by the
ocean (Hasselmann, 1976). However, at a time scale of about 300 years, more en-
ergy in the spectrum is found than can be expected from this mechanism. Analyses



350 NONLINEAR PHYSICAL OCEANOGRAPHY

(a) (b)

Figure 6.55. (a) Time-mean barotropic streamfunction and (b) MOC in the LSG model (Mikola-
jewicz and Maier-Reimer, 1990).

of the salinity anomalies associated with this variability shows a dipole pattern,
which is advected and interacts with the Atlantic THC.

(a) (b)

Figure 6.56. (a) Time series (horizontal scale in years) of the net freshwater flux (in 103 ms−1)
in the Southern Ocean in the LSG model Mikolajewicz and Maier-Reimer (1990). (b) Outflow (in
Sv) of NADW at 30◦S for the same model.

6.8. Coupled ocean-atmosphere models
Low-resolution (globally) coupled ocean-atmosphere models have been used

to study both the possibility of multiple flow patterns of the ocean circulation
as well as its variability on multidecadal time scales. In so-called Earth system
Models of Intermediate Complexity (EMICs), the atmosphere and/or ocean com-
ponent are strongly simplified (Claussen et al., 2002). Although the EMICSs are
certainly useful for climate studies, since one can simulate the climate over longer
time periods, they will not be considered here. The main reason is that it is not
clear for most, if not all, of these models whether and how close their solutions
approximate those of primitive equation models. Hence, unless robust qualitative
information can be extracted (e.g., from a broad parameter study), not much long
lasting knowledge is expected to arise from some individual trajectories of these
models.

The other class of models are those which directly derive from the primitive
equations through discretization. The best analysed coupled ocean-atmosphere
model, which has been integrated over long times, is the GFDL-R15 model de-
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scribed in Manabe and Stouffer (1988), with improvements made later on (Man-
abe and Stouffer, 1993; Delworth et al., 1993; Manabe and Stouffer, 1995). The
horizontal resolution of the global ocean model is 4◦ and it has 12 vertical levels.

Technical box 6.4:
Flux correction

‘Early’ atmosphere models (see chapter 10 by J.T. Kiehl in Trenberth (1993))
were either coupled to a mixed layer ocean model or simply the sea surface tem-
perature was prescribed. Similarly, many ocean models have been developed (and
tuned) with prescribed wind stress and buoyancy forcing. The latter is usually of
the form of so-called ‘restoring’ conditions

FHF = λT (TSTT − T ) ; λT =
ρ0CpCC HmHH

τTττ

FSFF = λS(SS − S) ; λS =
HmHH

τSτ

where τTττ and τSτ are restoring time scales of the heat flux FHF and freshwater flux
FSFF forcing towards observed sea surface temperature TST and sea surface salinity
SS profiles. In most models, these fluxes are applied as source terms in the upper
(vertical) level of the flow domain having a thickness Hm. Suppose that both
equilibrium states of a certain atmosphere model and a certain ocean model have
been determined using the procedures above. Let F

o
H and F

o
S be the heat and

freshwater flux computed from the ocean state at equilibrium and F
a
H and F

a
S the

downward heat flux and freshwater flux computed from the atmosphere solution,
then in general F

a
H �=�� F

o
H and F

a
S �=�� F

o
S . When both models are coupled, the

(coupled) initial state is no equilibrium state of the coupled model. Imagine that
the atmospheric freshwater flux is much larger in the northern North Atlantic than
that maintaining the overturning circulation in the ocean model, hence F

a
S > F

o
S .

In the coupled simulation, the density of the upper ocean will decrease in time
and as a consequence, the lateral buoyancy gradient decreases and convection is
inhibited. If no other mechanisms compensate for the reduced lateral buoyancy
gradient, the circulation may collapse completely. This troubles the simulation of
a reasonable mean state. To prevent this ‘drift’, correction procedures have been
devised to keep the modelled mean state near a realistic state usually referred to
as ‘flux-correction’ or ‘flux-adjustments’ (Sausen et al., 1988). In one of these
procedures (Cubasch et al., 1992) corrections CH and CS are computed from

CH = F
o
H − F

a
H ; CS = F

o
S − F

a
S

Within the coupled simulations, the heat flux prescribed to the ocean model is
then taken as

F oHF = F aHF + CH ; F oSF = F aSF + CS
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where F aHF and F aSF are the actual time dependent heat and freshwater fluxes com-
puted from the atmosphere model. The effect of the time-independent corrections
is that the equilibrium state of the uncoupled models is now by construction an
equilibrium solution of the coupled model (if F a

HF = F
a
H then F oHF = F

o
H ). An-

other method is to use the equilibrium fluxes of the atmospheric model during the
construction of the equilibrium of the ocean model (during the so-called ‘spin-
up’). In this case,

F oHF = F
a
H + λT (TSTT − T ) ; F oSF = F

a
S + λS(SS − S)

are prescribed as boundary conditions during spin-up. When the ocean reaches
equilibrium, the fluxes F

o
H and F

o
S are determined from the final temperature

and salinity profile. Flux adjustments are determined from the last hundred (or
thousand) years of integration (which provide the solution as (T , S))

CH = λT (TSTT − T ) ; CS = λS(SS − S)

and these corrections are applied in the same way as the first procedure in the
coupled simulation. Here too, when F a

HF ≈ F
a
H and F aSF ≈ F

a
S , a coupled mean

state results which is close to the equilibrium of both uncoupled ocean and at-
mosphere models. Although there are several other variants of flux-correction
(Weaver and Hughes, 1996) they all share the same goal: to correct systematic
errors in the individual model components. The defence of the use of flux ad-
justments has been that the corrections are time-independent and hence should
not influence the time-dependent behavior of the coupled system. That this is not
true, will be shown below using two-dimensional models. Other studies, using
box models (Marotzke and Stone, 1995), have indicated that stability properties
can also change. With the improvement of the individual model components, also
the need for flux correction will decrease and finally, the concept and practise will
(must!) be totally abandoned.

Indications for the existence of multiple equilibria were already found in early
versions of the GFDL-R15 model (Manabe and Stouffer, 1988). From a state of
rest, both ocean and atmosphere were spun-up during a preliminary integration.
The circulation obtained after 1000 ‘upper ocean’ years had hardly any overturn-
ing and showed very low salinity North Atlantic surface waters. At this point, it
was concluded that the atmosphere model could not provide the correct freshwa-
ter flux. So, one simulation was continued using restoring conditions on salinity
for 1000 ‘upper ocean’ years. From this simulation, the freshwater flux was di-
agnosed and used to correct the freshwater flux from the atmosphere model (see
Technical Box 6.4) . Next, the simulation was continued and it ended up in an
equilibrium state E1. When the preliminary simulation was continued using the
same flux correction, an equilibrium state E2 was obtained. The two different
meridional overturning streamfunction patterns of the states E1 and E2 are shown
in Fig. 6.57; note that north is to the left. The states differ considerably in the
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amount of overturning, which is about 12 Sv in Fig. 6.57a, but nearly zero in
Fig. 6.57b. As can be expected, the states display an enormous difference in sur-
face temperature and salinity patterns with the weak overturning state having a
smaller surface density in the northern North Atlantic.

(a) (b)

Figure 6.57. The meridional overturning streamfunction of the two equilibrium states obtained
under similar forcing conditions in the coupled model of Manabe and Stouffer (1988). (a) StateE1.
(b) State E2; note that north is to the left.

The multiple equilibria structure appears to be a robust feature in coupled
ocean-atmosphere models. Manabe and Stouffer (1999), for example, showed
that a weak MOC state is reached as a result of a certain freshwater perturbation
in case the ocean model has a small vertical mixing coefficient of heat and salt
that varies with depth. They found that with a larger, but constant, vertical mixing
coefficient, the MOC reduced substantially but recovered after some time. Tziper-
man (1997, 2000) demonstrates that the occurrence of a weak MOC (‘collapsed’)
state depends strongly on the mean salinity field in the North Atlantic.

More recently, Vellinga et al. (2002) investigated the response of a coupled
ocean-atmosphere model (HadCM3) to a sudden negative change in surface salin-
ity in the northern North Atlantic. The overturning circulation is strongly reduced
initially, but it recovers after about 120 years. The salt transport by the subtropical
gyre appears a crucial factor in the recovery process since it is able to restore the
salt deficit caused by the initial perturbation. The latter result suggests that the
particular realization of the time-mean global ocean circulation in HadCM3 is in
a unique regime.

The response of the THC to changes in the surface buoyancy forcing is also
a central factor in the different climate change scenarios computed with current
climate models that investigate the impacts of increased atmospheric greenhouse
gas concentrations (IPCC, 2001). In chapter 8 of the IPCC (2001) report, a good
overview can be obtained on the different coupled models, which are currently
used for this task. The increased radiative forcing changes the hydrological cycle
to induce more precipitation in the North Atlantic, which slows down the MOC
in many, but not all, models. Apart from changes in the freshwater flux, also
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changes in the ocean-atmosphere heat flux may affect the MOC. The degree of
the slowdown depends on the model configuration and on the properties of the
mean climate state (Clark et al., 2002).

Variability on multidecadal time scales has been investigated in the GFDL-
R15 coupled model by Delworth et al. (1993). The 200 year time-mean of the
meridional overturning streamfunction (with a pattern similar to Fig. 6.57a) has
about 18 Sv overturning. The variability of the MOC is monitored by plotting the
annual-mean maximum value of the meridional overturning streamfunction; the
so-called THC index. Pronounced variability (Fig. 6.58a) is found with a period of
about 50 years. The difference in annual-mean model SST between four decades

(a)
(b)

Figure 6.58. (a) Time series of annual-mean maximal value of the meridional overturning
streamfunction (THC index) over 200 year of integration of the GFDL coupled model. (b) Pat-
tern obtained by Delworth et al. (1993) as the difference of four decades of high THC index states
and low THC index states.

of high THC index states and low THC index states is shown in Fig. 6.58b. This
pattern has a dipole like appearance, with action centers in the western part of
the basin. It clearly resembles the pattern shown in section 1.4 obtained from
observations (Kushnir, 1994) as the difference of SST patterns of relatively cold
years (1970-1984) and relatively warm (1950-1964) years (Fig. 1.20b).

Analysis of relations between the different fields and heat and salt budgets (Del-
worth et al., 1993) have shown that the oscillation is mainly an ocean-only phe-
nomenon. It appears driven by density anomalies in the sinking region of the
North Atlantic combined with smaller density anomalies of different sign in the
broad upwelling region. The density variations are induced by fluctuations of the
overturning circulation and the gyre circulation.

A nice set of sensitivity experiments with the GFDL R15 model (Delworth and
Greatbatch, 2000) showed that coupled feedbacks between the ocean and atmo-
sphere are not involved in the multidecadal variability. When the ocean model is
forced by the climatological seasonal cycle of surface fluxes, no multidecadal vari-
ability appears. When the ocean model is forced by annual-mean surface fluxes,
the multidecadal variability is similar to that of the coupled model. The surface
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heat flux is shown to be the essential component of the surface fluxes causing
the variability. It is concluded that the multidecadal variability can be attributed
to “a damped mode in the ocean system, which is continuously excited by low-
frequency atmospheric forcing”. Although this is an important result, it provides
neither a mechanistic explanation for the physical processes setting the time scale
nor for its spatial pattern.

An analysis of the multidecadal variability in a 900-year simulation (Delworth
et al., 2002) with the GFDL-R30 model was performed in Dijkstra et al. (2005).
The main difference between this version the GFDL-R15 model is the higher spa-
tial resolution in both the atmospheric and oceanic components. The horizontal
resolution of the ocean model in the GFDL-R30 model is 1.875◦ in longitude by
2.25◦ in latitude, with 18 unevenly spaced levels in the vertical. As in previous
versions of the GFDL-climate model, ‘flux adjustments’ are used.

The simulated maximum time-mean meridional overturning of 25 Sv is quite
large compared to observations; the sinking mainly occurs between 60◦N and
65◦N . An M-SSA analysis reveals a statistical mode of variability of 44 years
in the annual-mean Atlantic meridional overturning streamfunction. The max-
imum of the meridional overturning streamfunction anomaly, ψM , is plotted in
Fig. 6.59a over a 200-year interval. The same time scale of variability is found
in potential temperature, salinity, horizontal velocities and potential density at
several vertical model levels. The anomaly patterns of the meridional overturning
streamfunction ψ of this statistical mode are shown in Fig. 6.59b-e for four phases
during the oscillation. The starting time was chosen to be year 600, when the am-
plitude ψM of the statistical mode is near maximum, and each subsequent panel is
6 years later. Together, the plots show nearly half of the cycle of the oscillation and
the other half-cycle is similar but with anomalies of reversed sign. In Fig. 6.59b,
the overturning is about 2.5 Sv stronger than its average value, with a single-cell
anomaly pattern. After 6 years, the overturning anomaly has slightly decreased
(Fig. 6.59c) while keeping the same pattern. The anomaly is nearly zero after
about 12 years (Fig. 6.59d) and after 18 years in the oscillation, the overturning is
weaker than normal (Fig. 6.59e), again with the same anomaly pattern.

In Fig. 6.60, the anomaly patterns of the potential density and the horizontal ve-
locity field (at 680 m depth) of the statistical mode are plotted for four phases dur-
ing the oscillation. There is a clear westward propagation of the anomalies at this
depth over the 44-year oscillation. The horizontal velocity patterns in Fig. 6.60 are
caused by the density anomalies. At year 612, there is an anomalous anti-cyclonic
circulation east of Newfoundland, mainly induced by the positive temperature
anomaly (i.e., the negative density anomaly in Fig. 6.60c). This anomalous circu-
lation is present in the upper 1000 m of the central North Atlantic. The intensity
of this circulation lags ψM by approximately 10 years (Fig. 6.60b).

6.9. Synthesis
In this section, an attempt is made to interpret the behavior of the solutions of

ocean-only and coupled ocean-atmosphere models, as presented in the previous
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(a)

(b)(b (c))

(d)(dd (e))

Figure 6.59. (in color on page 525). Properties of the statistical mode, having a 44-year
timescale, in the GFDL-R30 model. (a) Maximum of the meridional overturning streamfunction
anomaly (Sv). (b-e) Patterns of meridional overturning streamfunction anomaly (Sv) in the North
Atlantic region. The patterns are shown at a 6-yearly interval, starting in model year 600, over
about one half-cycle of the oscillation; the other half-cycle is similar but with anomalies of re-
versed sign.
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(a) (b)

(c) (d)

Figure 6.60. (in color on page 526). Properties of the statistical mode, having a 44-year
timescale, in the GFDL-R30 model. Potential density (kg m−3) and horizontal velocity (cm s−1)
anomalies at 680 m depth in the North Atlantic region. The patterns are shown at a 6-yearly inter-
val, starting in model year 600, over about one half-cycle of the oscillation; the other half-cycle is
similar but with anomalies of reversed sign.

sections, with help of the bifurcation diagrams presented in the sections 6.3 to 6.7
for a hierarchy of simpler models. We focus on two specific questions:

(i) Can the transition between a pattern of a strong and a weak Atlantic meridional
overturning, as suggested in the hysteresis behavior in Fig. 6.54 and the results
in Manabe and Stouffer (1988), be understood in terms of a trajectory between
two stable steady states and, if so, between which states?

(ii) Can the Atlantic variability on decadal-to-multidecadal time scales, in partic-
ular the pattern and time scale of the Atlantic Multidecadal Oscillation (AMO,
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see section 1.3.2) be understood from the excitation of an internal mode of
variability of the Atlantic THC?

6.9.1. Different mean thermohaline flows?
Having computed bifurcation diagrams for a hierarchy of models of the THC,

quite a definite answer can be given to question (i) above: the hysteresis behavior
of the THC arises through a transition between the pole-to-pole NPP and SPP
solutions which is possible once the freshwater flux becomes strongly equatorially
asymmetric.

Just as for the wind-driven circulation in chapter 5, where one could take either
the single- or double gyre flow as a starting point, here one can take either the
SH or DH configuration. Again, the situation with the highest symmetry, the DH
configuration, is the most easy starting point. In the lowest level of the model
hierarchy, this would be the Welander three-box model (Welander, 1986; Thual
and McWilliams, 1992) as discussed in section 3.1. Here, as in two-dimensional
Boussinesq models (Cessi and Young, 1992; Quon and Ghil, 1992; Dijkstra and
Molemaker, 1997), in zonally averaged models (Wright and Stocker, 1991; Vel-
linga, 1996) as well as in 3D primitive equation models (Weijer and Dijkstra,
2001), a symmetry-breaking pitchfork bifurcation exists. The pole-to-pole NPP
and SPP solutions arise through symmetry breaking and the important character-
istic of these solutions is that the salt-advection feedback is active to maintain
their circulation. Hence, the overturning increases with increasing strength of
the equatorially-symmetric freshwater flux (Dijkstra and Molemaker, 1997; Wei-
jer and Dijkstra, 2001). The character of the pitchfork bifurcation, being either
subcritical or supercritical, depends on the shape of the freshwater flux. With a
‘realistic’ representation of this flux, which takes the equatorial precipitation re-
gions into account, the pitchfork bifurcation is subcritical (Klinger and Marotzke,
1999; Dijkstra et al., 2003).

As soon as asymmetry is present, the pitchfork bifurcation ceases to exist and
isolated branches appear. The degree of asymmetry of forcing and boundary con-
ditions (e.g., continental geometry) subsequently becomes central to the location
of the different branches of steady states in parameter space. The dominant asym-
metries strongly favor the northern-sinking pole-to-pole (NPP) solution for the
following reasons:

The slightly asymmetric surface freshwater flux favors the northern-sinking
(NPP) solution, because the salinity is relatively larger in the northern part of
the basin (Dijkstra and Neelin, 2000).

The asymmetric continental geometry of the Atlantic also favors the NPP so-
lution, through the asymmetric air-sea interaction (Dijkstra and Neelin, 2000).

The lateral salt and heat input into the Atlantic basin due to interbasin ex-
changes also favor the NPP solution (Weijer et al., 1999, 2001) because of the
relative decrease in surface density in the southern part of the basin.
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The presence of the opening in the Southern Ocean also strongly favors the
NPP solution and this effect is exacerbated by the presence of the asymmetric
wind-stress field (Dijkstra et al., 2003). This is due to the lack of a zonal pres-
sure gradient, needed to sustain a southward geostrophic flow in the Southern
Ocean, and the northward Ekman transport.

The fact that all asymmetries are qualitatively preferring the NPP state may be a
good reason why we see this pattern in the observations today.

Now look at the effect of a regional anomalous freshwater flux, say near New
Foundland, with an amplitude represented by γpγ . At large γpγ , the asymmetry
due to the additional freshwater flux is so strong that it opposes and overrules the
preference of the northern-sinking solution due to the southern channel and winds.
Therefore, when the variations of the equilibria in γp are considered, one smoothly
connects the NPP branch with the SPP branch, creating a large hysteresis between
northern sinking and southern-sinking solutions. This appears like a bifurcation
diagram in a Stommel two-box model (with two back-to-back saddle-node bifur-
cations), but the situation is essentially different because the salt-advection feed-
back maintains both NPP and SPP states (see Dijkstra and Weijer (2003) for a
more detailed discussion).

6.9.2. Temporal variability through internal modes?
The results of the analysis of the GFDL-R30 climate model in section 6.8 show

the existence of a dominant statistical oscillatory pattern of variability with a time
scale of 44 years. From observations, the only characteristics which are available
of the AMO are its time scale (∼ 50 year) and its spatial pattern (Fig. 1.20) from
Kushnir (1994).

To connect the finite-amplitude results in Te Raa et al. (2004) to the analysis
of the GFDL-R30 climate model, additional computations of variability with the
MOM were presented in Dijkstra et al. (2005) for the SH configuration with con-
tinental geometry. Nearly all parameters (except AH and KHK ) are chosen similar
as in Table 6.3 and only thermal (no wind and freshwater) forcing is used (as in
section 6.7.1). The resolution used is 2◦ × 2◦ horizontally and 16 layers in the
vertical; values of AH = 1.6× 105 m2s−1 and KHK = 700 m2s−1 are used for the
mixing coefficients. After the spin-up under restoring conditions, the surface heat
flux is diagnosed and thereafter prescribed as a flux condition. An oscillation with
a period of about 45 year develops in the flow, as can be seen from a plot of the
maximum of the meridional overturning streamfunction (Fig. 6.61a). A plot of
the zonal and meridional overturning anomalies (Fig. 6.61b) shows a signature of
the characteristic phase difference between the zonal and meridional overturning
associated with the multidecadal mode.

To establish a connection between these results and those of the GFDL-30
model (and observations), one has to realize that many of the idealized models
have been using prescribed-flux conditions and hence the atmospheric damping
of SST anomalies is absent. In a coupled model such as the GFDL-30 model, as
well as in observations, there is substantial atmospheric damping. This damping
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Figure 6.61. (a) Periodic orbit in the MOM SH configuration with continental boundaries and a
resolution of 2◦ × 2◦ and 16 layers; KH = 700 m2s−1 and AH = 1.6× 105 m2s−1. At t = 3000
yr, the boundary condition was changed to a prescribed heat flux. (b) Spatially-averaged zonal and
meridional overturning anomalies.

will decrease the amplitude of the multidecadal signal in Fig. 6.61a. In fact, it
will decrease the growth factor of the multidecadal mode in the idealized con-
figurations (Te Raa and Dijkstra, 2003b) and it may actually stabilize the THC
with respect to this mode. Stabilization can also occur due to bottom topography
(Winton, 1997; Huck et al., 2001), which can also be responsible for substantial
changes in the mean THC flow (Spall and Pickart, 2001). Even if the multidecadal
mode is damped, still the results are relevant because in the coupled model there
is a strong component of ‘noise’. Under this ‘noise’, the multidecadal mode can
still be excited; in fact, this is a case of a stochastic Hopf bifurcation (Gardiner,
2002). The properties of such as noise-driven signal were studied in Griffies and
Tziperman (1995) and Rivin and Tziperman (1997) using simple box models.

For the oscillation in Fig. 6.61, the SST difference field between Atlantic warm
(corresponding to maximum MOC) and Atlantic cold (corresponding to minimum
MOC) states is plotted in Fig. 6.62a. The same field is plotted in Fig. 6.62b for
the 44-year statistical mode in the GFDL-R30 model. Considering also the cor-
responding field from observations (Fig. 1.20b) there is a striking qualitative cor-
respondence between the patterns. More specifically, with respect to: (i) the sec-
ondary maximum in the warm anomaly near 70◦W, 30◦N, (ii) the area of negative
anomalies near the North American coast, and (iii) the 90-degrees anti-clockwise
rotated V-pattern of the positive anomalies. There are of course also discrepan-
cies, in particular in the eastern basin where the pattern of the observations shows
positive anomalies and the GFDL-R30 pattern has slightly negative anomalies. In
addition, both amplitudes of the MOM and GFDL-30 pattern are a factor 2 to 5
larger than those in the observations.

The results provide support for the following answer to question (ii) above:
the Atlantic Multidecadal Oscillation is caused by the multidecadal mode of vari-
ability of the North Atlantic THC. The time scale of the variability is set by the
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Figure 6.62. (in color on page 527). (a) Difference in SST fields between maximum and minimum
strength of the MOC in the MOM3.1 model. (b) As in (a), but for the statistical 44-year mode in the
GFDL-R30 model.

basin crossing time of density anomalies in a background density field according
to Fig. 6.35. The pattern of variability arises through a deformation, due to the
continental boundaries, of the pattern of the multidecadal mode found in the SH
configuration. As there is no sustained multidecadal oscillation in the GFDL-R30
model, the multidecadal mode is likely to be damped in this model. In the latter
case, it is the atmospheric noise that is able to excite the spatial pattern of this
mode to sufficient amplitude that it is detected as a statistical mode by a technique
such as M-SSA.

This view is consistent with many, if not all, model results on multidecadal
variability. For example, it was discussed at length in Te Raa and Dijkstra (2002)
that the westward propagation of the temperature anomalies within an oscillation
cycle is seen in most sustained multidecadal oscillations in ocean-only models
(Greatbatch and Zhang, 1995; Chen and Ghil, 1995; Huck et al., 1999). The view
is also not in contradiction with the results in Delworth and Greatbatch (2000).
Their CLIM simulation (the ocean model forced with only climatological atmo-
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spheric fluxes) nicely demonstrates that the flow regime is not supercritical, i.e.,
there is no sustained oscillation. The TOTAL (ocean forced by total fluxes of the
coupled model run) and RANDOM (ocean forced by only the annual-mean atmo-
spheric fluxes chosen at random) simulations demonstrate that coupled feedbacks
and also atmospheric noise on time scales < 1 year are not needed to generate the
multidecadal variability.

The simulations HEAT LP (only low-frequency part (> 20 year) of the atmo-
spheric fluxes) and HEAT HP (only high-frequency part (< 20 year) of the atmo-
spheric fluxes) seem at first sight puzzling. As the multidecadal variability has
a much smaller amplitude under HEAT HP, it looks like the low-frequency com-
ponent of the atmospheric variability is driving the multidecadal variability as is
also the interpretation in Delworth and Greatbatch (2000). However, as shown in
Roulston and Neelin (2000), the result that high-frequency noise is not able to ex-
cite the multidecadal signal is due to the fact the underlying ocean model is only
weakly nonlinear. In this case, there is no effective pathway to channel energy
from the smaller to the larger scales. Consequently, the low-frequency part of the
noise forcing is essential to excite the multidecadal mode. This does, however, not
mean that the variability is ‘driven’ by the low-frequency part of the atmospheric
forcing. In reality, the ocean is highly nonlinear, there is a mechanism for chan-
neling energy over a range of scales and hence high-frequency atmospheric noise
is capable of exciting the multidecadal mode.

To summarize, the dynamical systems analysis of a hierarchy of models has
lead to an interpretation framework for results of a large number of ocean-only
and coupled ocean-atmosphere models. In addition, it has lead to detailed phys-
ical mechanisms of climate variability. The idea to isolate these mechanisms in
a most elementary context and then trace their characteristics through the model
hierarchy provides an approach that can also be followed with respect to other
phenomena of climate variability. In fact, a similar approach has already been
shown to be very successful in determining the physical mechanism of propaga-
tion of anomalies in ENSO as we will see in the next chapter.
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6.10. Exercises on Chapter 6

(E6.1) Diagnostic model

Since the momentum equations are linear when inertia is neglected, approx-
imate expressions of the perturbation geostrophic velocities can be obtained
in terms of a prescribed temperature (or more general buoyancy) field T̄ (in
the absence of wind and freshwater forcing). Let the domain be (φ, θ, z) ∈
[φw, φe] × [θs, θn] × [−1, 0]. Away from boundaries, the velocity field is
pure geostrophic and horizontal and vertical mixing of momentum can be ne-
glected. In that case, consider the set of dimensionless diagnostic equations
for the velocities and pressure as

−v sin θ = − 1
cos θ

∂p

∂φ

u sin θ = −∂p
∂θ

∂p

∂z
= Ra T̄

cos θ
∂w

∂z
+
∂u

∂φ
+
∂(v cos θ)

∂θ
= 0

a. Determine the pressure explicitly from the temperature field and show that
the result is

p = Ra

[∫ z

−

∫∫
1
T̄ dz′ −

∫ 0

−

∫∫
1
(
∫ z

−

∫∫
1
T̄ dz′) dz

]

b. Show that for the meridional overturning streamfunction ψ, it follows that

ψ(θ, z, t) = − Ra

sin θ

∫ z

−

∫∫
1

[∫ φe

φ

∫∫
w

f(φ, θ, z′, t)dφ
]
dz′

f(φ, θ, z, t) =
∫ z

−

∫∫
1

∂T̄

∂φ
dz′ −

∫ 0

−

∫∫
1
(
∫ z

−

∫∫
1

∂T̄

∂φ
dz′) dz

c. Calculate the horizontal velocities and meridional overturning streamfunc-
tion for the case

T̄ = eκz cosπ
(
φ− φw
φe − φw

)

Further reading: Te Raa and Dijkstra (2002).
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(E6.2) Ekman horizontal boundary layers

Consider the steady linearized momentum equations in Cartesian coordinates
on an f -plane, i.e.,

−fv = − 1
ρ0

∂p

∂x
+AH∇2u+AV

∂2u

∂z2

fv = − 1
ρ0

∂p

∂y
+AH∇2v +AV

∂2v

∂z2

∂p

∂z
= −gρ

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

Let the density ρ be given as ρ(y) = αy, with α > 0 such that higher-density
water is at northern latitudes. The flow is within a basin of dimensions
L× L×D and no-slip conditions are imposed on the lateral boundaries.

a. Where do you expect lateral boundary layers to appear in the flow?

b. Show that the thickness of the boundary layer at the eastern boundary
scales with

√
AH/f .

c. What will happen in numerical ocean models when this boundary layer is
not resolved ?

Further reading: Winton (1996).

(E6.3) Surface boundary conditions

Consider the salt balance for a surface box at the ocean-atmosphere interface
(Fig. 6.63). The salinity of the ocean changes through advection and differ-
ences between evaporation (E) and precipitation (P). The units of the latter
fluxes are m3s−1 per m2 and hence ms−1.

Consider the two-dimensional salt balance in the surface box in rectangular
coordinates, i.e.,

∂S

∂t
+
∂(uS)
∂x

+
∂(wS)
∂z

= KV
∂2S

∂z2

where horizontal mixing is neglected andKV is the vertical mixing coefficient.

a. Show that the discrete salinity balance over the box can be written as

∂S

∂t
+

1
Δx

[(uS)+− (uS)−]+
1

Δz
[(wS)+− (wS)−] = KV [(

∂S

∂z
)+− (

∂S

∂z
)−]
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Figure 6.63. A finite-difference grid box in the x− z-plane.

The virtual salt flux Sf is formally defined as

Sf = (E − P )S

b. Argue why the S in the equation for Sf should be substituted by a mean
reference salinity S0. (Hint: consider the integral of Sf over the surface).

In the mixed boundary formulation (section 6.2), one puts w+ = 0 and
Sf = (E − P )S0.

c. Determine the discrete salinity balance over the box in the mixed boundary
condition formulation.

In the natural boundary formulation, one puts w+ = E − P and

(wS)+ −KV (
∂S

∂z
)+ = 0

d. Determine the discrete salinity balance over the box in the natural boundary
condition formulation.

e. Argue why natural boundary conditions represent the physics of the air-sea
exchange in a better way.

Further reading: Huang (1993).
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(E6.4) Diffusive solution

Assume that the dominant balance in the two-dimensional temperature equa-
tion is between meridional and vertical diffusion of heat. In this case, ana-
lytical progress can be made when the temperature at the top is assumed to
be prescribed. With a restoring surface forcing TST = 1 + cos πy, on the do-
main (y, z) ∈ [0, 1]× [0, 1], the temperature is determined from the following
problem

KHK
∂2T

∂y2
+KV

∂2T

∂z2
= 0

y = 0, 1 :
∂T

∂y
= 0

z = 0 :
∂T

∂z
= 0 ; z = 1 : T = 1 + cos πy

a. Show that the solution of this problem is given by

T (y, z) = 1 + cos πy
cosh πγz

cosh πγ

with γ =
√
KHK /KV .

b. Determine the diagnostic geostrophic zonal velocity arising through this
temperature field.

Further reading: Wright and Stocker (1991).

(E6.5) Scaling

One of the important issues in the dynamics of the meridional overturning
circulation concerns the scaling of its maximum value ψM with the meridional
surface density difference Δρ.

a. Scale the horizontal velocity U according to the geostrophic balance and
use the hydrostatic pressure scale Δp to derive that

U =
DgΔρ
fL

where f is the local Coriolis parameter, g is the gravitational acceleration,
and D is a measure of the depth of the thermocline (large vertical gradient in
temperature).

b. Use the advective-diffusive balance in the thermocline

w
∂ρ

∂z
= KV

∂2ρ

∂z2
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to show that

U =
KV L

D2

c. Show that in this case ψM ≈ (Δρ)
1
3 .

Further reading: Rahmstorf (1996).

(P6.1) Bifurcation analysis of a Cahn-Hilliard type equation

As was shown in Technical Box 6.1, in the large-aspect ratio case, the equilib-
ria of the diffusive thermohaline flow can be modeled by the boundary value
problem

δ2χ′′ = r sinx+ μ2χ(χ+ sinx)2 + χ

χ(−π) = χ(π) = 0

for a function χ = χ(x).

a. Write this equation as a first order problem.

The solutions to this boundary value can be numerically computed with the
AUTO software (see the beginning of chapter 4 how to obtain the software).
Be aware that the boundary value option (IPS = 4) has been turned on in
AUTO and that the appropriate boundary conditions are defined.

b. We want to determine the bifurcation diagram for δ = 0.1 and μ2 = 7
using r as a parameter. Design a continuation path to compute this bifurcation
diagram efficiently.

c. Determine this bifurcation diagram numerically.

d. Follow the paths of both saddle-node bifurcations to smaller values of δ
and locate the value of the cusp bifurcation for δ = 0.05 (see also Fig. 6.21).

Further reading: Cessi and Young (1992) and Dijkstra and Molemaker (1997).

(P6.2) Critical thresholds

When stable multiple equilibria are present, we would like to determine how
we have to perturb one state to induce a transition to the other state. We con-
sider this problem here for the Stommel (1961) two-box model as discussed in
section 3.1. As shown there, the dimensionless equations become

dT

dt
= η1 − T (1 +M(T − S))

dS

dt
= η2 − S(η3 +M(T − S))
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where T = TeTT − TpTT , S = Se − SpSS are the scaled temperature and salinity
differences between the equatorial and polar box and Ψ = T − S is the
dimensionless flow rate. The function M indicates the modulus function
which is smoothed as in (3.1.3). Three parameters appear in these equations
above: the parameter η1 measures the strength of the thermal forcing, η2

that of the freshwater forcing and η3 is the ratio of the relaxation times of
temperature and salinity.

a. Implement this box model into AUTO (see the beginning of chapter 4 how
to obtain the software) and compute the bifurcation diagram for η1 = 3.0,
η3 = 0.4 with η2 as control parameter.

b. Compute also the bifurcation diagrams in η2 for η3 = 0.3 and η3 = 0.5.

For η3 = 0.4 and η2 = 1.3, there are two stable steady states. The state A1 is
called a thermally-driven state (or TH state) with Ψ > 0 and the state A2 is
called a salinity-driven state (or SA state) with Ψ < 0.

c. What happens to the system when it is initially in state A1 for η3 = 0.3
and suddenly η3 is changed to η3 = 0.5? What if it is changed suddenly
to η3 = 0.3? In which case will the meridional overturning drastically change?

Now, look at the time-dependent problem with state A1 as initial conditions.
The value of η3 is changed over the time interval t ∈ [0, tm] to 0.3 and after
tm it is switched back to 0.4.

d. Which qualitatively different trajectories, depending on tm, are possible?

e. In the previous problem, how can you determine the critical value of tm
that is needed to induce a transition from the state A1 (with Ψ > 0) to one
with Ψ < 0?

Further reading: Dijkstra et al. (2004).
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THE DYNAMICS AND PHYSICS OF ENSO

Dancing on equatorial waves.
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In chapter 1, the El Niño /Southern Oscillation (ENSO) phenomenon was in-˜
troduced as an interannual climate variation in the Tropical Pacific. Sea surface
temperature (SST) anomalies of up to a few degrees occur in the eastern part of
the Pacific (El Niño /La Ni˜ ña ) and are accompanied by a weakening and strength-˜
ening of the trade winds (Southern Oscillation). ENSO is the most prominent
example of interannual variability in the climate system. Because it evolves on
relatively short time scales, it is one of the best studied climate phenomena, both
observational and theoretical. ENSO is caused by processes both in the tropi-
cal ocean and atmosphere with a central role for the SST. The observed spatial
structures involved, their temporal development and the relationship between the
oceanic and atmospheric variables are now fairly well known (Rasmusson and
Carpenter, 1982; Wallace et al., 1998). A historical overview of key research
leading to this knowledge is given in Philander (1990) and Wallace et al. (1998).

In this chapter, focus is on the dynamical understanding of El Niño which has˜
been obtained over the past decades through mechanistic studies with intermedi-
ate complexity coupled ocean-atmosphere models (ICMs). Because bifurcation
analysis has not been performed on a hierarchy of models such as that for the
ocean circulation, this chapter has a slightly different setup than the previous two
chapters. We will mainly focus on one class of ICMs and dynamical systems
methods will help interpret its solutions.

The chapter starts with a short description of the phenomena under study in sec-
tion 7.1, which ends with the central questions posed. Modeling of the equatorial
ocean is subject of section 7.2 where the relevant equatorial waves and adjustment
processes are discussed. In section 7.3, the physics of coupled processes between
the equatorial ocean and atmosphere is addressed while simultaneously the addi-
tional ingredients for an ICM are introduced. An overview of results of the first
ICM, which was able to successfully simulate ENSO-like behavior (Zebiak and
Cane, 1987) is given in section 7.4. In the next section 7.5, the development is
sketched towards a conceptual framework, the delayed oscillator, to understand
the results in this ICM. It is here that a dynamical systems approach turns out to
be useful. The involvement of coupled processes in the annual-mean state and its
consequences for ENSO are subject of section 7.6 and 7.7, while the interaction
of the seasonal cycle and ENSO is dealt with in section 7.8. In the section 7.9,
ENSO variability is addressed in a broader context together with an overview of
results from Coupled General Circulation Models (CGCMs). A synthesis of the
results in this chapter follows in section 7.10.

7.1. Basic Phenomena
The spatial and temporal structures of the annual-mean state, the seasonal cycle

and of ENSO are described below, but only those features which easily relate to
those computed from the ICMs introduced later on. Hence, this description has a
very limited scope and other sources should be consulted (for example Philander
(1990), Horel (1982) and Wallace et al. (1998)) for a more complete view of the
phenomena involved.
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7.1.1. The annual-mean state
The annual-mean wind stress over the Tropics is shown in Fig. 7.1. Clearly,

the trade winds over the Pacific are mainly zonal and directed from east to west.
The maximum amplitude of the zonal wind stress is about 0.2 Pa. At the equator,
there is a small component of the meridional wind stress with an amplitude of
about 0.05 Pa. The structure of the winds is not symmetric with respect to the
equator since the convergence of the South Pacific trade winds and North Pacific
trade winds is located slightly north of the equator. This is associated with the fact
that the Intertropical Convergence Zone (ITCZ) is on average located north of the
equator.

Figure 7.1. Annual-mean wind stress in the Tropical Pacific (from Ropelewski and Halpert
(1987)). The maximum amplitude of the zonal component of the wind stress over the Pacific is
about 0.2 Pa.

The annual-mean SST over the same region (as plotted in Fig. 7.2) indicates
that there is a strong asymmetry between the relatively warm western part of
the basin (the so-called warm pool) and the cooler eastern basin, (the so-called
cold tongue). The thick curve is the 25◦C isotherm, which indicates that the cold
tongue has a mean temperature of about 24◦C while the warm pool temperature is
about 29◦C . The equatorial zonal temperature difference over the basin is about
5◦C. There is also a north-south asymmetry about the equator, with more warm
water situated north of the equator.

Figure 7.2. Annual-mean SST in the Tropical Pacific (from Ropelewski and Halpert (1987)). The
thick contour line is the 25◦C isotherm; contour levels are in degrees.
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Physical processes up to a few hundred meters depth in the ocean play an im-
portant role in the Pacific climate system. During the Tropical Ocean Global At-
mosphere (TOGA) program (1985-1995), a whole array of measurement devices
has been set-up in the Tropical Pacific (McPhaden and coauthors, 1998). Hence,
only over the last decade, the temperature at these depths have been measured
routinely1 through the TAO-buoy network (see http://www.pmel.noaa.gov/toga-
tao). In Fig. 7.3, a longitude-depth section of the equatorial temperature (from
2◦S to 2◦N) is shown for November 1996. This situation is close to annual-mean
conditions as used by the TAO-project Office2 for the Tropical Pacific. At each
longitude, there is a strong vertical gradient in the temperature distribution; this
transition region is the equatorial thermocline. The depth of the 20◦C isotherm is
a reasonable measure of the location of the thermocline. This depth changes from
about 200 m at the western part of the basin to about 50 m at the eastern boundary.
Hence, in the annual-mean state, the colder water is much closer to the surface in
the east than in the west.

Figure 7.3. (in color on page 528). Depth-longitude section of the near-equatorial temperature
in the Pacific monthly averaged over November 1996. This situation is close to annual-mean con-
ditions for the Tropical Pacific Kessler and McCreary (1995). The crosses in the figure indicate the
measurement positions of the TAO-buoys.

From this brief description of the spatial patterns of the annual-mean state, the
most important feature is the strong zonal asymmetry in the equatorial ocean,

1The figures which follow have all been plotted through the graphics software and data made available through

the TAO realtime data-access site at http://www.pmel.noaa.gov/toga-tao/realtime.html.
2for further details, see Kessler and McCreary (1995) and http://www.pmel.noaa.gov/toga-tao/clim.html.
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shown here for both the SST field and the thermocline field. In the sections 7.6
and 7.7, the physics of this asymmetry is described and explained using results of
ICMs.

7.1.2. The seasonal cycle
Within a calendar year, the trade winds, the pattern of the SST and that of the

thermocline all change as the Sun moves two times a year over the equator (in
March and in September). Fig. 7.4 provides snapshots of the seasonal cycle of
SST and surface winds. In April (Fig. 7.4a), the east-west contrast in SST along
the equator is minimal, which coincides with relatively weak trade winds. In Oc-
tober (Fig. 7.4b), the equatorial zonal SST gradient is strongest, which coincides
with stronger trade winds.

Maximum precipitation areas are associated with the position of the ITCZ
where the trade winds converge (Fig. 7.4). In Augustus/September, this point
is farthest north and the strength of the winds is maximal (Horel, 1982). In
March/April, the convergence is located closest to the equator and the trade winds
are relatively weak. Connected to this is the migration of the ITCZ which, for
example at 120◦W, moves from about 2◦N in March to about 12◦N in September.
A strong coupling also exists between the movements of the ITCZ and those of
other convection zones in the Tropics.

The equatorial pattern and amplitude of the SST and zonal wind field are shown
for 1993 in Fig. 7.5; note that time increases downwards. Within the seasonal cy-
cle of equatorial SST in the Pacific (Fig. 7.5, left panel), the Pacific cold tongue
is coldest during September/October and warmest during March/April. Peculiar
is the fact that this cold tongue has a strong annual variation, whereas the forc-
ing is semi-annual (Mitchell and Wallace, 1992). In the western part of the basin
(the warm pool) a weak semi-annual cycle with warmest temperatures in Febru-
ary/March and August/September can be observed. Maximum amplitudes of the
easterly zonal wind (Fig. 7.5, right panel) occur around November/December near
about 140◦W and the equatorial trade winds are weakest from March to May. In
both fields, one notices the slight westward propagation of the signal in the second
half of the year.

Much more detail on the description of the seasonal cycle is given in Horel
(1982), Philander (1990) and Yu and McPhaden (1999). Although in section 7.8,
some attention is given on the physics of the seasonal variations, this discussion
will be quite superficial. Reason is that different ICMs are needed to understand
the seasonal cycle than those by which ENSO can be understood. Moreover, the
Pacific seasonal cycle is probably not as well understood as ENSO.

7.1.3. Interannual variability
What makes El Niño unique among other interesting phenomena of natural˜

climate variability is that it has both a well-defined pattern in space and a relatively
well-defined time scale. No sophisticated statistical tools are needed to isolate the
El Niño pattern in SST variability. For example, consider the SST anomaly for˜
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Figure 7.4. (in color on page 529). SST and wind-stress climatologies for (a) April and (b)
October. The contours give the 1961–1990 SST climatology (contour interval 2◦C) from NCEP
(National Centers for Environmental Prediction), the arrows the 1961-1992 pseudo-wind stress
climatology (in m2s−2) from FSU (Stricherz et al., 1997). Pseudo-wind stress has the direction of
the surface wind and the magnitude of the wind speed squared.

Figure 7.5. (in color on page 529). Seasonal cycle in 1993 of the monthly averaged
equatorial SST (left panel) and zonal wind (right panel). The figure is plotted through the
graphics software and data made available through the TAO realtime data-access site at
http://www.pmel.noaa.gov/toga-tao/realtime.html. Note ttt hat time is downwards.
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December 1997 (Fig. 7.1.3), obtained by subtracting the average December SST
of a long reference period from the actual December 1997 SST. The pattern, which
‘springs to the eye’, is characterized by higher than usual temperatures east of the
date line in the equatorial Pacific.

In section 1.3, two indices monitoring the state of the Tropical Pacific system,
the SOI and the NINO3 index were shown to have strong variability on interan-
nual time scales and to be well anti-correlated. The correlation between 12-month
means of the monthly NINO3 index and the SOI was close to -0.9 over the last
50 years. The spectrum of both the NINO3 index and the SOI is dominated by
interannual frequencies (Fig. 7.6), but the SOI contains more high-frequency vari-
ability and has a white spectral tail while the NINO3 index has a red tail. It ap-
pears that the occurrence of El Niño ’s (positive NINO3) and La Ni˜ ña ’s (negative˜
NINO3) is quite irregular. Strong El Niño ’s such as in 1982-1983 are rare (as˜
are strong La Niña ’s) and long periods exist with either weak warm or weak cold˜
conditions. El Niño is to some extent phase locked to the seasonal cycle as most˜
El Nino’s and La Ni˜ ña’s peak around December. The root mean square of the˜
NINO3 index is almost twice as large in December than in April.

A long enough accurate data set is now available of Tropical Pacific SST fields,
such that dominant patterns of variability at interannual time scales can be ex-
tracted. When the seasonal signal is filtered out, the equatorial SST anomalies
over the years 1986-1999 show a fairly standing irregularly oscillating signal
(Fig. 7.7, middle panel) with maximum amplitudes in the cold tongue region.
The maximum temperature anomaly during the 1997-1998 El Niño was about˜
5◦C. There was slight eastward propagation of the signal in the western part of
the basin.

In Fig. 7.7, also time-longitude diagrams of zonal wind and thermocline
depth anomalies are shown. The wind-stress response associated with a NINO3
anomaly is closely related to the sea-level pressure (SLP) anomaly pattern. The
wind response (Fig. 7.7, left panel) is concentrated around the equator in an area

anomaly field of at the height of the 1997/1998
El Nino. Data from NCEP.˜
Sea-surface temperature anomaly field of
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Figure 7.6. Spectra of monthly mean SOI and NINO3 index. Shown are normalized periodograms
smoothed over 11 bins, that is over 0.11 cycles per year. Note that x-axis is logarithmic, and f∗S(f)
rather than S(f) is shown, in order that equal areas make equal contributions to the variance.

around the date line west of the NINO3 area. The westerly wind response to the
SST anomaly indicates that the trade winds are weakened (and sometimes even
reversed) during El Niño’s. Sea-surface height and thermocline depth anomalies˜
roughly vary in phase with El Niño in the eastern Pacific, and are in anti-phase˜
in the western Pacific (Fig. 7.7, right panel). On closer inspection, thermocline
depth anomalies in the western Pacific seem to precede SST anomalies in the
eastern Pacific.

As a measure of thermocline anomalies, the upper ocean heat content Hc in
1010 J/m2 is often used. It is defined as defined as

HcHH = ρ0CpCC

∫ 0

−

∫∫
Hf

T dz (7.1)

where Hf is a fixed depth, chosen usually as 300 m. If the thermocline (e.g.
the depth of the 20◦C isotherm) is depressed (elevated), then the upper layer is
warmer (colder) leading to a larger (smaller) heat content. Just as the thermocline
anomalies, the anomalies in heat content show a clear propagation eastward with
west leading east.

Together with the variations of the SOI and NINO3 indices, the pictures above
suggest an oscillatory signal which can be characterized by several patterns at
different phases of the oscillation. During an El Niño , the SST anomaly is˜
positive over the eastern equatorial Pacific basin having a maximum amplitude in
the Pacific cold tongue. This positive SST anomaly is accompanied by a west-
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Figure 7.7. Time-longitude diagrams of equatorial anomalies of zonal wind (left panel), SST
(middle panel) and in the right panel the depth of the 20◦ isotherm (a measure for the thermocline
depth). Data are for the period 1986-2000, and measured by the TAO/TRITON array. The plot is
made through data and software at http://www.pmel.noaa.gov/tao

erly wind-stress anomaly, with a maximum amplitude west of the maximum SST
anomaly. In the western part of the basin, the thermocline depth anomaly, and
hence the heat content anomaly is negative. This is consistent with the equatorial
anomalies in Fig. 7.7. Positive easterly SST anomalies occur simultaneously with
an anomalously low western Pacific heat content. In this oscillatory view, the cold
phase of the oscillation (in this case a weak La Niña -phase), occurred at the end of˜
1995. Between the cold and warm phase of the oscillation is a ‘transition phase’,
which occurred at the beginning of 1997 (Fig. 7.7). During this ‘transition phase’,
SST anomalies are nearly zero over the basin as are the wind-stress anomalies.
Simultaneously, the equatorial thermocline depth and heat content anomaly in the
western and central Pacific are positive.

The pictures above give an impression of the propagating features of anomalies
associated with El Niño , but again this description is far from complete and other˜
sources should be consulted to get a better view of the full complexity involved in
ENSO (Rasmusson and Carpenter, 1982; Wallace et al., 1998). Much information
has been obtained during the recent strong 1997-1998 El Niño and a thorough˜
description of the latter event can be found in McPhaden (1999).
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7.1.4. Low-frequency variability of ENSO
From proxy data, more and more information becomes available on the behav-

ior of ENSO under different global climate conditions such as different global
mean temperatures. Based on the analysis of annually-banded corals from Papua
New Guinea, Tudhope et al. (2001) show that ENSO has existed for the past
130,000 years. However, there have been substantial changes in its strength
through time. Based on analysis of Ecuadorian varved lake sediments, Rodbell
et al. (1999) find that ENSO periods were > 15 year from about 15 ka to 7 ka and
that modern periodicities of 2 - 8 years appeared afterwards. Data from microfos-
sils show that ENSO events were less intense around 3 ka but more pronounced
around 1.5 ka (Woodroffe et al., 2003).

When one considers the spectrum of the NINO3 index in Fig. 7.6b, also energy
is found in lower frequencies, in particular in the decadal-to-interdecadal range
(Fedorov and Philander, 2000). In Fig. 7.8, the interannual variability of the SST
averaged over the box [120◦W, 80◦W] × [5◦S - 5◦N] in the Eastern Pacific is
shown on a background of decadal variability. The strength of El Niño variability˜
before the mid-1970s seems to be smaller than that after this period. According

Figure 7.8. (in color on page 531). Plot of the SST averaged over the box [120◦W, 80◦W]× [5◦S
- 5◦N] in the Eastern Pacific on a background of decadal variabdd ility, the latter obtained through a
low-pass filter (from Fedorov and Philander (2000)).

to NCEP data, the standard deviations of the SOI (NINO3) for 1951-1975 is 1.64
(0.81), to be compared for 1976-2000 where it is 1.84 (1.00). The spatial patterns
of this decadal change are fairly similar to that of the interannual variability, but
the SST anomalies at the eastern side of the basin extend more from the equator
to midlatitudes (Zhang et al., 1997).

7.1.5. Central questions and Approach
A theory of the variability of the Tropical Pacific climate system through which

the above phenomena, in particular El Niño, can be understood from elementary˜
physical principles, must contain a description of the physical processes and bal-
ances involved in the mean state, the seasonal cycle and the interannual and longer
time scale variability. In particular, the questions related to the patterns and time
scales, as shown above, of this system are
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(i) Why is there a strong spatial asymmetry in the annual-mean state, with a warm
pool in the west and a cold tongue in the east ?

(ii) Why is the ITCZ mostly located north of the equator ?

(iii) Why is there an annual period in the eastern Pacific seasonal cycle although
the Sun moves twice over the equator ?

(iv) What determines the time scale and the patterns associated with ENSO vari-
ability ?

(v) What are the processes controlling the decadal-to-interdecadal variability of
ENSO?

In the following sections, an attempt is made to present a theoretical framework
from which partial answers to these questions can be given. Many of these results
are scattered over the literature and the set-up chosen is to give the reader a good
entrance into this literature. The text has been guided by the reviews of Neelin
et al. (1994) and Neelin et al. (1998), but much more details and derivations are
provided. Notational consistency with the literature (where possible) has been
maximized and derivations have been kept as transparent as possible.

7.2. Models of the Equatorial Ocean
From the description of the phenomena, it appears that that their characteris-

tic zonal scale is the basin length, but that the meridional scale is much smaller.
Furthermore, the vertical scale is only a few hundred meters. In fact, most phe-
nomena of interest are present only in a relatively small zone around the equator.
This motivates the use of the β− plane models which were introduced in sec-
tion 5.3. Again, the homogeneous case is considered first and later extended to a
layer-type model.

7.2.1. Constant density ocean model
For the case of constant density ρ, the starting equations are the dimensional

equations (5.23). The only thing to change for the equatorial case is the value
of the Coriolis parameter at the central latitude, which is the equator and hence
f0ff = 0. In this way, the dimensional equations become

Du∗
dt∗
− β0y∗v∗ = −1

ρ

∂p∗
∂x∗

+

+AH

[
∂2u∗
∂x2∗

+
∂2u∗
∂y2∗

]
+ AV

∂2u∗
∂z2∗

(7.2a)

Dv∗
dt∗

+ β0y∗u∗ = −1
ρ

∂p∗
∂y∗

+

+AH

[
∂2v∗
∂x2∗

+
∂2v∗
∂y2∗

]
+ AV

∂2v∗
∂z2∗

(7.2b)



380 NONLINEAR PHYSICAL OCEANOGRAPHY

∂p∗
∂z∗

= −ρg (7.2c)

∂w∗
∂z∗

+
∂v∗
∂y∗

+
∂u∗
∂x∗

= 0 (7.2d)

D

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(7.2e)

with dimensional boundary conditions at the ocean-atmosphere interface, de-
scribed by z∗ = η∗, of the form

p∗ = pa∗ (7.3a)

ρAV
∂u∗
∂z∗

= τ0ττ τ
x (7.3b)

ρAV
∂v∗
∂z∗

= τ0ττ τ
y (7.3c)

D

dt∗
(z∗ − η∗) = 0 (7.3d)

In these equations, u∗ and v∗ are the horizontal velocities, w∗ is the vertical
velocity and p∗ is the pressure. The quantities g, τ0ττ , AH , and AV are the accel-
eration due to gravity, a typical amplitude of the wind stress and the horizontal
and vertical mixing coefficients of momentum; the quantity pa∗ is a background
atmospheric pressure. Other boundary conditions for the flow, for example at the
continental boundaries, will be specified later on.

7.2.2. The reduced gravity model
A slight extension of the previous model is the flow in a two-layer ocean in

which the bottom layer is assumed to be motionless (Fig. 7.9). In this case, the
equations (7.2- 7.3) hold for the top layer (with density ρ and equilibrium depth
H) and also for the second layer (with slightly larger density ρ + Δρ). The hori-
zontal pressure gradient is zero in the second layer and hence only the hydrostatic
pressure equation applies, i.e.

∂p2∗
∂z∗

= −(ρ+ Δρ)g (7.4)

Let the interface between the layers be prescribed through z∗ = −H + ζ∗, as
seen in Fig. 7.9, then at the interface, the continuity of pressure and the kinematic
condition become

p1∗ = p2∗ (7.5a)
D

dt∗
(z∗ +H − ζ∗) = 0 (7.5b)

where the material derivative can be taken in both layers, since the vertical ve-
locity is continuous. The equatorial reduced gravity ocean model is obtained by
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atmosphere

ρ

ρ + Δρ
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z = η

*
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*

Figure 7.9. Sketch of the reduced gravity ocean model. The upper active layer has a density ρ
and equilibrium depth H . The bottom layer has a density ρ+ Δρ and is motionless.

integrating over the upper layer, with total thickness h∗ = η∗ + H − ζ∗. The
equations become

∂u∗
∂t∗

+ u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂y∗
− β0y∗v∗ =

= −g′ ∂h∗
∂x∗

+
τ0ττ τ

x

h∗ρ
+ AH

[
∂2u∗
∂x2∗

+
∂2u∗
∂y2∗

]
(7.6a)

∂v∗
∂t∗

+ u∗
∂v∗
∂x∗

+ v∗
∂v∗
∂y∗

+ β0y∗u∗ =

= −g′ ∂h∗
∂y∗

+
τ0ττ τ

y

h∗ρ
+ AH

[
∂2v∗
∂x2∗

+
∂2v∗
∂y2∗

]
(7.6b)

∂h∗
∂t

+
∂(u∗h∗)
∂x∗

+
∂(v∗h∗)
∂y∗

= 0 (7.6c)

where g′ = gΔρ/ρ is the reduced gravity.
This equivalent barotropic (or reduced gravity) shallow water type model is the

first cornerstone of the theory underlying the Pacific ocean dynamics relevant for
the ENSO variability. In the following two sections, the spatial/temporal behavior
of the linearized version of this model is considered.

7.2.3. Equatorial waves
Consider the motionless (ū∗ = v̄∗ = 0) reference state with h̄∗ = H , which is a

stationary solution of the unforced, nondissipative equations (7.6). The equations
governing small amplitude motions are obtained by linearizing the equations (7.6)
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around this reference state and become

∂u∗
∂t∗
− β0y∗v∗ = −g′ ∂h∗

∂x∗
(7.7a)

∂v∗
∂t∗

+ β0y∗u∗ = −g′ ∂h∗
∂y∗

(7.7b)

∂h∗
∂t∗

+H(
∂u∗
∂x∗

+
∂v∗
∂y∗

) = 0 (7.7c)

It is convenient to introduce nondimensional quantities by

t∗ =
L

co
t ; x∗ = Lx ; y∗ = λoy (7.8a)

h∗ = Hh ; u∗ = cou ; v∗ =
λo
L
cov (7.8b)

Here, L is the zonal basin length, co is a shallow water gravity wave speed and λo
is a characteristic meridional length scale, the equatorial Rossby radius of defor-
mation, given by

co =
√
g

√√
′H ; λo =

√
co
β0

(7.9)

Using these scales, the dimensionless equations become

∂u

∂t
− yv +

∂h

∂x
= 0 (7.10a)

ζ2
oζζ
∂v

∂t
+ yu+

∂h

∂y
= 0 (7.10b)

∂h

∂t
+
∂u

∂x
+
∂v

∂y
= 0 (7.10c)

with ζo = λ0/L.
Travelling wave solutions are sought of the form

u(x, y, t) = û(y)ei(kx−σt) (7.11a)

v(x, y, t) = v̂(y)ei(kx−σt) (7.11b)

h(x, y, t) = ĥ(y)ei(kx−σt) (7.11c)

with k being the nondimensional wavenumber and σ the angular frequency. The
boundary conditions are

y → ±∞ : û, v̂, ĥ→ 0 (7.12)

The solutions with v̂ ≡ 0 have a dispersion relation

σ2 = k2 (7.13)

and the meridional structure of the wave is

û(y) = û(0)e
−ky2

2σ (7.14a)

ĥ(y) =
σ

k
û(y) (7.14b)
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with û(0) being an arbitrary amplitude. The solutions which are bounded for
y → ±∞ exist only when σ = +k. Hence, the phase velocity of these waves
is positive and the waves only move eastward. These are the well-known Kelvin
waves with a dimensional wavelength and phasespeed (σ/k) given by

λ∗ =
2πL
k

; c∗ = co (7.15)

Patterns of the the thermocline field h of a Kelvin wave are plotted in Fig. 7.10
for four stages during the propagation. The dimensionless wavenumber is chosen
k = π, corresponding to a wavelength of exactly twice the basin λ∗ = 2L. For
the Kelvin wave, the dimensionless period P is 2π/σ = 2 and the pictures in
Fig. 7.10 are at times t = 0, t = 1/8, t = 1/4, t = 3/8, which covers a quarter of
a period. The maximum amplitude of the thermocline field for the Kelvin wave is
located just at the equator.

Also free wave solutions with v̂ �= 0�� exist. In (7.10), û and ĥ can be eliminated
(see e.g., Pedlosky (1987), section 8.3) to give a scalar equation for v̂, i.e.

v̂′′ + v̂

[
ζ2

0ζζ (σ2 − k2)− k

σ
− y2

]
= 0 (7.16)

where the ′ indicates the differentiation to y. Equation (7.16) has only bounded
solutions when

ζ2
0ζζ (σ2 − k2)− k

σ
= 2j + 1 (7.17)

for integers j = 0, 1, · · · ,. These solutions are of the form

v̂j(η) = ψj(y) =
e
−y2

2 HjH (y)
(2jj!π1/2)1/2

(7.18)

with HjH being the Hermite polynomials and the ψj are called the Hermite func-
tions. The first couple of Hermite polynomials are

H0HH (y) = 1 ; H1(y) = 2y (7.19a)

H2HH (y) = 4y2 − 2 ; H3H (y) = 8y3 − 12y (7.19b)

First, we consider the full spectrum by putting ζo = 1, which is equivalent
to use L also as a meridional length scale. The dispersion relation (7.17) can be
written as

k = − 1
2σ
± 1

2

[
(
1
σ
− 2σ)2 − 8j

]1/2

(7.20)

For j > 0, two real roots exist provided (1/σ − 2σ)2 ≥ 8j in which case σ
satisfies

0 < σ <
1√
2
((j + 1)1/2 − j1/2) (7.21a)

or

σ >
1√
2
(j1/2 + (j + 1)1/2) (7.21b)
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(a) (b)

(c) (d)

Figure 7.10. Patterns of the dimensionless thermocline field for the Kelvin wave for four different
times during one period P = 2 of evolution (a) t = 0 (b) t = P/8, (c) t = P/4 and t = 3P/8.
The wavenumber k = π and plotted is ψ0(y)cos(π(x− t))/√2, where ψ0 is the Hermite function
in (7.18). Note that x and y are scaled according to (7.8).

The first interval of σ is in the low frequency range and the waves are called
equatorial Rossby waves. The second interval represents the high frequency so-
called ‘inertia-gravity’ waves.

For the case j = 0, two roots are found from (7.20), the first one being σ = −k
which leads to a westward travelling Kelvin wave which becomes unbounded far
from the equator. The second root is

k = − 1
σ

+ σ (7.22)

which gives a bounded wave called the Yanai wave. For large σ, the character of
the wave becomes Kelvin like, whereas for small σ it becomes Rossby like. A
classical picture of the dispersion relation for the Kelvin wave, the Yanai wave
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and j = 1 Rossby and inertia-gravity waves is plotted in Fig. 7.11. The Yanai and
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Rossby, j = 1

k

inertia-gravity ,  j = 1
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Yanai

Kelvin

Figure 7.11. Dispersion relation of equatorial free waves. Shown are the Kelvin wave, the Yanai
wave and the j = 1 Rossby wave.

Kelvin waves have a positive group velocity and for inertia-gravity and Rossby
waves, the group velocity cg becomes

cg =
∂σ

∂k
=

1 + 2σk
2σ2 + k

σ

(7.23)

For long, low frequency Rossby waves (Fig. 7.11), the group velocity is negative
and the approximate dispersion relation is (note that both k2 << 1 and σ2 << 1)

σ = − k

2j + 1
(7.24)

Their dimensional phase velocity is given by

c∗ = − co
2j + 1

and depends the meridional wavenumber j. These long waves only remain as non-
dispersive waves (in addition to the Kelvin wave) in the limit ζo → 0, which can
be immediately concluded from (7.17). This limit is therefore called the long wave
limit. The first long Rossby wave (j = 1) travels westward with a phase velocity
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which is 1/3 of that of the Kelvin wave. From the expressions of the Hermite
functions in (7.18), one can see that the amplitude is restricted to a relatively
small meridional interval around the equator; these waves are therefore called
”equatorially trapped”.

Patterns of the thermocline field for the j = 1 Rossby wave, with again a
dimensionless wavenumber k = π, are plotted Fig. 7.12 for four stages during the
propagation. The dimensionless period of the j = 1 Rossby wave is P = 6, and
the pictures are shown at t = 0, t = 3/8, t = 3/4, t = 9/8, which again covers
a quarter of the period. The maximum amplitude of the j = 1 Rossby wave is

(a) (b)

(c) (d)

Figure 7.12. Patterns of the thermocline field h of the j = 1 Rossby wave for four different times
during one period P = 6 of evolution (a) t = 0 (b) t = 3/8, (c) t = 3/4 and (d) t = 9/8. The
wavenumber k is equal to π and plotted is (ψ0(y) +ψ2(y)/

√√
2)cos(π(x− t)))/(2√√2), where ψ0

and ψ2 are Hermite functions as in (7.18).

off-equatorial and at about 1.33× λo from the equator and this distance increases
(Fig. 7.13) for higher Rossby waves, i.e. larger j. For co = 2 m/s, the dimensional
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Figure 7.13. Meridional structure of the dimensionless thermocline field ĥj in (7.31b) associated
with the first 5 (long) free Rossby waves (j = 1, ..., 5).

values of the meridional locations at which Rossby wave thermocline amplitudes
have their maximum are shown in Table 7.1 for the long waves with j = 1, ..., 5
together with dimensional crossing times for a basin of 15,000 km.

Wave type ymax θmax τcττ (days)
Kelvin 0.0 0.0 87
Rossby, j = 1 1.22 ±3.31 260
Rossby, j = 2 1.75 ±4.75 434
Rossby, j = 3 2.17 ±5.88 608
Rossby, j = 4 2.50 ±6.77 781
Rossby, j = 5 2.83 ±7.67 955

Table 7.1. Typical quantities of free equatorial waves for co = 2 m/s, and β0 = 2.2 ×
10−11(ms)−1, such that λo = 301.5 km. The dimensionless quantity ymax is the position of
the maximum amplitude of the thermocline depth as seen in Fig. 7.13; θmax is the latitude of this
position. The travel time is based on the time it takes for the wave to cross a basin of 15,000 km.
The Kelvin wave travels from west to east whereas all Rossby waves travel from east to west.

7.2.4. Forced response in a basin
Using the model derived in the previous section, the changes in the ocean cir-

culation in a finite basin due to the presence of a prescribed wind stress are con-
sidered next. Under limitations of small amplitude forced motion, the shallow
water model can be linearized around a motionless reference state with constant
thermocline depth H . Small amplitude zonal winds are assumed to be present,
while the meridional component of the wind is neglected. A further simplification
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arises by idealizing the horizontal friction to be linear rather than harmonic. This
can be justified by recognizing that for equatorially trapped motions of which the
zonal length scale L is much larger than the meridional scale λo,

AH

[
∂2u∗
∂x2∗

+
∂2u∗
∂y2∗

]
≈ −2AH

λ2
o

u∗ = −amu∗ (7.25)

which can, for example, be derived through central differences around the equa-
tor. With the scaling (7.8), the dimensionless problem to determine the small
amplitude response to the wind stress is obtained from (7.6) and given by

∂u

∂t
− yv +

∂h

∂x
+ εou = F0FF τx (7.26a)

ζ2
oζζ
∂v

∂t
+ yu+

∂h

∂y
+ εoζoζζ v = 0 (7.26b)

∂h

∂t
+
∂u

∂x
+
∂v

∂y
+ εoh = 0 (7.26c)

where F0FF = τ0ττ L/(c2oρH) is the dimensionless amplitude of the zonal wind stress
and εo = amL/co is the dimensionless linear damping coefficient. In a finite basin
on the equatorial β-plane, the boundary conditions are

x = 0, 1 : u = 0 (7.27a)

y → ±∞ : u, v, h→ 0 (7.27b)

With F = (τx, 0, 0) and u = (u, v, h), this system of equations can be written
as

M∂u
∂t

+ Lu = F (7.28a)

L =

⎛
⎝
⎛⎛
εo −y ∂

∂x

y ζoεo
∂
∂y

∂
∂x

∂
∂y εo

⎞
⎠
⎞⎞

; M =

⎛
⎝
⎛⎛

1 0 0
0 ζ2

oζζ 0
0 0 1

⎞
⎠
⎞⎞

(7.28b)

Applying Fourier transformation in x, according to

û(k, y, t) =
∫ ∞
−∞

∫∫
u(x, y, t)e−ikx dx (7.29a)

F̂(k, y, t) =
∫ ∞
−∞

∫∫
F(x, y, t)e−ikx dx (7.29b)

then all x-derivatives in L will transform to ik in L̂ and M̂ =M. All free wave
solutions of the previous section, say written as Û, are solutions of the eigenvalue
problem (for εo = 0)

L̂Û = iσM̂Û (7.30)

where σ is given through the dispersion relation (7.17).
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In the limit ζo → 0, only the long (small k), low frequency modes (small
σ) Rossby waves remain, having a dispersion relation and eigenfunctions for j =
1,2,...,

σjσ =
−k

2j + 1
(7.31a)

ûj(y) =
1

2
√

2
(
ψj+1(y)√√
j
√√

+ 1
− ψj−1(y)√√

j
√√ ) (7.31b)

ĥj(y) =
1

2
√

2
(
ψj+1(y)√√
j
√√

+ 1
+
ψj−1(y)√√

j
√√ ) (7.31c)

v̂j(y) = ψj(y) (7.31d)

To that, the Kelvin waves with dispersion relation and eigenfunction

σ0 = k (7.32a)

û0(y) =
1√√
2
ψ0(y) (7.32b)

ĥ0(y) =
1√√
2
ψ0(y) (7.32c)

v̂0(y) = 0 (7.32d)

have to be added to get a complete system of basis functions for the meridional
structure of the solutions (Cane, 1979a,b) of the problem (7.26). The vector eigen-
functions (7.31) and (7.32) will below be indicated with Φj and Φ0, respectively.
A consequence of the elimination of the small waves in the limit ζo → 0 is that
one can no longer satisfy the kinematic boundary condition (u = 0) at the western
boundary of the basin. A consistent boundary condition is to balance the incoming
and outgoing zonal mass flux (Cane and Sarachik, 1977), which gives

x = 0 :
∫ ∞
−∞

∫∫
u dy = 0 (7.33)

As a next step, the zonal wind stress is assumed to have the particular form

τx(x, y, t) = δ(x− x0)g(y)eiωt (7.34)

where δ is the delta distribution, x0 a point in the basin and g(y) a prescribed
function. The time dependence is assumed periodic with frequency ω; since the
system of equations (7.26) is separable in time, also the solutions u have the same
time dependence, i.e. u(x, y, t) = eiωtũ(x, y). If the solution ũ(x, y) for the wind
stress shape (7.34) is determined and is indicated by G(x, y;x0) then the solution
for every wind stress with spatial dependence τ x(x, y, t) = f(x)g(y)eiωt, is given
by

u(x, y, t) = eiωt
∫ 1

0

∫∫
G(x, y;x0)f(x0) dx0 (7.35)
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which is easily verified by substitution of (7.35) into the equations (7.28). Hence
the solution G acts as a Green’s function and it is worthwhile to determine this
solution explicitly. The problem of the determination of the Green’s function is
addressed in Technical Box 7.1.

Technical box 7.1:
Green’s function

In this technical box, the derivation of the Green’s function G in (7.35) is pro-
vided. First the (particular) solution Gf to the inhomogeneous problem is derived
followed by the total solution G which satisfies the boundary conditions. Af-
ter Fourier transformation of the equations (7.28) for u = ũeiωt, the following
system of equations results

φû− yv̂ + ikĥ = e−ikx0g(y) (7.36a)

yû+
∂ĥ

∂y
= 0 (7.36b)

φĥ+ ikû+
∂v̂

∂y
= 0 (7.36c)

with φ = εo + iω.

The forcing function g(y) and the dependent quantities û, v̂, ĥ are expanded
into the free wave solutions as follows

g(y) = r0û0(y) +
∞∑
j=1

rj ûj(y) (7.37a)

û = a0Φ0(y) +
∞∑
j=1

ajΦj(y) (7.37b)

where the Φj satisfy (7.30). Equating term by term, the coefficients aj are solved
in terms of the rj as

aj =
rje
−ikx0

φ+ iσjσ
(7.38)

where σj is the frequency of eigenmode j. The inverse Fourier transform now
gives the formal solution as

Gf (x, y, φ;x0) =
1

2πi

∫ ∞
−∞

∫∫
eik(x−x0) ×

×

⎡
⎣ r0

k − iφΦ0(y)−
∞∑
j=1

rj(2j + 1)
k + iφ(2j + 1)

Φj(y)

⎤
⎦ dk (7.39)
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The integrals can be evaluated through the residue theorem and one gets

Gf (x, y, φ;x0) = r0Φ0(y)e−φ(x−x0)H(x− x0) +

+
∞∑
j=1

(2j + 1) rj eφ(2j+1)(x−x0)Φj(y)H(x0 − x) (7.40)

where H is the Heaviside function. The physics of this forced response is easy
to understand. If a pulse wind stress forcing is applied at x = x0, then to the
west (x < x0) only a Rossby wave response (Φj) is found whereas to the east
(x > x0), a Kelvin wave response (Φ0) is found.

This solution does not satisfy the boundary conditions at the eastern and west-
ern boundaries and solutions of the homogeneous problem have to be added to
accomplish this. The latter are the actual eigenfunctions Φj , the free wave solu-
tions, say with up to now undetermined amplitudes bj . One obtains for x > x0,

G(x, y, φ;x0) = (r0 + b0)Φ0(y)e−φ(x−x0) +

+
∞∑
j=1

bje
φ(2j+1)(x−x0)Φj(y) (7.41a)

while for x < x0, one obtains

G(x, y, φ;x0) = b0Φ0(y)e−φ(x−x0) +

+
∞∑
j=1

((2j + 1)rj + bj)eφ(2j+1)(x−x0)Φj(y) (7.41b)

From the condition at the eastern boundary (u = 0), it follows from (7.26b) that

∂h(1, y, φ;x0)/∂y = 0⇒ hGE(φ;x0) = h(1, y, φ;x0) (7.42)

where the superscript G refers to the Green’s function. To determine the coeffi-
cients bj , the identities (Cane and Sarachik, 1977)

0 = lim
M→∞

⎡
⎣û0 + 2

M∑
j=0

α2j+1û2j+1

⎤
⎦ (7.43a)

π−
1
4 = lim

M→∞

⎡
⎣ĥ0 + 2

M∑
j=0

α2j+1ĥ2j+1

⎤
⎦ (7.43b)

α2j+1 =

√
(2j + 1)!
2jj!

(7.43c)

are used. Note that the convergence with M in these identities is very poor for
the zonal velocity component and for both zonal velocity and thermocline off
the equator. Convergence is best for the thermocline deviation on the equator.
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Application of the eastern boundary condition and equating term by term to zero
gives

(r0 + b0)e−φ(1−x0) = π
1
4hGE

b2j+1e
φ(4j+3)(1−x0) = 2α2j+1 π

1
4hGE

b2j = 0

from which the coefficients bj can be solved. Eventually, the complete solution to
the pulse forcing at x = x0, i.e. the Green’s function for the problem, is found as

G(x, y, φ;x0) = π
1
4hGEK(φ(1− x), y)− L(φ(x0 − x), y)H(x0 − x) (7.45)

where vector functions K and L are defined as

K(η, y) = eηΦ0(y) + 2
∞∑
j=0

α2j+1e
−η(4j+3)Φ2j+1(y) (7.46a)

L(η, y) = r0e
ηΦ0(y)−

∞∑
j=0

(2j + 1)rje−η(2j+1)Φj(y) (7.46b)

Up to this point, only the eastern boundary amplitude of the thermocline hGE is still
unknown, but it can be determined from the western boundary condition (7.33)
and becomes

π
1
4hGE(φ;x0) =

∫∞
−∞
∫∫

Lu(φx0, y)dy∫∞
−∞
∫∫

KuKK (φ, y)dy
(7.47)

where KuKK and Lu are the first components of K and L, respectively. This com-
pletes the basic machinery needed in the next sections to understand the response
of the ocean to varying wind stress forcing.

7.3. Physics of Coupling
Anomalies in SST somehow manage to change the winds, and in the first sub-

section a model is sketched how to compute the low level wind response due to
SST anomalies. Next, wind stress anomalies induce changes in the ocean circu-
lation and examples are shown in 7.3.2, using the results of Technical box 7.1.
Finally, a model is considered in 7.3.3 to determine how changes in ocean circu-
lation induce SST anomalies.

7.3.1. Atmospheric response to diabatic heating
A class of simple models to analyze the low level wind response due to heating

anomalies in the tropics was proposed by Matsuno (1966). These models are also
of shallow water type, following the same approach as in section 7.2. The steady
response of one of these models was analyzed in detail in Gill (1980) and since
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then, this type of model is referred to as a Gill model. The equations are

∂U∗UU
∂t∗
− β0y∗V∗VV −

∂Θ∗
∂x∗

+ aMU∗UU = 0 (7.48a)

∂V∗VV
∂t∗

+ β0y∗U∗UU −
∂Θ∗
∂y∗

+ aMV∗VV = 0 (7.48b)

∂Θ∗
∂t∗
− c2a(

∂U∗UU
∂x∗

+
∂V∗VV
∂y∗

) + aMΘ∗ = Q∗ (7.48c)

where (U∗UU , V∗VV ) are the low level winds, Θ∗ the geopotential height (with dimen-
sion m2/s2), aM is a damping coefficient and ca is the phase speed of the first
baroclinic Kelvin wave in the atmosphere. The flow is forced by a representation
of the adiabatic heating term Q∗ (having dimension m2/s3). Note the similari-
ties with the reduced gravity ocean model with the difference being in the forcing
terms. More accurate derivations of these type of models can be found in Holton
(1992).

To study the response, it is convenient to scale the equations with

t∗ =
L

co
t ; x∗ = Lx ; y∗ = λay (7.49a)

Θ∗ = c2aΘ ; U∗UU = caU ; V∗VV =
λa
L
caV (7.49b)

Q∗ = q0Q ; λa =
√

ca
2β0

(7.49c)

Note that the factor 2 in the definition of λa is different from the scaling of the
ocean model. On the other hand, already anticipating coupling, the time is scaled
with the advective time scale in the ocean. The dimensionless equations become

c
∂U

∂t
− y

2
V − ∂Θ

∂x
+ εaU = 0 (7.50a)

cζ2
aζζ
∂V

∂t
+
y

2
U − ∂Θ

∂y
+ ζaζζ εaV = 0 (7.50b)

c
∂Θ
∂t
− (

∂U

∂x
+
∂V

∂y
) + εaΘ = μ0Q (7.50c)

with εa = aML/ca, μ0 = q0L/c
3
a, c = co/ca and ζa = λa/L. Of these param-

eters, both c and ζa are small and to a good approximation, the atmospheric time
derivatives can be neglected, as well as the damping in the meridional momentum
balance. All fields must be bounded far from the equator. The solution of this
linear problem is provided in Technical box 7.2.
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Technical box 7.2: Solution of
the Gill model

With c→ 0, ζa → 0 and by introducing new independent variables S = Θ+U
and R = Θ− U the problem (7.50) becomes

−(
y

2
V +

∂V

∂y
)− ∂S

∂x
+ εaS = μ0Q (7.51a)

y

2
(S −R)− (

∂S

∂y
+
∂R

∂y
) = 0 (7.51b)

y

2
V − ∂V

∂y
+
∂R

∂x
+ εaR = μ0Q (7.51c)

Subsequently, the variables S, R and the forcing Q are expanded into parabolic
cylinderfunctions Dn(y) with coefficients depending on x,

Q(x, y, t) =
∞∑
n=0

Qn(x)Dn(y)eiωt (7.52a)

R(x, y, t) =
∞∑
n=0

Rn(x)Dn(y)eiωt (7.52b)

S(x, y, t) =
∞∑
n=0

SnSS (x)Dn(y)eiωt (7.52c)

where a periodic time dependence in the forcing has been assumed with frequency
ω. The parabolic cylinderfunctions Dn(y) are related to the Hermite polynomials
through

Dn(y) = 2
−n
2 e−

y2

4 HnHH (
y√
2
) (7.53)

For all n, the relations

y

2
Dn +D′n = nDn−1 ;

y

2
Dn −D′n = Dn+1 (7.54)

are valid. Substitution of the expansions (7.52) into the equations (7.51) gives a
system of ordinary differential equations for the coefficient functions Sn and Rn.
For n = 0,

εaR0 +R′0 − μ0Q0 = 0 (7.55a)

R1 = 0 (7.55b)

εaS0 − S′0 − V1VV − μ0Q0 = 0 (7.55c)
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from which R0 and R1 are directly determined. For n = 1, one obtains

εaS1 − S′1 − 2V2VV − μ0Q1 = 0 (7.56a)

2R2 = S0 (7.56b)

V0VV − μ0Q1 = 0 (7.56c)

from which V0VV directly follows. For n > 1, the equations become

εaSnSS − S′nSS − (n+ 1)VnVV +1 − μ0Qn = 0 (7.57a)

εaRn +R′n + VnVV −1 − μ0Qn = 0 (7.57b)

(n + 1)Rn+1 − SnSS −1 = 0 (7.57c)

Using (7.57c) to eliminate the terms involving Sn in (7.57a) and adding the results
to (7.57b) for n→ n+ 2 gives a single equation for Rn+2, n > 0, i.e.

(2n + 3)εaRn+2 −R′n+2 − μ0(Qn + (n+ 1)Qn+2) = 0 (7.58)

from which Rn+2 and eventually the total solution for U , V and Θ can be calcu-
lated. The results for U and Θ are

U(x, y, t) =
eiωt

2
[(2R2(x)−R0(x))D0(y) + 3R3(x)D1(y)]

+
eiωt

2

[ ∞∑
n=2

((n + 2)Rn+2(x)−Rn(x))Dn(y)

]
(7.59a)

Θ(x, y, t) =
eiωt

2
[(R0(x) + 2R2(x))D0(y) + 3R3(x)D1(y)]

+
eiωt

2

[ ∞∑
n=2

((n + 2)Rn+2(x) +Rn(x))Dn(y)

]
(7.59b)

where

R0(x) = μ0

∫ x

0

∫∫
e−εa(x−s)Q0(s) ds

R1(x) = 0

Rn+2(x) = μ0

∫ 1

x

∫∫
e(2n+3)εa(x−s)((n + 1)Qn+2(s) +Qn(s)) ds

for n = 0, 1, · · · ,. This completes the full solution of the Gill model.

An example of the steady response of the Gill model is considered with the
forcing described by

Q(x, y) = ψ0(
λa
λo
y) sinπx ; ω = 0 (7.61)
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with ψ0 the Hermite function defined in (7.18). Note that since y = y∗/λa, the
argument in the Hermite function is y∗/λo and hence the meridional scale of the
forcing is the Rossby radius of deformation of the ocean. With ca = 30 m/s,
co = 2m/s, the ratio of the Rossby deformation radii of atmosphere and ocean is
about 3 (λa ≈ 826 km).

The forcing (7.61) is shown Fig. 7.14a and in subsequent panels, the stationary
(ω = 0) zonal wind response (7.59a) is plotted for εa = 0, 2.5 and 5.0. For each
value of εa, there are westerly (easterly) winds to the west (east) of the maximum
heating. The signal west of the heating maximum is mainly due to Rossby waves,
while that to the east is due to the Kelvin wave. The zonal wind response becomes
more local as the value of εa increases. This is also clear physically, since εa is a
ratio of the basin length L and an atmospheric damping length scale ca/aM . When
the damping aM increases, the length scale over which anomalies are damped
decreases and hence the response is more localized to the forcing.

An approximation to the equatorial zonal wind response U is obtained by trun-
cating the solution (7.59a) for only the first three parabolic cylinderfunctions, i.e.
with D0(0) = 1,D1(0) = 0,D2(0) = −1, the equation (7.59a) gives

U(x, 0, t) = eiωt(
3
2
R2(x)−

1
2
R0(x)) (7.62)

where the R4 contribution is also neglected. As we will show later on, this ex-
pression turns out to be useful when considering reduced models which only take
the equatorial response into account.

When the diabatic heating structure is known, the low level wind response can
be computed from the Gill model. However, this leaves the problem to relate
the diabatic heating structure and the SST anomalies. The simplest connection
(Zebiak, 1982) is that convection mostly occurs over the warmest water which
leads to a direct coupling with SST anomalies T̃∗TT and those in latent heat Q̃∗
through

Q̃∗ = αT T̃∗TT (7.63)

with some constant coefficient αT (with dimension m2/(s3K)). If a typical scale
of the temperature anomaly is ΔT , then q0 = αTΔT . The dimensionless param-
eter measuring the amount of heating per SST anomaly is then given by

μ0 =
αTΔTL
c3a

(7.64)

which will be part of the main coupling parameter introduced in the ocean-
atmosphere model in subsequent sections. The relation between SST anomalies
and diabatic forcing above is far from perfect and many improvements based on
detailed atmospheric modelling have been suggested (see e.g., Neelin et al. (1998)
and references therein).
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(a) (b)

(c) (d)

Figure 7.14. (a) Pattern of the diabatic forcingQ(x, y) given by (7.61). The zonal wind response
(7.59a) is plotted for three different values of εa in subsequent panels, (b) εa = 0, (c) εa = 2.5 and
(d) εa = 5.0. Note that y is scaled with λa = 826 km and that x is scaled with the basin length
L = 1.5× 104 km. The zonal velocity is scaled with ca = 30 m/s and the factor μ0 = 1.

7.3.2. Adjustment of the ocean
The low level surface winds exert a wind stress on the ocean surface according

to the bulk formula
(τx, τy) = CdCC ρa| U |U (7.65)

where CdCC is the drag coefficient, ρa the density of air and U = (U, V ). Consider-
ing perturbations Ũ from some reference state Ū, the perturbation wind stress can
be taken proportional to the perturbation velocity in the lower atmospheric layer,
i.e.

τ̃x∗ττ
ρH

= γŨ∗UU ;
τ̃y∗ττ
ρH

= γṼ∗VV (7.66)

where γ is a constant (having dimension s−1).
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Reason for starting with a detailed analysis of the ocean response to a simplified
wind structure in section 7.2.4, is that the solutions can be used to illustrate the
response of the shallow water model to changes in the equatorial winds. When
the zonal wind stress does not depend on the meridional coordinate, i.e. g(y) = 1
in (7.37a), then the solution to periodic wind forcing with frequency ω can be
explicitly calculated (Technical box 7.3).

Technical box 7.3:
Explicit solution

to periodic forcing

In this technical box, an explicit solution of the forced ocean response to a
zonal forcing τx = f(x)eiωt is constructed, using the Green’s function calculated
in Technical box 7.1. The basic identity used is the explicit summation (Cane and
Sarachik, 1977)

e−iz
(
û0

ĥ0

)
+ 2

∞∑
j=0

α2j+1e
iz(4j+3)

(
û2j+1

ĥ2j+1

)
=

= π−
1
4 e

i
2
y2 tan 2z 1√

cos 2z

(
−i sin 2z
cos 2z

)
(7.67)

for complex z with �(z) ≥ 0. Note that for z = 0, the identities reduce to (7.43).

Computation of the values of rj in (7.37a) gives (for g(y) = 1)

r0 =
1√√
2

∫ ∞
−∞

∫∫
ψ0(y) dy = π

1
4

r2j+1 =
1

2
√

2

∫ ∞
−∞

∫∫
(
ψ2j+2√√
2j + 2

− ψ2j√√
2j + 1

) dy = −π 1
4
2α2j+1

4j + 3
r2j = 0

and hence one finds from (7.46b) that

L(η, y) = π
1
4 K(η, y) (7.69)

Using the integral ∫ ∞
−∞

∫∫
ei
y2

2
tan(2z) dy =

√
2π

i tan 2z

one obtains as a solution for hGE in (7.47), using the identity (7.67) for z = −iφ,
as

hGE(φ̃;x0) =

√
sin(2φ̃x0)
sin(2φ̃)
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where φ̃ = −iφ = ω−iεo. The Green’s function G is then completely known and
the total response to a wind stress with zonal dependence f(x) can be computed
from (7.35) as

u(x, y; φ̃) = hE(φ̃)
sin 2φ̃(x− 1)√
cos 2φ̃(x− 1)

ei
y2

2
tan(2φ̃(x−1)) −

−
∫ 1

x

∫∫
f(x0)

sin 2φ̃(x− x0)√
cos 2φ̃(x− x0)

ei
y2

2
tan 2φ̃(x−x0) dx0 (7.70a)

h(x, y; φ̃) = hE(φ̃)
√

cos 2φ̃(x− 1)ei
y2

2
tan(2φ̃(x−1)) −

−
∫ 1

x

∫∫
f(x0)ei

y2

2
tan(2φ̃(x−x0))

√
cos 2φ̃(x− x0) dx0 (7.70b)

where

hE(φ̃) =
∫ 1

0

∫∫ √
sin(2φ̃x0)
sin(2φ̃)

f(x0) dx0 (7.71)

is the thermocline amplitude at the east coast.

The thermocline response to a periodic wind stress with the spatial structure

τx = 0.6(0.12 − cos2 π(x− 0.57)
1.14

) cos
2πt
P (7.72)

is shown in Fig. 7.15 with a period P corresponding to 3 years (Neelin et al.,
1998). In the panels, time t = 0 the indicates the phase of maximum westerly
winds and no winds are present at t = −P/4. At times when the wind stress
is present, the thermocline response is nearly in steady balance with the wind
stress. The ocean does not only react to the instantaneous wind structure but also
to previous winds through propagation of waves. The structures off the equator to
the west of the wind are partly free Rossby waves which are still adjusting to the
wind but part of this response is just a forced response in steady balance with the
wind stress. It is the departure of this steady balance, which is crucial to further
evolution of the flow and provides the ocean with a memory.

A measure of this memory was considered in Neelin et al. (1998) to be the
difference between the actual response and that which would be at every time
in steady balance with the wind stress. This difference is plotted in Fig. 7.15b
from which it can be seen that the ’ocean memory’ is largest near the western
boundary. It acts like as a reservoir of unadjusted heat content that is fed down
the western boundary to an equatorial boundary layer. The importance of this
memory component for ENSO dynamics will become clear in later sections.
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(a)

(b)

Figure 7.15. (a) Response of the thermocline to a periodic wind fluctuation having a spatial
structure (7.72). Plotted are the spatial patterns of the oscillation for several phases of the oscilla-
tion. (b) Memory of the ocean, defined as the difference between the actual thermocline response
and that which would be obtained when the thermocline response at every time would be in steady
balance with the wind stress (Neelin et al., 1998).

7.3.3. Processes determining the SST
Once the ocean fields are known, next step is to determine the changes in SST.

The upper layers of the ocean are generally well-mixed up to a depth of 50m and
the temperature is fairly vertically homogeneous. Consider such a mixed layer
in Fig. 7.16, having a constant depth Hm. The temperature in the mixed layer
changes due to air-sea interaction, processes at the bottom of the mixed layer and
advection. The net heat flux from the atmosphere into the ocean is denoted by
Qoa (positive when heat is transferred from atmosphere into the mixed layer) and
the heat flux at the bottom of the mixed layer by Qb (positive when heat leaves the
mixed layer). The general temperature equation is given by

∂T∗TT
∂t∗

+ u∗.∇T∗TT = KHK ∇2
HT∗TT +KV

∂2T∗TT
∂z∗2

(7.73)
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Figure 7.16. Sketch of the mixed layer ocean model. The heat flux Qoa is taken positive when
heat is transferred from the atmosphere to the ocean and the heat flux Qb is taken positive when
heat leaves the mixed layer.

where ∇2
H is the horizontal Laplace operator. The boundary conditions are

z∗ = 0 : ρCpCC KV
∂T∗TT
∂z∗

= Qoa (7.74a)

z∗ = −HmHH : ρCpCC KV
∂T∗TT
∂z∗

= Qb (7.74b)

In the approximation that the temperature is vertically homogeneous over the
layer, one can integrate (7.73) over the layer which results in

∂T∗TT
∂t

+ u∗
∂T∗TT
∂x∗

+ v∗
∂T∗TT
∂y∗

= KHK ∇2
HT∗TT +

Qoa −Qb
ρCpCC HmHH

(7.75)

The ocean/atmosphere heat flux is composed of four contributions, i.e. short
wave, longwave, latent and sensible heat fluxes. The net heat flux Qoa can be
parameterized into a simple form as, for example, given by Haney (1971)

Qoa
ρCpCC HmHH

= −a1(T∗TT − TrTT ∗) (7.76)

where TrTT ∗ is a reference atmospheric equilibrium temperature. At the lower
boundary, the heat flux is composed of diffusive and advective contributions, with
the latter dominating, i.e.

Qb
ρCpCC HmHH

= w∗
T∗TT − TsTT ∗
HuHH

(7.77)

where w∗ is a typical vertical velocity at the bottom of the mixed layer, Hu a
vertical distance such that the temperature gradient between the mixed layer and
the subsurface temperature TsT ∗ is well approximated. The subsurface temperature
will depend on the vertical temperature distribution and hence on the position
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of the thermocline. If the thermocline depth increases (decreases), then TsT ∗ will
increase (decrease). More detailed dependencies are considered in later sections.

There are two ways in which the vertical velocities w∗ are generated. Changes
in the thermocline (for example through the propagation of waves) are accompa-
nied by vertical velocities. In addition, vertical velocities are caused by horizontal
convergences/divergences in the Ekman layer where frictional processes in the
upper layer provide the momentum transfer from the surface down to the interior.
With a linear frictional damping coefficient as, a balance between the frictional
processes, the Coriolis effect and wind stress leads to

asuE∗ − β0y∗vE∗ =
τ0ττ τ

x

ρHmHH
(7.78a)

asvE∗ + β0y∗uE∗ =
τ0ττ τ

y

ρHmHH
(7.78b)

where the subscript E refers to the Ekman layer velocities. The vertical velocities
due to the Ekman dynamics are given by

wE∗ = HmHH (
∂uE∗
∂x∗

+
∂vE∗
∂y∗

) (7.79)

Using the scaling (7.8) and a vertical velocity scaleHmc0/L, the dimensionless
equations (7.78) become

εsuE − yvE =
H

HmHH
F0FF τx (7.80a)

εsζ
2
oζζ vE + yuE =

H

HmHH
F0FF τy (7.80b)

wE =
∂uE
∂x

+
∂vE
∂y

(7.80c)

with εs = asL/c0 is the surface layer damping and F0FF = τ0ττ L/(ρHc2
o) as before.

These equations can be easily solved for given wind stress and the expressions are

uE =
H

HmHH
F0FF
εsζ

2
oζζ τ

x + yζoτ
y

ε2sζ
2
oζζ + y2

(7.81a)

vE =
H

HmHH
F0FF
−yτx + εsζoζζ τ

y

ε2sζ
2
oζζ + y2

(7.81b)

such that the dimensionless upwelling at the equator (with τ y = 0) is given by

wE =
H

HmHH
F0FF

[
1
εs

∂τx

∂x
− τx

ε2sζ
2
oζζ

]
(7.82)

For a constant zonal wind stress τ x = −1, the dimensional upwelling wE∗ is
constant along the equator and given by

wE∗ =
τ0ττ β0

ρa2
s

(7.83)

and with a wind stress amplitude τ0ττ = 0.05 Pa and as = 5.0 × 10−6 s−1, its
dimensional value is a few meters per day.
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7.3.4. Feedbacks
In the previous sections, the elementary physical processes have been discussed

and there is enough background now to discuss feedbacks in the coupled sys-
tem. There are three important feedbacks, which are called the thermocline, the
upwelling and the zonal advection feedback. The first two are associated with
changes in the vertical heat transport modelled by (7.77), and the third is associ-
ated with horizontal heat transport. The feedbacks are sketched in this section in
their most elementary form.

7.3.4.1 Thermocline feedback
This feedback is best explained by looking at a sloping thermocline in a con-

stant upwelling ocean as sketched in Fig. 7.17. The sloping thermocline is brought
about by background winds. The formulation in Technical box 7.3 provides an-
alytic expressions for the thermocline shape, if the stationary forcing (ω = 0) is
only zonally dependent (τ x = f(x), τ y = 0). In in the limit εo → 0 and hence
φ̃→ 0), the expression (7.70b) becomes

h̄(x) =
∫ 1

0

∫∫
f(x0)

√
x0 dx0 −

∫ 1

x

∫∫
f(x0) dx0 (7.84)

For example, when the zonal easterly wind stress is constant, f(x) = −f0 < 0
it follows that h̄(x) = f0ff (1/3 − x). The thermocline slope is constant for this
case and the thermocline anomaly is positive over one third of the basin. This
background wind also gives upwelling at the equator, according to (7.82) as

w̄E =
H

HmHH

F0FF f0ff

ε2sζ
2
oζζ

(7.85)

which is constant and positive.
Now assume that a positive SST perturbation T̃ is present at some location, for

example in the eastern part of the basin (Fig. 7.17). This leads to a perturbation
in the low level zonal wind which is westerly with a maximum located west of
the maximum of the SST anomaly according to the Gill model response shown
in the Figs. 7.14. Since the background winds are weakened locally (f0 smaller),
the slope of the thermocline decreases and it becomes more flat. In this case, the
colder water will be closer to the surface in the west but it will be farther down
in the east. In other words, in the east the thermocline is deeper and hence the
subsurface temperature is higher. Hence, the subsurface temperature effectively
increases at the level of upwelling, giving a positive heat flux perturbation at the
bottom of the mixed layer according to (7.75) and (7.77), i.e.

∂T̃∗TT
∂t∗
≈ −w̄∗

T̃∗TT − T̃sTT ∗
HuHH

(7.86)

As w̄∗ is positive, the first term in the right hand side represent the local damping
of SST anomalies. However, when T̃sTT ∗ > 0, then the second term on the right
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hand side is positive and the original disturbance may be amplified. Due to west-
ward shift of the wind response with respect to the maximum SST anomaly, the
maximum response of the thermocline is eastward of the maximum SST anomaly.
Hence, this induces eastward propagation tendencies to the perturbations.

7.3.4.2 Upwelling feedback
As another prototype situation, consider that the thermocline is fixed with a cer-

tain slope related to the background winds, the latter similar to the previous case.
Again a positive SST-anomaly is present in the east which generates the same
changes in the wind as before (Fig. 7.17). However, now the changes only influ-
ence the upwelling, mainly through the Ekman layer dynamics. Weaker easterly
winds imply less upwelling and hence less colder water enters the mixed layer.
This can also be seen from (7.77), i.e.

∂T̃∗TT
∂t∗
≈ −w̃∗

T̄∗TT − T̄sTT ∗
HuHH

(7.87)

If w̃ < 0 and the background vertical temperature gradient is stably stratified
(T̄∗TT > T̄sTT ∗), then the surface temperature perturbation is amplified. The maximum
downwelling anomaly occurs west of the SST anomaly and hence the upwelling
feedback introduces westward propagating tendencies to the SST anomalies.

7.3.4.3 Zonal advection feedback
The zonal advection feedback arises through zonal advection of heat induced

by zonal velocity anomalies driven by wind anomalies. Imagine a region with a
strong annual-mean SST gradient, say ∂T̄∗TT /∂x∗ < 0. Such a region occurs, for
example, at the eastern side of the warm pool. Suppose a positive SST anomaly
(T̃∗TT > 0) occurs, which leads again to westerly wind anomalies. Consequently,
the zonal surface ocean current (ũ∗ > 0) is intensified (Fig. 7.17) leading to am-
plification of the positive temperature perturbation, according to (7.75), i.e.,

∂T̃∗TT
∂t∗
≈ −ũ∗

∂T̄∗TT
∂x∗

(7.88)

Part of the mixed layer zonal velocity is due to equatorial wave dynamics and part
is due to Ekman dynamics.

7.3.4.4 Strength of the feedbacks
From the description of the coupled processes of the ocean and atmosphere, a

measure of the strength of the feedbacks can be obtained. An SST anomaly T̃ with
an amplitude of ΔT gives an atmospheric forcing according to the Gill model of
amplitude q0 = αTΔT . From technical box 7.2, the amplitude of the zonal wind
response due to this anomaly is given by

caμ0 =
αTΔTL
c2a

(7.89)
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Figure 7.17. (in color on page 532). Sketch to illustrate the thermocline feedback, the upwelling
feedback and the zonal advection feedback. In each case, a warm SST anomaly induces wind-stress
anomalies. (i) Thermocline feedback: the wind anomaly leads to changes in the thermocline slope,
which induces — with constant background upwelling — an amplification of the SST anomaly. (ii)
Upwelling feedback: the wind anomaly leads to changes in the upwelling which induces — in a
background stably stratified temperature field — an amplification of the SST anomaly. (iii) Zonal
advection feedback: the wind anomaly induces stronger zonal advection which, if the annual-mean
zonal SST gradient is negative, leads to amplification of the SST anomaly.

The surface wind anomaly creates a wind stress anomaly of amplitude, according
to (7.66) of amplitude

τ̃x∗ττ
ρH

=
γαTΔTL

c2a
(7.90)

Hence, the main parameter controlling the strength of the feedback is the amount
of wind stress per SST anomaly, which is indicated here by μ∗ (with dimension
N/(m2K)),

μ∗ =
ρHγαTL

c2a
(7.91)

7.4. The Zebiak-Cane Model
One of the first models that was able to reasonably simulate ENSO was that of

Zebiak and Cane (1987). In its original version, an annual-mean state and seasonal
cycle of both ocean and atmosphere is obtained from observations and within the
model the evolution of anomalies with respect to this reference state are computed.
The model produces recurring warm events that are irregular in both amplitude
and spacing, but favor a 3 to 4 year period. A summary of the model set-up is
given in section 7.4.1 using elements of model development already presented in
the previous sections. An overview of the main results of the model is given in
section 7.4.2.
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7.4.1. Formulation
The model captures the evolution of large scale motions in the tropical ocean

and atmosphere in a domain of infinite extent in the meridional direction. The
ocean is bounded by meridional walls at the west (x∗ = 0) and east (x∗ = L)
coast. The ocean component of the model consists of a well-mixed layer of mean
depth H1 embedded in a shallow water layer of mean depth H = H1 +H2HH having
a constant density ρ (Fig. 7.18). Only long wave motions above the thermocline
are considered and the deep ocean (having a constant density ρ+ Δρ) is assumed
to be at rest.

As a first step, mean horizontal velocities over the layers are defined as

u1∗ =
1
H1

∫ 0

−

∫∫
H1

u∗ dz∗ (7.92a)

u2∗ =
1
H2HH

∫ −H1

−

∫∫
H

u∗ dz∗ (7.92b)

um∗ =
1
H

∫ 0

−

∫∫
H

u∗ dz∗ =
1
H

(H1u1∗ +H2HH u2∗) (7.92c)

It is then assumed that the difference velocity between the first layer and the to-
tal mean velocity is exactly the component of the velocity which is induced by
frictional processes in the Ekman layer. Hence,

us∗ = u1∗ − um∗ =
H2HH

H
(u1∗ − u2∗) =

H2HH

H
uE∗ (7.93)

The mean velocity u∗m satisfies the reduced gravity model with a thermocline h∗,
having an equilibrium depth H .

The evolution of the mixed layer temperature T∗TT is governed by the equation

∂T∗TT
∂t∗

+ aT (T∗TT − T0TT ) +
w1∗
HuHH
H(w1∗)(T∗TT − TsTT ∗(h∗))

+ u1∗
∂T∗TT
∂x∗

+ v∗1
∂T∗TT
∂y∗

= 0 (7.94)

whereH is a continuous approximation of the Heaviside function. The horizontal
mixing in (7.75) has been simplified by approximating the dissipative processes
as linear damping,

KHK ∇2
HT∗TT ≈ −a2T∗TT (7.95)

with a damping coefficient incorporated in aT . The approximations of the sur-
face and bottom fluxes (7.76) and (7.77) have also been used. The second term
in (7.94) is usually referred to as the Newtonian cooling term, with inverse damp-
ing time aT , representing all processes as horizontal mixing, sensible and latent
heat surface fluxes, and long wave and shortwave radiation. T0TT is the temperature
of radiative equilibrium which is realized in the absence of large-scale horizontal
motion in the upper ocean and atmosphere. The next term models the heat flux due
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Figure 7.18. Schematic representation of the Zebiak-Cane model showing both surface layer and
shallow water layer. the latter bounded below by the thermocline.

to upwelling through the total velocity w∗1 and the approximate vertical tempera-
ture gradient (T∗TT − TsTT ∗(h∗))/HuHH . The subsurface temperature (TsT ∗) depends on
the thermocline deviations and models the effect that heat is transported upwards
(if w∗1 > 0) when the cold water is further from the surface. Explicit expressions
will be given below. The last two terms in (7.94) represent horizontal advection.
The vertical velocity component, the upwelling, is determined from continuity

w1∗ = H1(
∂u1∗
∂x∗

+
∂v1∗
∂y∗

) (7.96)

For readers who have not gone through the previous subsections, the full di-
mensional equations of the simplest ZC-type model are given. In addition to
(7.94), the ocean model is the reduced gravity model (section 7.2)

∂u∗
∂t∗

+ amu∗ − β0y∗v∗ +
∂h∗
∂x∗

=
τx∗ττ
ρH

(7.97a)

β0yu∗ + g′
∂h∗
∂y∗

=
τy∗ττ
ρH

(7.97b)

∂h∗
∂t∗

+ amh∗ + c2o(
∂u∗
∂x∗

+
∂v∗
∂y∗

) = 0 (7.97c)

with boundary conditions∫ ∞
−∞

∫∫
u∗(0, y∗, t∗)dy = 0 , u∗(L, y∗, t∗) = 0 (7.98)

The equations for the surface layer velocities are

asus∗ − β0y∗vs∗ =
H2HH

H

τx∗ττ
ρH1

(7.99a)

asvs∗ + β0y∗us∗ =
H2HH

H

τy∗ττ
ρH1

(7.99b)
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The atmospheric zonal and meridional boundary-layer velocities (U∗, V∗VV ) and
geopotential Θ∗ satisfy the steady balances in the Gill model and hence,

∂U∗UU
∂t∗

+ aMU∗UU − β0y∗V∗VV −
∂Θ∗
∂x∗

= 0 (7.100a)

∂V∗VV
∂t∗

+ aMV∗VV + β0y∗U∗UU −
∂Θ∗
∂y∗

= 0 (7.100b)

∂Θ∗
∂t∗

+ aMΘ∗ − c2a(
∂U∗UU
∂x∗

+
∂V∗VV
∂y∗

) = αT (T∗TT − TrTT ∗) (7.100c)

The right hand side of (7.100c) is the approximation of the heat flux according
to (7.76). The model is closed when explicit expressions are provided for the
function TsTT ∗ and T0TT . Moreover, the reference temperature TrTT ∗ has to be chosen.
In addition, the model contains quite a set of parameters for which ’best’ values
have to be provided. In Zebiak and Cane (1987), more details of the model set-up
are provided and the atmospheric model is slightly more complicated since the
convergence feedback scheme of Zebiak (1982) is implemented.

7.4.2. Results
In Zebiak and Cane (1987), the model is used in ’anomaly mode’ where only

the evolution of quantities with respect to some reference state are computed.
The latter state is derived from observations and can be an annual-mean state or
a state varying with annual period. If the reference state is indicated by ū∗ =
(ū∗, v̄∗), h̄∗, T̄∗TT , then equation for the SST anomalies T̃ used is

∂T̃∗TT
∂t∗

= −aT T̃∗TT − (M(w̄1∗ + w̃1∗)−M(w̄∗1))
∂T̄∗TT
∂z∗

−M(w̄1∗ + w̃1∗)
(T̃∗TT − TsTT ∗(h̃∗))

H1
− ū1∗.∇T̃∗TT − ũ1∗.∇(T̄∗TT + T̃∗TT ) (7.101)

with ∂T̄∗TT /∂z∗ a prescribed vertical temperature gradient and M(x) = x if x > 0
and zero elsewhere. The function TsT ∗ is chosen in such a way that saturation to
a temperature T1TT and T2TT occur when h∗ becomes very shallow and deep, respec-
tively. Extra parameters are introduced to control the transition between these
temperatures at intermediate values of h∗. The reference temperature TrTT ∗ is re-
lated to T̄∗TT although a more complicated diabatic heating scheme is used.

In Zebiak and Cane (1987), a 90-year simulation is described which is initial-
ized by a four month (from December to April of the first year) duration westerly
wind anomaly in the region 145◦E - 170◦W with an meridional exponential decay
scale of 20◦ and an amplitude of 2 m/s. After this initial disturbance, the model
computes the evolution of the anomalous fields with respect to the prescribed an-
nual cycle. A time series of the SST anomalies (represented by the NINO3 and
NINO4 indices) for this simulation is shown in Fig. 7.19, where the NINO4 index
is defined in the caption. Sustained oscillations are found with a period of about
3-4 years, with recurrent warm and cold events, each of about 14-18 month du-
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Figure 7.19. Time series (time in years) of the NINO3 (drawn) index (area 5◦N - 5◦S × 90◦W -
150◦W and the NINO4 (dotted) index (area 5◦N - 5◦S× 150◦W - 160◦W of the Zebiak-Cane model
(Zebiak and Cane, 1987)

.

ration. The peaks of the warm events, with an amplitude of about 2-3◦C, closely
follow the annual cycle and tend to occur either in June or at the end of the year.

Equatorial anomalies of thermocline depth and zonal wind stress are plotted
in Fig. 7.20. The major warm events (for example, year 32 and 42) are pre-
ceded by anomalously high equatorial heat content. An example is provided at
the beginning of year 31 (Fig. 7.20a), where the zonally averaged thermocline
depth anomaly is positive. Following warm events, the equatorial heat content is
low over the whole basin. Strong westerly wind anomalies occur during warm
events (Fig. 7.20b) with maximum amplitude in the central Pacific. The equato-
rial anomalies show the characteristic propagation of the heat content anomalies,
with west leading east, and a nearly stationary wind response similar to that ob-
served (section 7.1). The effect of the nonzero zonally averaged heat content is
important, since when its effect is neglected in the model, through modification
in TsTT ∗, the interannual oscillation disappears and an annual oscillation on either a
too warm or too cold mean state is found. If its effect is only partially taking into
account, an interannual oscillation with period longer than 4 year found, whereas
when its effect is exaggerated the period is much shorter than 4 year.

The occurrence of the oscillation appears to be quite robust to variation of pa-
rameters, although it disappears when the coupling, i.e. the amount of wind stress
per SST anomaly, becomes too weak. There is substantial influence of the annual
cycle. When the annual cycle is fixed at some stage in the evolution of a warm
event, the development of anomalies is very different. Fixation of April conditions
before the peak of the event in December, results in slower growth but longer per-
sistence of the SST anomalies. Fixation of August conditions in the same year
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Figure 7.20. Equatorial anomalies for (a) thermocline and (b) zonal wind stress. In both panels,
positive anomalies are indicated with solid lines and negative by dashed lines. In (a) the contour
interval is 10 m and anomalies greater (smaller) than 20 (-20) m are stippled (hatched). In (b)
anomalies greater than 0.015 Pa are stippled (Zebiak and Cane, 1987).

causes a substantial increase in growth rate while fixation in December that year
(or July next year) hardly has impact on the development. The (northern) Summer
appears to be most favorable for rapid growth of the anomalies and Spring seems
less favorable. This is directly related to the annual cycle development, with large
east-west gradients in the (northern) summer, stronger trade winds and stronger
upwelling (section 7.1). Even without an annual cycle present, for example by
fixing background conditions at July during the whole simulation, an interannual
oscillation is found, but it is much more regular (nearly periodic). This suggests
that the annual cycle contributes to the irregularity of the interannual oscillation.

Although this model has been a major breakthrough in ENSO research, it has
taken a while before the interannual response of this model was understood. In
Zebiak and Cane (1987), the major physical processes at work in the interannual
signal are already identified. First, a positive feedback between the large scale
ocean and atmosphere leads to amplification of SST anomalies. Next, equili-
bration of temperature anomalies occurs through nonlinear effects, in the model
mainly in the SST equation, which set the finite amplitude of the anomalies. The
period of the cycle is determined by a systematic time delay between dynamical
changes in the eastern ocean and associated large-scale fluctuations in the equato-
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rial wind stress. In the following sections this descriptive view will be made more
precise through more detailed analysis of the solutions of the model.

7.5. Towards the Delayed Oscillator
As deduced from the simulations in ZC-model, it appears that when the amount

of wind stress per SST anomaly is too small, no ENSO like oscillations occur (Ze-
biak and Cane, 1987; Battisti, 1988). This indicates that an amplification mech-
anism is at work only above some critical coupling strength and has motivated
studies on the stability of simple annual-mean states in Zebiak-Cane type models.

7.5.1. Coupled modes: periodic ocean basin
Philander et al. (1984) consider a substantial simplification of the ZC-model,

by neglecting the surface layer physics and taking a basin of infinite zonal extend.
As annual-mean state a flat thermocline, with a zonal linear temperature profile is
taken and the mean state is motionless. The heat flux anomaly forcing the atmo-
spheric wind anomalies is taken proportional to the thermocline depth anomaly,
i.e.

Q̃∗ = α h̃∗ (7.102)

and wind stress anomalies are taken proportional to the surface wind anomalies.
In this way, SST anomalies are linearly related to thermocline anomalies and an
SST equation is not needed. Using the steady Gill model and the reduced grav-
ity ocean model leads to a linear system of equations governing the evolution
of perturbations on the mean state. A few special cases are considered such as
the non-rotating and constant rotating (no β-effect) case, and the particular limit
co = ca. Indications of unstable modes are found, but the eigenvalue problem
associated with linear stability of the particular mean state is not solved.

The latter was done in Hirst (1986), with the same simplifications as (no surface
layer, horizontally unbounded domain, motionless basic state) in Philander et al.
(1984). When (7.94) is linearized around such a basic state a more general SST
equation results,

∂T̃∗TT
∂t∗

+ aT T̃∗TT − ũ∗
dT̄∗TT
dx∗
−KTKK h̃∗ = 0 (7.103)

where dT̄∗TT /dx∗ is the prescribed basic state zonal temperature gradient and KT

arises through linearization of the vertical heat flux around the basic state. The
adiabatic heat flux forcing of the atmosphere is taken proportional to the SST
anomalies, with proportionality constant KQ, and the wind stress is proportional
to the lower level wind with constant factor KS . Within this SST evolution equa-
tion, three different simplifications are considered. One of these simplifications
(model I in Hirst (1986)) is the limit of large KT and aT . In this case, one obtains
from (7.103) that T̃∗TT = κh̃∗, where κ = KTKK /aT and hence the heat flux anomaly
in the atmosphere is proportional to the thermocline anomaly as in Philander et al.
(1984).
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A consequence of the zonal extent of the domain is that the equations can be
separated in x∗. Hence, in a normal mode approach, solutions are sought of the
form

φ∗(x∗, y∗, t∗) = ei(k∗x∗−σ∗t∗)φ̂∗(y∗) (7.104)

for all quantities φ∗ of the model. The evolution of the perturbation quantities
on the mean state then reduces to an eigenvalue problem which in dimensional
quantities becomes

aM Û∗UU − β0y∗V̂∗VV − ik∗Θ̂∗ = iσ∗Û∗UU (7.105a)

aM V̂∗VV + β0y∗Û∗UU −
∂Θ̂∗
∂y∗

= iσ∗V̂∗VV (7.105b)

aM Θ̂∗ − c2a(ik∗Û∗UU +
∂V̂∗VV
∂y∗

) +KQKK T̂∗TT = iσ∗Θ̂∗ (7.105c)

aTT∗TT − û∗
dT̄∗TT
dx∗
−KTKK ĥ∗ = iσ∗T̂∗TT (7.105d)

amû∗ − β0y∗v̂∗ + ik∗ĥ∗ −KSÛ∗UU = iσ∗û∗ (7.105e)

amv̂∗ + β0y∗û∗ +
∂ĥ∗
∂y∗
−KS V̂∗VV = iσ∗v̂∗ (7.105f)

amĥ∗ + c2o(ik∗û∗ +
∂v̂∗
∂y∗

) = iσ∗ĥ∗ (7.105g)

together with boundary conditions that all perturbation quantities approach zero
with y∗ → ±∞. The corresponding eigenvalue problem for σ∗ can only be solved
numerically and was done in Hirst (1986) using a finite difference and a spectral
approach.

Parameter Value Parameter Value
aM 5.0×10−6 s−1 aT 9.2×10−8 s−1

ca 30 ms−1 KTKK 2.0 10−11 K(ms)−1

T̄xTT 5.0×10−7 Km−1 co 2.0 ms−1

β0 2.2 10−11 (ms)−1 KSK 8.0×10−8 s−1

am 1.0×10−7 s−1 KQKK 7 10−3

m2s−3K−1

Table 7.2. Typical values of dimensional parameters used in Hirst (1986) to solve the stability
of a motionless state of the equatorial ocean-atmosphere with constant depth thermocline and a
constant zonal temperature gradient T̄xTT .

For typical values of the parameters, shown in Table 7.2, a result is shown in
Fig. 7.21 for the model where anomalies in SST are taken proportional to the
thermocline anomalies, i.e.

T̂∗TT = κĥ∗ (7.106)

instead of (7.105d). In Fig. 7.21a, the growth rate of each mode is plotted as
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(a) (b)

(c) (d)

Figure 7.21. (a) Growth rate (Im(σ)) and (b) angular frequency (Re(σ)) of the most unstable
mode in the model of Hirst (1986) for a particular value of the dimensionless wavenumber k (in-
dicated by the vertical line in (b)) as a function of the coupling strength KQKS . Length is scaled
with the oceanic Rossby radius of deformation λo = 250 km. (c) and (d) Similar as (a) and (b),
but now coupling strength KQKS is fixed at a value (indicated by the vertical line) in (a) and the
wavenumber is varied.

a function of the coupling parameter KQKS for fixed k = 0.106, which corre-
sponds to a dimensional wavelength λ∗ = 2πλo/0.106 ≈ 15,000 km. As cou-
pling increases, the free oceanic Kelvin wave (labelled K) becomes unstable. In
Fig. 7.21b, it is shown that the frequency of the wave slightly decreases giving a
(slightly) larger travel time of the wave. Coupling affects also other free modes
3 but all are more stable than the coupled Kelvin wave. The same is found when
coupling is fixed and the wavenumber is varied as in Fig. 7.21c. There is a band of
wavenumbers for which each Kelvin wave is unstable. The shorter Kelvin waves

3Here the Rossby modes with index j are labelled Rj , the Yanai mode is labelled Y and an inertia-gravity mode

is labelled IGEO.
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Figure 7.22. Sketch of the mechanism of (a) destabilization of the oceanic Kelvin mode through
coupling and (b) stabilization of the first baroclinic Rossby wave. The anomalies are considered at
the equator with Q indicating the heat flux into/out of the atmosphere.

stabilize again, while the frequency increases substantially with k, but not very
different from the uncoupled modes (Fig. 7.21d).

Within this simple model, the effect of coupled processes on the free oceanic
waves can be easily determined. The two different cases of Kelvin and Rossby
modes are considered in Fig. 7.22. Consider a positive equatorial thermocline
anomaly h̃ as in Fig. 7.22a (a deeper thermocline). As the SST anomaly T̃ is
in phase with h̃, air rises above the warmer sea surface leading to the heat flux
indicated by Q+. According to the response of the Gill model, westerly surface
wind anomalies appear to the west of the heating anomalies with easterlies to the
east. The effect on the zonal velocities in the upper ocean creates a convergence
in the upper ocean layer with a maximum slightly east of the initial thermocline
anomaly. Hence, the anomaly is amplified and tends to propagate eastwards. For
the westward travelling Rossby waves, the wind induced zonal velocities create a
divergence which damps the initial positive thermocline anomaly (Fig. 7.22b).

In Hirst (1986), the sensitivity of other forms of the SST - equation is con-
sidered. It appears that the type of mode actually destabilized is sensitive to the
processes which control SST. In the advective limit (model II in Hirst (1986)),
with KTKK = 0, zonal advection is able to destabilize the Rossby modes, whereas
the Kelvin mode is stable and the coupled mode has westward propagating ten-
dencies. Within the full SST equation (model III in Hirst (1986)), a slow westward
propagating mode becomes unstable which seems unrelated to free waves in the
uncoupled situation, but has its origin in the adjustment of the SST. The latter
mode has features of modes found in earlier work by Anderson and McCreary
(1985).

In Neelin (1991b), a next step is taken by considering the effect of surface layer
processes in more detail. A simplification of the full SST equation to an equatorial
strip is introduced by meridional differencing. More specific, the SST equation
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(7.94) is simplified as

∂T∗TT
∂t∗

+ aT (T∗TT − T0TT ) +
w1∗
HuHH
H(w1∗)(T∗TT − TsTT ∗(h∗))

+u1∗
∂T∗TT
∂x∗
−H(−vN∗)

2vN∗
λo

(T∗TT − TNT ∗) = 0 (7.107)

where vN∗ is the meridional velocity at the northern boundary of the strip and TNT ∗
a fixed off-equatorial temperature. In the strip, the surface layer physics can also
be simplified since the wind stress is mainly zonal (τ y∗ ≈ 0). From the surface
layer model (7.99) one obtains

us∗ ≈
H2HH

asH1

τx∗ττ
ρH

= bu
τx∗ττ
ρH

(7.108a)

ws∗ ≈ H1bu
∂

∂x∗

τx∗ττ
ρH
− bw

τx∗ττ
ρH

(7.108b)

vN∗ ≈ − λo
2H1

bw
τx∗ττ
ρH

(7.108c)

with bu = H2HH /(asH1), bw = (H1/λo)bu and where the meridional velocity vN∗
is determined from the continuity equation through discretization over the strip.

In addition to the unstable Kelvin and Rossby modes found in the periodic
basin, the so-called slow SST mode is found which is related to the adjustment of
SST. This mode is characterized by amplification of temperature anomalies, which
give wind stress anomalies, which by surface layer processes give tendencies in
SST. It can have interannual time scale and the mode may exist, even if the time
derivative terms in the momentum equations of the reduced gravity model are put
to zero. Hence, ocean wave dynamics does not play a role in the destabilization
of the mode. Although analytic approximations were obtained in Neelin (1991b)
for this mode in the horizontally unbounded basin, we will not address these here,
since this mode will show up in the closed basin case discussed in the following
sections.

7.5.2. Coupled modes: bounded basin
A natural next step is to consider the stability of more realistic basic states

than those considered in Hirst (1986) in a bounded basin. In Hirst (1988), this
problem is solved for the simple motionless, flat thermocline basic state using the
same model as in Hirst (1986) for an ocean basin of zonal extent L. The unstable
modes, as discussed for the periodic basin case are hardly affected by the basin
dimensions except that the zonal wavenumbers become quantized.

The problem has been solved in much more detail and for general basic states
in a series of papers by Jin and Neelin, both numerically and also analytically in
reduced models. To understand the structure of the eigenmodes, for didactical
reasons, a simpler configuration is considered: the equatorial strip approximation
for the SST equation (7.107) is made.

Using the same scaling of atmosphere and ocean models as in (7.8) and ne-
glecting the meridional winds, the dimensionless equations of the model become
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(from (7.50), (7.107) and (7.26))

−y
2
V − ∂Θ

∂x
+ εaU = 0 (7.109a)

y

2
U − ∂Θ

∂y
= 0 (7.109b)

−(
∂U

∂x
+
∂V

∂y
) + εaΘ− μ0(T − TrTT ∗) = 0 (7.109c)

∂T

∂t
+ (w + ws)H(w + ws)(T − TsTT (h)) + εT (T − T0TT )

+(u+ us)
∂T

∂x
−H(−vN )vN (T − TNT ) = 0 (7.109d)

δ
∂u

∂t
− yv +

∂h

∂x
+ εou =

L

c20

τx∗ττ
ρH

(7.109e)

yu+
∂h

∂y
= 0 (7.109f)

δ
∂h

∂t
+
∂u

∂x
+
∂v

∂y
+ εoh = 0 (7.109g)

with new damping parameter εT = aTL/c0 and appropriate boundary condi-
tions for the ocean as before. The mean velocities in the ocean layer, satisfying
the shallow water equations are indicated by u, v and w. The expressions for
the dimensionless surface layer quantities follow from (7.108) when divided by
co,H1co/L and λoco/(2L), respectively. A factor δ has been included before the
time-derivatives of the zonal momentum and continuity equation in the ocean to
be able to continuously change between the situation where adjustment processes
in the ocean are fast compared to the adjustment of SST (the fast wave limit,
δ = 0) and the case where SST adjustment is much faster (the fast SST limit, δ).
The dimensionless parameter δ is therefore called the ratio of adjustment times of
ocean wave dynamics and SST.

7.5.2.1 The near equatorial behavior
The first task is to construct a more general basic steady state (i.e., the annual-

mean state) of which the stability is determined; this can be done in several ways.
One can simply compute a realistic mean state from observations, say ToTT ∗ for SST.
In general, this is not a solution of the SST equation but one simply neglects the
residue with the argument that the model is too simple to model the mean state
realistically. In this way, with TrTT ∗ = ToTT ∗, the ocean model is only forced with
wind stress anomalies which are caused by the atmospheric anomalous heat flux
forcing μ0(T∗TT − ToTT ∗). This follows the original approach in Zebiak and Cane
(1987).

A second possibility is to construct a basic state for which the temperature is a
solution of the SST equation. This can be done by prescribing a wind stress field

τx∗ττ
ρH

=
τ0ττ

ρH
τxzτ (x)τxmττ (y) (7.110)
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with some fixed zonal and meridional structure τ xz (x) and τxmττ (y). Using this wind
stress forcing, the steady state of the ocean model can be computed. Once this
state is known, the solution to the SST equation, say T̄∗TT , is obtained. One then
takes TrTT ∗ = T̄∗TT , such that wind anomalies are computed from T∗TT − T̄∗TT and hence
the wind stress to the ocean model is prescribed as

τx∗ττ
ρH

=
τ0ττ

ρH
τxzτ (x)τxmττ (y) + γU∗UU (7.111)

whereU∗UU is the atmospheric zonal surface wind and γ is the wind stress coefficient
as in (7.66). This is the approach taken in Hao et al. (1993) and Dijkstra and
Neelin (1995b); the latter paper is followed.

For the Gill atmosphere model response, the equatorial zonal wind response
to a temperature anomaly T̃ is approximated, using (7.62), through U∗ =
caμ0(3R2/2 −R0/2) which can be written as

U∗UU = caμ0A(T̃ ) (7.112)

A(T ) =
3
2

exp[3εax]
∫ 1

x

∫∫
exp[−3εas]T (s)ds

−1
2

exp[−εax]
∫ x

0

∫∫
exp[εas]T (s)ds (7.113)

The dimensionless wind stress forcing can then be written as

L

c20

τx∗ττ
ρH

= F0FF τxzτ (x)τxmττ (y) + μA(T − TrTT ) (7.114)

where again F0FF = (L/c20)× τ0ττ /(ρH) and μ is the central dimensionless coupling
parameter given by

μ =
L

ρHc2o
× μ∗ =

γαTΔTL2

c2oc
2
a

(7.115)

where μ∗ was defined in (7.91). This parameter can be seen as the product as the
amount of heat flux per SST anomaly times the amount of wind stress produced
by the atmospheric surface wind field as a response to this heating anomaly. It
indeed reflects the notion of the coupled processes operating in the tropical ocean-
atmosphere system. With this choice of the wind stress forcing, the surface layer
velocities can be written as

us = δu(F0FF τxzτ (x)τxmττ (y) + μA(T − TrTT )) (7.116a)

ws = −(δFsτxzτ (x)τxmττ (y) + μδsA(T − TrTT )) +
∂us
∂x

vN = δFsτ
x
zτ (x)τxmττ (y) + μδsA(T − TrTT ) (7.116b)

where new parameters are introduced as

δu =
buc0
L

; δs =
bwc0
H1

; δFs = δsF0FF (7.117)
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Of these, the parameter δs is most important since it measures the amount of up-
welling generated through surface layer processes; this parameter will be referred
to as the surface layer feedback parameter. The terms involving δu turn out to
be small and the effect of zonal advection in the SST equation is neglected. The
quantity δFs sets the climatological upwelling and is fixed throughout as in Ta-
ble 7.3.

Finally, a simple parameterization of TsT ∗ is introduced through

TsTT ∗(h∗) = TsTT 0 + (T0TT − TsTT 0) tanh
[
h∗ + h0

h1

]
(7.118)

where h0 is an offset value, TsTT 0 is the subsurface temperature for h = −h0 and h1

controls the steepness of the transition as h∗ passes through −h0. In this way, the
range of the subsurface temperature is given by [2TsT 0 − T0TT , T0TT ]. In dimensionless
variables, this becomes

TsTT (h) = TsoTT + (T0TT − TsoTT ) tanh(η1h+ η2) (7.119)

with η1 = H/h1, η2 = h0/h1.
If the wind stress has no meridional dependence, the equatorial ocean response

(which one only needs within the equatorial strip) can be (easily) explicitly com-
puted using the Green’s function derived in Technical box 7.1 and the solution in
Technical box 7.3. For any forcing in the right hand side of (7.109e) with time
dependence eσt, and a zonal dependence of f(x) this solution is given by, using
(7.70) with ω = −iσ,

u(x;φ) = −i(
∫ 1

0

∫∫
g1(ξ; φ̃)f(ξ) dξ g2(x− 1; φ̃)

−
∫ 1

x

∫∫
f(ξ)g2(x− ξ; φ̃) dξ) (7.120a)

h(x; φ̃) =
∫ 1

0

∫∫
g1(ξ; φ̃)f(ξ) dξ g3(x− 1; φ̃)

−
∫ 1

x

∫∫
f(ξ) g3(x− ξ; φ̃) dξ (7.120b)

g1(z; φ̃) =

√
sin 2φ̃z
sin 2φ̃

; g2(z; φ̃) =
sin 2φ̃z√
cos 2φ̃z

g3(z; φ̃) =
√

cos 2φ̃z

with φ̃ = −i(δσ + εo).
To define the oceanic basic state, the wind stress is prescribed (μ = 0) with

meridional dependence τ xmττ (y) = 1. The oceanic solution fields (ū, h̄) can be
computed for σ = 0, f(x) = τ xzτ and with

−i sin ix = sinhx ; cos ix = cosh x
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these become

ū(x) =
∫ 1

0

∫∫ √
sinh 2εoξ
sinh 2εo

τxzτ (ξ) dξ
sinh 2εo(x− 1)√
cosh 2εo(x− 1)

−
∫ 1

x

∫∫
τxzτ (ξ)

sinh 2εo(x− ξ)√
cosh 2εo(x− ξ)

dξ (7.121a)

h̄(x) =
∫ 1

0

∫∫ √
sinh 2εoξ
sinh 2εo

τxzτ (ξ) dξ
√

cosh 2εo(x− 1)

−
∫ 1

x

∫∫
τxzτ (ξ)

√
cosh 2εo(x− ξ) dξ (7.121b)

The latter expression reduces to (7.84) in the limit εo → 0. The upwelling velocity
w̄s can be obtained from (7.116) and subsequently with these ocean fields, the SST
equation (7.109d) can be solved to obtain T̄ .

Parameter Value Parameter Value
aM 5.0×10−6 s−1 aT 9.2×10−8 s−1

ca 30 ms−1 T0TT 30 ◦C
H 200 m co 2.0 ms−1

β0 2.2 10−11 (ms)−1 TNT 30 ◦C
am 1.3×10−8 s−1 H1 = HuHH 50 m
bw 1.0× 102 s τ0ττ 5× 10−2 Pa
bu 6.0× 105 s TsTT 0 22 ◦C
L 1.5× 107 m h0 25 m
h1 30 m as 5.0×10−6 s−1

Parameter Value Parameter Value
εa 2.5 εT 0.694
η1 6.667 η2 0.833
δs 1.0 δFs 4.104
F0FF 1.0

Table 7.3. Standard values of dimensional and non-dimensional parameters used in Dijkstra and
Neelin (1995b).

For the parameters as in Table 7.3, the solutions for h̄ and T̄ are plotted in
Fig. 7.23 for

τxzτ (x) = 0.6 (0.12 − cos2

[
π(x− x0)

2x0

]
); x0 = 0.57 (7.122)

Upwelling occurs over most of the basin except within a small interval near the
western boundary. The thermocline is shallow in the east part of the basin and
deep in the west. A cold tongue is present in the east having a temperature of
about 23◦C .
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Figure 7.23. Dimensional values of the basic state T̄∗TT (dotted) and h̄∗ (drawn) computed with the
prescribed wind forcing (7.122) using the standard values of the parameters. The zonal coordinate
is the dimensionless length x = x∗/L.

Now choosing TrTT = T̄ , the atmospheric response is computed for heating
anomalies with respect to T̄ . The consequence of this way of basic state con-
struction is that one obtains a family of basic states (depending on parameters)
each of which, by construction, is a solution of the coupled model for every value
of the coupling parameter μ.

If one considers now the stability of these basic states and limits to the pertur-
bations of having the form

T (x, y, t) =
[
T̄ (x) + T̂ (x)eσt

]
τxmττ (y) (7.123)

then again with τxmττ (y) = 1 the Green’s function can be used to express û and
ĥ into T̂ , using (7.120). In this way, an integro-differential eigenvalue problem
arises through the SST equation. The latter problem can be written in general
form as

σT̂ = CuCC (x)û+ Ch(x)ĥ− CTCC (x)T̂ + μδsA(T̂ ;x) (7.124)

with coefficients CuCC ,ChC and CTCC given explicitly in Dijkstra and Neelin (1995b).
Both problems of the steady state determination and the linear stability of this

basic state can be effectively tackled with the continuation methods discussed in
chapter 4. To compute steady solutions as function of the parameters (for gen-
eral μ), an integro-differential equation for the steady temperature field T̄ (x) has
to be solved. On an equidistant grid in x, xj = (j − 1)Δx, j = 1, · · · , J , let
zjz = T̄ (xj). Since the wind stress is expressed into T by (7.114), and the ocean
response to this wind stress through the Green’s function, the SST equation pro-
vides a nonlinear system of algebraic equations for the vector z. This system
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Figure 7.24. Bifurcation diagram based on a model for the near equatorial response for δs =
1.0. (a) εa = 0.0, (b) εa = 2.5. On the vertical axis, the temperature deviation of the steady state
(with respect to the reference state T̄ ) is plotted at x = 0.7.

has many parameters, but there are three main control parameters εa, δs and μ.
Once a steady state is known, the linear stability problem with the coefficients
in (7.124) depending on the steady state can be solved. In Dijkstra and Neelin
(1995b), branches of eigensolutions were traced as a function of parameters by
the following procedure. Define

ẑ = (T̂R1TT , ..., T̂RJT , T̂ I1TT , ..., T̂ IJT , σR, σI) (7.125)

where the superscripts R and I refer to real and imaginary parts of the eigenvector
and eigenvalue, respectively. Then (7.124) provides also a nonlinear system of al-
gebraic equations of order 2J . The additional two equations are obtained through
normalization of the eigenvector (real and imaginary parts). Then also a system
of algebraic equations is obtained, which can be solved using pseudo-arclength
continuation.

7.5.2.2 The fast wave limit
Results are simplest in the so-called fast wave limit where ocean wave pro-

cesses are assumed much faster than the adjustment of SST. In the fast wave limit,
δ → 0, the ocean response is in equilibrium to the actual wind stress. This regime
was explored for the near equatorial response in Hao et al. (1993) using traditional
methods and in Dijkstra and Neelin (1995b) with continuation methods. The bi-
furcation diagrams for both cases εa = 0.0 and εa = 2.5 and fixed δs = 1.0, using
μ as control parameter are plotted in Fig. 7.24. Plotted in the vertical axis is the
deviation from the cold tongue temperature (at x = 0.7) from the value of the
basic state (≈ 23◦C). For εa = 0 (Fig. 7.24a), the basic state becomes unstable
at P1PP through a transcritical bifurcation. This type of bifurcation is expected here,
since there is constructed solution for all values of μ (no saddle nodes) and there
is no symmetry (no pitchforks).

For supercritical values of μ, a steady state with a cooler cold tongue stabilizes
(Fig. 7.25a). Along this branch a Hopf bifurcation (H1) occurs, destabilizing
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Figure 7.25. Spatial structure of the total steady temperature field T , the subsurface temperature
TsTT and the thermocline field h for the two solutions along the branches of Fig. 7.24a. (a) point 2.
(b) point 4.

this cold state through an oscillatory mode. The time longitude structure of the
SST fields associated with this mode is plotted in Fig. 7.26a, showing a westward
propagating orbit. At subcritical values of μ with respect to P1, a steady state
with a warm cold tongue appears. This state is unstable down to the value of the
limit point (L1) and then stabilizes again and approaches a state where the basin
is nearly everywhere 30◦C (Fig. 7.25b).

In the bifurcation diagram for εa = 2.5 (Fig. 7.24b), also the basic state desta-
bilizes through a transcritical bifurcation. The Hopf bifurcation H1 is now lo-
cated on the warm branch and a second Hopf bifurcation H2 appears on the basic
state branch; both oscillatory modes have westward propagating equatorial SST
anomalies, similar to Fig. 7.26a. Contrary to what one might expect, in this very
stripped version of the Zebiak-Cane model, a quite realistically looking basic state
does not become directly unstable to oscillatory instabilities, but to a stationary in-
stability. The immediate consequence is that multiple equilibria appear due to this
bifurcation over quite a range of μ; one of these corresponds to an enhanced cold
tongue, whereas the other consists of a warm state. Although oscillatory instabili-
ties are around with reasonable periods, they do not occur as first bifurcations and
therefore their relevance is at this point questionable.

The nice feature of continuation methods is that one easily follows these bifur-
cation points in parameter space. For both values of εa, the path of the several of
these bifurcations is plotted in the (δs, μ) space (Fig. 7.27). One can compare the
location of the bifurcation points for δs = 1.0 with those in Fig. 7.24. For εa = 0
and large values of δs, the Hopf bifurcation H1 becomes the primary instability
(Fig. 7.27a). However, since the limit point L1 still exists, multiple equilibria
survive through an isolated branch (Dijkstra and Neelin, 1995b). The Hopf bifur-
cation H2 also becomes the primary instability for εa = 2.5 (Fig. 7.27b) at large
δs. At small δs, another Hopf bifurcation becomes the primary instability (point
A). This instability is associated with an eastward propagating orbit of which the
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Figure 7.26. (a) Time longitude plot of the SST anomaly corresponding to the oscillatory mode
H1 in Fig. 7.24a. (b) Same as (a) but for the Hopf bifurcation at point A in Fig. 7.27b. Only one
period of the oscillation is plotted.

pattern is shown in Fig. 7.26b. What the bifurcation diagrams neatly show, in par-
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Figure 7.27. Path of particular bifurcation points shown in Fig. 7.24 in the second control pa-
rameter δs for two values of εa. (a) εa = 0.0; here the positions of L1, H1, P1PP and P2PP for δs = 1.0
correspond to those in Fig. 7.24a. (b) εa = 2.5; here the positions of H2 and P1PP correspond to
those in Fig. 7.24b for δs = 1.0.

ticular Fig. 7.27b, is that there is a continuous exchange of eastward propagating
orbits as primary instabilities at small δs through stationary instabilities to west-
ward propagating orbits at large δs. All oscillatory instabilities can be viewed as
SST modes, because ocean wave dynamics is fully excluded in this model. When
surface layer processes are absent, the upwelling feedback is not operating which



424 NONLINEAR PHYSICAL OCEANOGRAPHY

leads to eastward propagating tendencies through the thermocline feedback. Sim-
ilarly, when surface layer processes dominate, westward propagating tendencies
are introduced through the upwelling feedback. In intermediate regimes, both
tendencies compensate to give rise to stationary modes.

The results of this bifurcation analysis complement the results in Hao et al.
(1993), where multiple equilibria were found together with both types of east-
ward and westward propagating oscillatory modes. Here, the view was taken of
modified modes of the periodic ocean basin case as in Neelin (1991b). Propaga-
tion tendencies are indeed introduced in the same way in the periodic basin case
and the presence of the lateral boundaries and the spatially varying basic state
cause east-basin trapping. More complicated spatial-temporal behavior, such as
relaxation oscillations, found in Hao et al. (1993), could also be explained dy-
namically in Dijkstra and Neelin (1995b) as being caused by mode interaction, in
particular through interaction of a periodic orbit and a nearby stationary point.

The SST modes in the fast-wave limit are explored analytically detail for the
case the coefficients in the eigenvalue problem (7.124) are constant in Jin and
Neelin (1993b). Also for this case, the most unstable modes are stationary for
small εa. The east-basin trapping is shown to occur through the east-west asym-
metry associated with the β-effect. At small δ, the modes remain stationary and
their growth rate increases. For larger εa, oscillatory modes become first unsta-
ble and remain present when wave time scales are included. Hence, the picture
sketched in the fast wave limit remains valid in this regime.

7.5.2.3 The weak-coupling limit
Before going to the instabilities of a spatially dependent basic state in the full

model (7.109), one special case is considered in more detail, because it adds
greatly to the understanding of the total structure of the eigenmodes. When sur-
face layer processes are neglected (δs = 0), the eigenvalue problem (7.124) be-
comes

û(x; φ̃) = −iμ(
∫ 1

0

∫∫
g1(ξ; φ̃)A(T̂ ; ξ) dξ g2(x− 1; φ̃)

−
∫ 1

x

∫∫
A(T̂ ; ξ)g2(x− ξ; φ̃) dξ) (7.126a)

σT̂ = CuCC (x)û+ Ch(x)ĥ− CTCC (x)T̂ (7.126b)

ĥ(x; φ̃) = μ(
∫ 1

0

∫∫
g1(ξ; φ̃)A(T̂ ; ξ) dξ g3(x− 1; φ̃)

−
∫ 1

x

∫∫
A(T̂ ; ξ)g3(x− ξ; φ̃) dξ) (7.126c)

with φ̃ = −i(δσ + εo) and the functions gi as in (7.120).
If the limit of small coupling coefficient (μ → 0), the SST equation and the

ocean dynamics equations become decoupled and each gives their own eigen-
modes, i.e. SST modes and ocean dynamics modes, respectively. Nontrivial solu-
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tions for the zonal velocity and thermocline perturbation only arise if the denom-
inator in the function g1(z) becomes zero. This leads to

sin 2φ̃ = 0⇒ φ̃ =
kπ

2
⇒ σ = σr + iσi =

−εo + ikπ2
δ

(7.127)

for k = 1, 2, .... The spatial structure of these modes is given by

ĥ(x) =
√

cos kπ(x− 1) (7.128a)

û(x) = −i sin kπ(x− 1)√√
cos kπ(x− 1)

(7.128b)

since the term before this functional form is just a scalar and the atmospheric
response is zero. Exactly these modes were shown to be eigenfunctions of the
shallow water equations by Cane and Moore (1981) in the long wave approxima-
tion and they will be referred to as ocean basin modes. The gravest ocean basin
mode (k = 1) has an angular frequency of π/(2δ), which for δ = 1 corresponds
to a period of 4L/co, i.e. four time the basin crossing time of the free oceanic
Kelvin wave. The zonal velocity of this mode is singular (for εo = 0) at x = 0.5,
but the thermocline field is smooth.

The uncoupled SST modes are just constants for constant CT , with decay rate
σR = −CTCC (if some Laplace diffusion is introduced they become simple cosine
functions). In Neelin and Jin (1993), the correction to the growth rate and angular

Figure 7.28. Modification of growth factors σr (drawn) and angular frequencies σi (dotted) in
the weakly coupled limit for different orders of asymptotic approximation (Neelin and Jin, 1993).

frequency of the ocean basin modes and SST modes is analyzed using asymptotic
expansions for constant coefficients in the SST equation. The correction of the
eigenvalues due to coupling and hence as a function of μ is shown in Fig. 7.28.
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The growth rate increases with coupling while the frequency decreases rapidly
with respect to the uncoupled mode. For μ small, the structure of the mode still
looks very much the same as the uncoupled basin mode, with zonal advection
dominating in the SST structure (Fig. 7.29a). However, for larger μ the struc-
ture changes dramatically (Fig. 7.29b) with slow eastward propagation starting to
appear in both fields. Both stationary and propagating SST modes (which occur
when δs �= 0�� ) do not modify strongly from the uncoupled case.

(a) (b)

Figure 7.29. Patterns of SST (left panel) and thermocline (right panel) anomalies for (a) μ = 0.1
and (b) μ = 0.3 of a (modified) ocean basin mode.

7.5.3. Modes in the full problem
Even when the equatorial strip approximation for the SST equation is kept, but

a more general meridional structure of the forcing is assumed and more detail
of the off-equatorial response is taken into account, the exact summation in the
Green’s function can no longer be carried out. The problem has to be tackled
numerically with spectral or a finite difference approach similar to that in Hirst
(1986); this problem was solved in Jin and Neelin (1993a). First a basic state is
constructed which is a solution for every value of the coupling strength as in the
previous section. This state has a prescribed Gaussian meridional structure with
λo as the spatial decay scale. The zonal dependence at the equator of the fields
T̄∗TT , h̄∗ and w̄s∗ is plotted in Fig. 7.30. These fields show a cold tongue in the
eastern part of the basin, a warm pool in the western part of the basin, a slope in
the thermocline and strongest upwelling in the center of the basin.
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Figure 7.30. Zonal section at the equator of the the dimensional basic state as used in Jin and
Neelin (1993a). (a) SST (T̄∗TT ), (b) thermocline depth (h̄∗), and (c) upwelling (w̄s∗).

The coupled model is considered as an anomaly model with respect to this basic
state. In other words, the atmospheric heating anomaly is computed from SST
anomalies with respect to T̄ . For the instabilities of this basic state, the parameter
regime formed by the (μ, δs) - plane is investigated. The behavior of the modes
in the weakly coupled regime were already explored above for a reduced version
of the model, i.e. for the near equatorial response.

For the full model, there is quite a complication in the weakly coupled limit.
The structure of the spectrum of the full ocean shallow water model in a bounded
basin on an equatorial β-plane is continuous (Moore, 1968). When the equations
are discretized, a resolution dependent scatter spectrum appears. How this spec-
trum looks like can again by determined from the Green’s function analysis and
is subject of Technical box 7.4.
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Technical box 7.4:
Scatter spectrum

For the unforced, nondissipative, shallow water model on the equatorial β plane
in the long wave limit, the spectrum of free modes, which satisfy boundary condi-
tions is considered. Nontrivial solutions are only obtained for hGE in (7.47) if the
denominator is zero and hence∫ ∞

−∞

∫∫
KuKK (φ, y)dy = 0

with

KuKK (φ, y) = lim
M→∞

⎡
⎣
⎡⎡
eφψ0(y) +

1√
2

M∑
j=0

α2j+1e
−φ(4j+3)(

ψ2j+2(y)√
j
√√

+ 1
− ψ2j(y)√

j
√√ )

⎤
⎦
⎤⎤

for φ = σ. When the infinite sum is taken, it is now known that the ocean basin
modes (7.128) are found. However, when the sum is truncated at order M , the
condition leads to

1−
M∑
j=1

(2j − 3)!!
(2j)!!

zj = 0 ; z = e−4σ (7.129)

where (2j)!! = 2×4×6×· · ·×2j, with (−1)!! = 1. The real and imaginary parts
of the eigenvalues σ are shown in Fig. 7.31 for M = 11,M = 31 and M = 51 by
solving for the polynomial equation for z and relating −4σj = ln zjz −2kπi; only
the set k = 0 is plotted in Fig. 7.31. All these modes damp faster than the physical
damping rate (which is zero), and only one approaches a growth factor zero for
large M and hence this is the ocean basin mode. It corresponds to the mode with
z = 1, or 4σ = 2πki, similar to (7.127). The scatter modes exist because incident
energy leaks into the system along the western boundary, through the long-wave
approximation made.

All the ingredients are now available to understand the unified picture provided
in Jin and Neelin (1993a). In Fig. 7.32, the frequency and growth rate of the
modes are plotted as a function of μ with a larger dot representing a larger value
of μ. For μ = 0, SST modes and ocean dynamics modes are uncoupled. The
latter modes consist of the ocean basin modes (labelled ’B’) and the ocean scatter
modes (labelled ’S’). With increasing coupling, the stationary SST mode becomes
more unstable while simultaneously the ocean dynamics modes are strongly mod-
ified. Eventually, mode merging occurs where one of the ocean dynamics mode
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Figure 7.31. Spectrum of modes of the shallow water equations in the long wave approximation
at three different truncations with (a) roots zj and (b) eigenvalues σj . Truncation levels areM = 11
(open squares), M = 31 (open circles), M = 51 (filled circles).

merges with an SST mode. For small δ, the SST mode merges with scatter modes,
whereas at large δ, the SST mode merges with and ocean basin mode. The result-
ing modes have been termed mixed SST/ocean dynamics modes. An example
of such a merger is shown in Fig. 7.33a with patterns of the eigenmodes at loca-
tion B in Fig. 7.33b. The resulting mode inherits the spatial pattern from the SST
mode, while its frequency is determined from ocean adjustment processes provid-
ing a period in the interannual range. While this completes the investigation of
the coupled modes within this intermediate complexity model context, it does not
provide a simple physical view of the mechanism of the oscillation. The structure
of the connection of the modes is complicated and asks for more simple models in
which the dominant physics of the oscillatory modes can be understood. There-
fore, attempts have been made to deduce more conceptual models related to these
eigenmodes.
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Figure 7.32. Sketch of the connection between the different modes in parameter space. The modes
labelled ’SST’ are SST-modes, those labelled with ’S’ are the scatter modes and those labelled ’B’
are ocean basin modes.

(a)

(b)

Figure 7.33. (a) Typical curves of growth factors (left panel) and angular frequencies (for the
case δ = 1.5), showing the connection between the stationary modes and a scatter mode near point
B. (b) Equatorial patterns of the dimensional SST anomalies (left panel) and thermocline anomalies
(right panel) for point B.

7.5.4. Conceptual models of the ENSO oscillation
Several attempts have been made to device more conceptual models capturing

the essence of the oscillation as seen in intermediate coupled models (Zebiak and
Cane, 1987). Although the earlier attempts by Battisti and Hirst (1989), Schopf
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and Suarez (1990) and Cane et al. (1990) have lead to successful models, the study
of Jin (1997b) nicely follows the mixed SST/ocean dynamics mode framework
discussed in the previous section. Hence, we first follow this approach here and
come back to the earlier models later on.

7.5.4.1 The two-strip model
First step in obtaining a reduced model is a simplification of the shallow water

response. For convenience, the dimensionless shallow water equations using the
long wave approximation are again given below with the dimensionless zonal
wind stress forcing indicated by τ , i.e.

∂u

∂t
− yv +

∂h

∂x
+ εou = τ (7.130a)

yu+
∂h

∂y
= 0 (7.130b)

∂h

∂t
+
∂u

∂x
+
∂v

∂y
+ εoh = 0 (7.130c)

To obtain a single equation for h, (7.130a) is differentiated to y and the result is
then multiplied by y. When (7.130a) is subtracted from this result one obtains

(yuy − u)t − y2vy + yhxy + εoyuy − hx − εou = y τyττ − τ (7.131)

where the subscripts now indicate differentiation. Next, (7.130b) is differentiated
to x and the result multiplied by y. When also (7.130b) is differentiated to y, the
two relations

y2ux + yhxy = 0 (7.132a)

yuy + u+ hyy = 0 (7.132b)

are obtained. The terms yuy and yhxy are now eliminated from (7.131) using
(7.132). When the relation u = −hy/y is used and the term with ux + vy is
eliminated using (7.130c), the final equation obtained is

y2(
∂h

∂t
+ εoh) + (

2
y

∂

∂y
− ∂2

∂y2
)(
∂h

∂t
+ εoh)−

∂h

∂x
= y

∂τ

∂y
− τ (7.133)

The boundary conditions then become

x = 0 :
∫ ∞
−∞

∫∫
1
y

∂h

∂y
dy = 0 (7.134a)

x = 1 :
∂h

∂y
= 0 (7.134b)

In Jin (1997b), it is assumed that h has a near parabolic dependence near the
equator, a property which does not seem unreasonable, when looking at the ther-
mocline structures of the free equatorial Rossby waves. Hence,

h(x, y, t) = he(x, t) + y2Δh(x, t) (7.135)
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If one takes (hn+he)/2 = h(x, 1, t), the latter being the thermocline deviation at
a distance λo from the equator, then it follows that Δh = (hn − he)/2. Note that
the zonal velocity is given by u = −hy/y = he − hn. Now (7.135) is substituted
into (7.133) and considered at y = 0 giving one equation relating he and hn. A
second equation is obtained by realizing that the second term in the left hand side
of (7.133) is much smaller than the first at y = yn where h ≈ hn. This leads to
the two-strip model

(
∂

∂t
+ εo)(he − hn) +

∂he
∂x

= τ|y=0 (7.136a)

(
∂

∂t
+ εo)hn −

1
y2
n

∂hn
∂x

=
∂

∂y
(
τ

y
)|y=yn (7.136b)

Note that the free wave solutions (in a zonally unbounded domain) with wavenum-
ber k of (7.136b) have a frequency −k/y2

n, and hence represent Rossby waves.
For yn = 2, these have a phase velocity 1/4 of the free Kelvin wave signal (of the
wave with the same wavenumber k) which is contained in (7.136a). The boundary
conditions can be approximated by

hn(1, t) = rEhe(1, t) ; he(0, t) = rWhn(0, t) (7.137)

where rE and rW are a measure of the degree of zonal mass flux allowed at each
boundary. For example, at the eastern boundary, the zonal velocity is given by
uE(1, t) = he(1, t)−hn(1, t) = (1−rE)he(1, t). Hence, if rE = 1 the zonal mass
flux is zero but for rE < 1 a nonzero mass flux is allowed. In general, rW < 1,
since energy leaks through the western boundary under condition (7.134b) and a
choice rW = 3/5 is the appropriate value under the two-strip approximation with
h = 0 at y = 2yn and beyond. Both rW and rE therefore monitor the degree of
exchange of mass between the equatorial strip and off-equatorial regions.

The dispersion relation of the ocean adjustment modes (eigensolutions of the
unforced problem (7.136)) which satisfy the boundary conditions becomes

σjσ = −εo + ln
rErW (1 + y2

n)− rE
(1 + y2

n)− rE
+ i

2πj
1 + y2

n

(7.138a)

hn = HnHH eσj t+(σj+εo)xy
2
n) (7.138b)

he = HeHH eσj t−(σj+εo)x) +
hn

1 + y2
n

(7.138c)

for j = 0,±1,±2, .... The second term in the right hand side of the first equation
above has always a negative real part and represents damping through the energy
loss at the boundaries. The mode for j = 0 is a purely stationary adjustment
mode, which appears because the basinwide mean of h is a free mode solution of
the two-strip model for εo = 0. This mode can be seen as an approximation of the
gravest scatter mode of the complete spectrum of ocean adjustment modes. The
oscillatory modes for higher j are the equivalents of the ocean basin modes.
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The equation governing the equatorial SST-perturbations follows from the gen-
eral eigenvalue problem discussed in section 7.5.2, i.e.

∂TeTT

∂t
+CTCC (x)TeTT − ChC (x)he = 0 (7.139)

with CTCC representing local damping and Ch the effect of thermocline variations
(through background upwelling) on the temperature perturbations (thermocline
feedback). As the SST perturbations change mostly in the eastern part of the
basin, one can average the equation above over the eastern half of the basin, say
from x = 1/2 to x = 1, to give

dTeETT

dt
+ CTECC TeETT − ChEC heE = 0 (7.140)

When, following the Gill atmosphere model, the wind stress anomaly is written
as

τ = μA(TeTT )e−(αy)2/2 (7.141)

where α = λo/λa, the equatorial wind stress can be related to the temperature
TeETT . A westerly wind response west of positive TeETT can be represented by

τ|y=0 = μ A0 TeETT f(x) (7.142)

with a fixed pattern f(x) and amplitude A0. The proportionality factor μ serves
as coupling coefficient with μ = 1 being a ‘realistic’ strength. The function
f(x) mimics the spatial pattern of the wind response and can be taken piecewise
constant (Jin, 1997b), for example

f(x) =
1

x2 − x1
for x1 < x < x2 (7.143)

and zero elsewhere. In this way, the forcing in the second equation of the two-strip
model (7.136) can be approximated as

∂

∂y
(
τ

y
)|y=yn ≈ −μ A0 TeETT f(x)

θ

y2
n

(7.144a)

where θ is an O(1) coefficient.
A nice element in the coupled model developed in this way is that the two-strip

equations can be integrated along the (Kelvin and Rossby) wave characteristics
(for the general procedure, see any introductory text on partial differential equa-
tions, for example John (1986)), which are given by

x− x0 = t− t0 (7.145a)

x− x0 =
t0 − t
y2
n

, (7.145b)

respectively, where (x0, t0) is any point in the domain. When damping is ne-
glected, the solutions he and hn can be obtained by first integrating (7.136b)
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along a Rossby wave characteristic starting at the eastern boundary and reaching
the western boundary. Next, (7.136b) is integrated along a characteristic starting
at the western boundary over the Kelvin crossing time, in which the wave has
reached the eastern boundary. Using mean value approximations and the fact that
1 + y2

n >> 1, this leads to delay equations of the form

heW (t) = rW rEheW (t− 1− y2
n) +

+μA0rW (rETeETT (t− 1− xP ) − θTeETT (t− y2
nxP )) (7.146a)

heE(t) = rW rEheE(t− 1− y2
n)−

−μA0(θrWTeETT (t− 1− y2
nxP ) − TeETT (t− 1 + xP )) (7.146b)

dTeETT

dt
+ CTECC TeETT − ChEC heE = 0 (7.146c)

where xP is a chosen fixed point within the area of wind response [x1, x2].

7.5.4.2 The delayed oscillator
When the effect of the eastern boundary reflection is neglected (rE = 0), then

(7.146b) and (7.146c) give

dTeETT

dt
= −CTECC TeETT + μA0ChEC

(TeETT (t− 1 + xP ) − θrWTeETT (t− 1− y2
nxP )) (7.147)

which shows that the average eastern basin temperature is influenced by local
damping and a remote signal due to propagation of Kelvin and Rossby waves.
The delay time 1 − xP is the effect due to the Kelvin wave and as this is fast, it
can be neglected on long time scales. It provides the local amplification of tem-
perature perturbations through the thermocline feedback through a forced Kelvin
wave response. The delay 1+y2

nxP is the time taken for the Rossby wave to travel
from the center of wind patch near xP to the western boundary plus the time it
takes the reflected Kelvin wave to cross the basin. When returned in the east-
ern part of the basin, it provides a delayed negative feedback to the temperature
perturbation (since rW > 0).

Based on other ad hoc approximations the picture of a delayed oscillator was
derived by Battisti (1988) and Suarez and Schopf (1988). In these studies, a dif-
ferential delay equation with local feedback was proposed of the form

dT∗TT (t∗)
dt∗

= aT∗TT (t∗)− bT∗TT (t∗ − d)− cT 3
∗TT (t∗) (7.148)

Here a represents the growth rate of the temperature disturbance T in the eastern
Pacific and would correspond to μA0ChEC −CTECC in (7.147). The quantity d is the
delay time due to the propagation of equatorial waves, corresponding to 1+y2

nxP
in (7.147), and b measures its influence with respect to the local feedbacks. The
nonlinear term in (7.148) is needed for equilibration of the temperature to finite
amplitude.
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Scaling time by 1/a and the temperature by
√
a/c, the dimensionless equation

(7.148) becomes

dT (t)
dt

= T (t)− αT (t− δT )− T 3(t) (7.149)

with α = b/a and δT = ad is the dimensionless delay time. For α < 1, this
equation has three steady solutions, given by

T̄ = 0, T̄ = ±
√

1− α (7.150)

which correspond again to the multiple equilibria structure found in previous sec-
tions. Infinitesimal perturbations T̃ on each state satisfy

∂T̃

∂t
= T̃ (1− 3T̄ 2)− αT̃ (t− δT ) (7.151)

A normal mode analysis, with T̃ = T̂ eσt, leads to the eigenvalue problem

σ = 1− 3T̄ 2 − αe−σδT (7.152a)

σr = 1− 3T̄ 2 − αe−σrδT cos(σiδT ) (7.152b)

σi = αe−σrδT sin(σiδT ) (7.152c)

In Schopf and Suarez (1988), the regime α < 1 is considered. In this regime, the
trivial state is unstable to a stationary mode. For the solutions T̄ 2 = 1 − α, the
neutral curve is shown in the (δT , α) plane in Fig. 7.34a with the period of the
oscillatory mode in Fig. 7.34b. The period of oscillation is larger than 2δT , which
indicates that if the propagation time of the Rossby waves from the center of the
basin is three times the Kelvin crossing time, the period is at least 18 months.
In Schopf and Suarez (1988), it is shown that the same holds for the oscillation
period of the fully nonlinear system. In Battisti (1988), the regime α > 1 is

Figure 7.34. (a) Neutral curves of the nontrivial steady states in the delayed oscillator model
(Suarez and Schopf, 1988). (b) Period the nonlinear oscillator in multiples of the dimensionless
delay time δ = δT .

considered to be more realistic, and no additional unstable states appear. In this
regime, the trivial state is unstable to one oscillatory solution.
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This delayed oscillator model reflects the central elements of the ENSO cycle in
terms of local growth due to instability and subsequent adjustment through (indi-
vidual) Kelvin and Rossby waves. In the eastern part of the basin, strong feedback
takes place which leads to amplification of disturbances: positive SST anomalies
cause wind stress anomalies, which weaken the background trade winds, with
maximum weakening west of the SST anomaly. This is turn creates a different
slope in the thermocline which leads through the thermocline feedback to a larger
SST anomaly. However, the ocean does not react instantaneously to the changing
winds, but has a memory component which determines its long term evolution.
The wind anomaly also generates westward travelling Rossby waves that make
the thermocline shallower in off-equatorial regions in the western part of the basin.
The Rossby waves reflect on the western boundary and cause a Kelvin wave re-
flection which causes an elevated thermocline. This Kelvin wave signal provides
the delayed negative feedback, through which the SST anomaly reduces to zero
and becomes slightly negative. Then the feedback start to operate with a different
sign to amplify the negative temperature anomaly leading to a La Niña state.
Hence, the period of the oscillation is basically determined by the wave transit
time to get the delayed feedback. Slightly different details have been suggested in
several studies, but the basic mechanism of the delayed oscillator at work is that
sketched above.

7.5.4.3 The coupled wave oscillator
Consider the situation of the fast SST limit where SST anomalies adapt nearly

instantaneously to thermocline anomalies. This is modelled by putting the time
derivative to zero in (7.146c) which gives TEeT = ChEC heE/CTECC . When substi-
tuted in (7.146b) this gives the map

heE(t) = rW rEheE(t− 1− y2
n) +

μA0
ChEC

CTECC
(heE(t− 1 + xP ) − θrWheE(t− 1− y2

nxP )) (7.153)

This equation is the linear version of the coupled wave oscillator model intro-
duced in Cane et al. (1990). A nonlinear version has been analyzed in Münnich¨
et al. (1991), where A0 is not constant but an operator (just as in the Gill model).
Variants of these models were also considered in Schopf and Suarez (1990).

In this model, the wind stress response is (through the SST anomalies) directly
related to thermocline depth anomalies. When the effect of the eastern boundary
reflection is ignored, rE = 0, forced Kelvin waves are generated which lead to
amplification of thermocline anomalies. The delayed feedback through the forced
Rossby waves which reflect to returning Kelvin waves is similar as in the delayed
oscillator picture. In fact, using the Taylor-series expansion for the forced Kelvin
wave response around time t, i.e.

heE(t− 1 + xP ) = heE(t)− (1− xP )
dheE
dt

+ · · · (7.154)
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leads to an equation of which the linear part is similar to (7.148). Since no SST ad-
justment is involved, the oscillatory phenomena in this model (Cane et al., 1990)
must be caused by a destabilized ocean adjustment mode. The oscillation mecha-
nism is hence inherited from the uncoupled ocean basin modes (Jin, 1997a). The
coefficients rE and rW control the growth rate of the mode and the propagating
properties of the equatorial waves.

7.5.4.4 The recharge oscillator
Suppose that the timescale of the leading mode in the oscillation is much be

larger than 1 + y2
n (the period of the gravest ocean basin mode). Then similar

Taylor series approximations as in (7.154) can be used to derive a system of two
first order differential equations, i.e.

dheW
dt

= −1− rW rE
1 + y2

n

heW −
μA0rW (θ − rE)

1 + y2
n

TeETT (7.155a)

dTeETT

dt
= −(CTECC + μA0ChEC )TeETT + ChEC heW (7.155b)

The first equation follows directly from (7.146a). The relation

heE = heW + μA0TeETT

the latter being an approximation of the ’quasi Sverdrup’ steady balance over the
basin, can be derived from (7.146b) and is used to obtain (7.155b) from (7.146c).
The model above is the recharge oscillator model as presented in Jin (1997a) and
Jin (1997b).

The right hand side of (7.155) can be considered as the Jacobian matrix asso-
ciated with the stability problem of the trivial solution. Note that for μ = 0, this
state is stable, since rW rE < 1. A complex conjugate pair of eigenvalues crosses
the imaginary axis with frequency ωc at

μc =
CTECC + r

A0

ωc =

√
rW (θ − rE)

CTECC + r

1 + y2
n

− r2 (7.156a)

where r = (1 − rW rE)/(1 + y2
n) is the decay rate of the zero frequency ocean

adjustment mode. This oscillation only exists when 0 < rW (θ − rE) << 1 and
in that case it has also a period longer than the intrinsic time scales in the model.
Note also that when the time derivative of the SST-equation in (7.155) is put to
zero, no oscillations will occur and hence adjustment processes of the SST are
important.

The latter is reflected in the physics of the oscillation as described in Jin
(1997a). Consider again a positive SST anomaly in the eastern part of the
basin which induces a westerly wind response. Through the quasi-steady balance
(7.5.4.4), this immediately changes the slope in the thermocline giving a deeper
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Figure 7.35. Sketch of the different stages of the recharge oscillator (Jin, 1997a).

eastern thermocline. Hence, through the thermocline feedback, the SST anomaly
is amplified which brings the oscillation to the extreme warm phase (Fig. 7.35a).

Because of ocean adjustment, part of the equatorial mass is moved from the
equatorial strip to off-equatorial regions. Compare this with the picture provided
above where this mass exchange was caused by reflections of waves, while here it
is due to a nonzero divergence of the zonally integrated Sverdrup transport. This
effect is represented by the forcing, shown in the right hand side of (7.144). This
exchange, which can be seen as a discharge of equatorial heat content, causes
the equatorial thermocline to flatten and hence eventually reduces the tempera-
ture anomaly and consequently the wind stress anomaly (Fig. 7.35b). Eventually
a nonzero negative thermocline anomaly is generated, which allows cold water
to get into the surface layer by the background upwelling. This causes a neg-
ative SST anomaly leading through amplification to the cold phase of the cycle
(Fig. 7.35c). Through adjustment, the equatorial heat content is recharged (again
the zonally integrated Sverdrup transport is nonzero) and leads to a transition
phase with a positive zonally integrated equatorial thermocline anomaly.

7.6. Coupled Processes and the Annual-Mean State
For the results so far, the annual-mean state has been prescribed or constructed,

but has certainly been independent of the nature of the coupled processes. This
has fixed also the mean atmospheric motions with trade winds along the equator,
rising motion in the west, eastward winds at height and sinking motion in the
eastern part of the Pacific. This cellular pattern is usually referred to as the Walker
circulation. In Bjerknes (1969) it is already noted that, “it seems reasonable to
assume that it is the gradient of SST along the equator which is the cause of (...)
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the Walker circulation”. Involvement of coupled processes in the spatial structure
of the mean state will be considered next.

7.6.1. Constructed versus coupled mean states
As a first step, one might attempt to use the model of the near equatorial re-

sponse as in section 7.5.2 to try to get prototype solutions for the annual-mean
state. The simplified steady SST equation (7.109d), neglecting zonal advection of
SST, is given by

H(w1)w1(T − TsTT (h)) −H(−vN )vN (T − TNT ) + εT (T − T0TT ) = 0 (7.157)

In the limit of negligible oceanic damping, w1 = ws and the thermocline is given
by

h(x) =
∫ 1

0

∫∫ √
s τx(s)ds−

∫ 1

x

∫∫
τx(s) ds (7.158)

where τx is the equatorial zonal wind stress. The velocities ws and vN follow from
(7.116) and the simplified Gill atmosphere model, with the operator A defined by
(7.113), is used. Standard values of oceanic and atmospheric model parameters
were given in Table 7.3.

In the case considered in section 7.5.2.1 where the mean state was constructed,
the ocean is forced with a mean wind stress derived from observations, τ xobs and
the resulting steady state temperature was indicated by T̄ . In coupling the system,
the wind stress τx fed into the ocean model then becomes

τx = τxobsτ + μA(T − T̄ ) (7.159)

where μ is the coupling parameter. Hence, there is a constructed solution, T =
T̄ , τx = τxobsτ (referred to as the flux-corrected climatology in Dijkstra and Neelin
(1995a)) which does not depend on coupling. The latter affects only the stability
of this state to perturbations.

For models which attempt to simulate the full tropical coupled ocean-
atmosphere system, the determination of the climatology is a major end in itself.
This climatology depends on coupling strength and the values of many parame-
ters in the model. For the case of a model with active ocean only in a single basin
(here the Pacific) there will be a part of the wind stress which depends on the
atmospheric response to the temperature pattern within the basin and a part, say
τxextτ , which is determined externally. The part determined within the basin will
depend on temperature departures, T − T0TT , from surface heat flux equilibrium,
thus

τx = τxextττ + μA(T − T0TT ) (7.160)

where T = T0TT is assumed outside the basin (as appropriate for continental con-
ditions). For the external part τ xextτ , a zonally constant component, for example,
due to the zonally symmetric circulation can be considered. Since the latter obeys
strong dynamical constraints, it will depend relatively little on the coupled dy-
namics within the basin, compared to the Walker type circulation A(T − T0TT )
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driven by zonal gradients. A more extensive discussion of the form of τ xext and T0TT
is given in Dijkstra and Neelin (1995a). For (7.160), the stationary state is easily
computed at μ = 0 , but depends on coupled feedbacks otherwise. Temperature
solutions computed with (7.160) are referred to as “coupled climatologies”.

7.6.2. Demise of multiple equilibria
How does the bifurcation structure of the constructed case change as we relax

the restriction towards the more difficult coupled climatology case ? To this end,
the observed wind stress is split into the part τext and the remainder τobsττ − τextττ .
To be able to follow the deformation of the bifurcation diagram, a homotopy pa-
rameter αF is introduced. The wind stress τ is then given by

τx = τxextττ +αF (τxobsτ − τxextτ )+μ
[
αFA(T − T ) + (1− αF )A(T − T0TT )

]
(7.161)

where T still refers to the (constructed) equilibrium state with τ x = τxobsτ . It is
clear that for αF = 1, the flux corrected problem is recovered. For αF = 0, there
is no flux correction and we obtain the coupled climatology case. Equilibrium
solutions will be determined by the zonally constant shear stress of magnitude
τxextτ and the full feedback processes within the basin.

For the case τxextτ = − 0.2 (which corresponds to about 0.01 Pa) and the al-
ready used wind stress field (7.122) which roughly corresponds to observed mean
equatorial winds (Hao et al., 1993), the bifurcation diagram for αF = 1.0 is
plotted in Fig. 7.36a. The constructed state becomes unstable at a transcritical
bifurcation near μ = 1.0 and two new branches of steady states appear. Solu-
tions on the lower branch have a relatively cold eastern basin while on the upper
branch, there is a relatively warm eastern basin (Fig. 7.37a/b). In strong contrast
to Fig. 7.36a, no bifurcations occur in the bifurcation diagram (Fig. 7.36c) for the
coupled climatology case (αF = 0). There is only one solution over the range
of μ considered and the spatial pattern of the total field at μ = 1.1 (Fig. 7.37d)
closely resembles that of the constructed case on the “cold” branch (Fig. 7.37a).

What is the connection between the bifurcation diagrams in Fig. 7.36a and
Fig. 7.36c, for example, what happens to the “warm” branch present in Fig. 7.36a
? The answer can be deduced from Fig. 7.36b where bifurcation diagrams for in-
termediate αF are presented. These pictures have no direct physical significance
individually, but show clearly the transition in parameter space between the phys-
ically relevant cases αF = 0 and αF = 1. When αF is decreased slightly to
αF = 0.99, the transcritical bifurcation is broken. This breakup occurs accord-
ing to the imperfection of the transcritical bifurcation, as discussed in chapter 3.
The spatial structure of the solutions for αF = 0.99 at μ = 1.1 remain nearly
identical to those in Fig. 7.37a/b. With decreasing αF , the upper branch quickly
moves to larger μ (see the branch for αF = 0.95), indicating that the states on
this branch (see Fig. 7.37c at the labelled point 1 in Fig. 7.36b) can only be main-
tained through large coupling. The “cold” branch, however, hardly changes with
decreasing αF (αF = 0.95). This indicates that for this state the upwelling and
thermocline slope that were maintained by prescribed winds in the constructed
case can still be maintained by coupled processes. With decreasing αF only this
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Figure 7.36. Bifurcation diagrams for several values of the homotopy parameter αF . In panel
(a), the constructed case is shown (αF = 1), in panel (b) bifurcation diagrams for several interme-
diate values of αF are plotted and in (c) the coupled climatology case is shown (αF = 0).
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Figure 7.37. Solutions of the total fields of temperature and thermocline at labelled points in
Fig. 7.36. (a) At the point labelled 1 in Fig. 7.36a. (b) At the point labelled 2 in Fig. 7.36a. (c) At
the point labelled 1 in Fig. 7.36b. (d) At the point labelled 1 in Fig. 7.36c.

branch remains and is deformed smoothly into the coupled climatology branch of
Fig. 7.36c.

To understand this behavior qualitatively, especially the shift of the warm
branch to larger values of coupling, (7.161) is rewritten as

τx = τxextττ + αF (τxobsτ − τxextττ ) + μ(A(T − T0TT ) + αFA(T0TT − T̄ )) (7.162)

The first two terms represent a large scale easterly wind of which the magnitude
does not vary much if αF is close to 1 and which remains easterly, though smaller,
as αF → 0. Of the terms which multiply μ, the second term A(T0TT − T̄ ) corre-
sponds to large scale westerlies. These westerlies, which are introduced by flux-
correction, are essential in maintaining the warm branch, which has a relatively
warm eastern basin. Their structure is fixed by the flux-corrected climatology and
hence only the magnitude can be changed by coupling. On the contrary, the first
term multiplying μ represents coupled easterly winds which can change according
to a temperature variation. If αF is decreased, the solution on the ‘warm-branch’
can only be maintained if μ increases to maintain the contribution of the westerlies
essential to the balances on this branch. Eventually, the warm branch will disap-
pear by moving to infinite μ in the limit αF → 0. On the cold branch, in contrast,
the coupled system is able to produce easterlies by internal feedbacks as the flux-
correction is relaxed. This is possible because the temperature difference (T−T0TT )
in the μA(T − T0TT ) term can be self-consistently maintained at finite negative val-
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ues by a combination of upwelling and thermocline feedbacks. The temperature
can thus adjust at fixed μ to a change in αF to maintain the balances on the branch
while the artificial westerly wind contribution vanishes (as αF → 0).

Early discussion of the ENSO phenomenon was often phrased in terms of mul-
tiple stationary states, thought of as a warm “El Niño ” state and the cold counter-˜
part “La Niña ”. Subsequent modeling (Zebiak and Cane, 1987; Battisti and Hirst,˜
1989) and observational work (Rasmusson et al., 1990) has lead to a consensus
view of ENSO as an essentially cyclic phenomenon. It has, however, been dif-
ficult to lay the notion of multiple stationary states entirely to rest because these
were in fact found in some tropical coupled models in some flow regimes. Even
when the first bifurcation from the climatology is a Hopf bifurcation with inter-
annual period and ENSO-like characteristics, it is common for ENSO models to
exhibit transcritical bifurcations from the constructed climate state at higher cou-
pling. In many of the results of the previous section, these were encountered.
Also the delayed oscillator model Schopf and Suarez (1988), which was intended
to explain cyclic behavior, was originally used in a regime which has unstable
stationary states in addition to the limit cycle. Although Battisti and Hirst (1989)
pointed out that a better estimate of the parameters suggested a different regime,
the presence of these states in this model nonetheless continued to attract attention
(McCreary and Anderson, 1991; Wu et al., 1993; Wakata and Sarachik, 1994).

The results from the bifurcation analyses indicate that the existence of multiple
equilibria in ENSO models is an artifact of the way the annual-mean state is con-
structed and does not correspond to any structure which is likely to occur in the
fully coupled ocean/atmosphere system. The construction places a restriction on
the system such that the trivial solution, in terms of anomalous variables, exists
independent of the model parameters. Modifications to this stationary state can
thus occur only via codimension-1 bifurcations and additional stationary branches
arise through transcritical bifurcations. Suarez and Schopf (1988) and Battisti and
Hirst (1989) obtained pitchfork bifurcations in the delayed oscillator model be-
cause they excluded quadratic terms from the nonlinearity. Transcritical bifurca-
tions are not robust when the conditions imposed by the construction are relaxed
and the constructed solution ceases to exist. If the change to the system could
be regarded as a small perturbation, multiple stationary points could continue to
exist by having two unconnected solution branches, at least one of which has a
saddle node bifurcation—this configuration can, of course, be seen when an arti-
ficial parameter is used to move gradually from the flux corrected case to a fully
coupled corrected case. However, for the particular physical situation relevant to
the tropical coupled climatology, one of the branches (the warm branch) moves
away to infinity. This leaves a single stationary branch which evolves nonlinearly
as a function of model parameters.

7.6.3. The position of the cold tongue
Although the discussion of the previous section has shown that multiple equi-

libria are not very likely in the tropical ocean/atmosphere system, it is not a priori
guaranteed that the coupled processes represented in the model can explain the
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east-west asymmetry of the observed mean state with the wind forcing taken as in
(7.161) for αF = 0. In order to distinguish coupled from uncoupled contributions
to the solution in the fully coupled case, it is convenient to define TextTT and hext to
be the response of the uncoupled ocean to the external wind stress τext. Then the
contribution associated with coupling is T̂ = T − TextTT , etc.

In this section, the variation of the spatial structure of the coupled mean state
with respect to the internal coupled feedbacks is considered, while keeping a con-
stant external wind stress, τ xextτ . In this case, the structure of the steady states is
controlled by the parameters εa, δs and μ. For τxextτ = −0.2 the externally forced
thermocline and SST, denoted hext and TextTT , are shown in Fig. 7.38; upwelling is
constant across the basin. The temperature decreases monotonically from west to
east and the thermocline profile is linear.
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Figure 7.38. External state obtained with a constant external wind (μ = 0) with amplitude
τxextττ = −0.2 according to the fully coupled set-up.

In Fig. 7.39a, bifurcation diagrams are plotted for three values of δs and show
how coupling influences the structure of the steady states. The case of εa = 1.25
(i.e., a relatively long atmospheric damping scale, comparable to the basin length)
is chosen here for illustration of the behavior. In each bifurcation curve there is
a unique solution for the climatology at each μ, but the feedback between trade
winds, upwelling and thermocline slope within the basin rapidly modifies the so-
lution as coupling is increased. Spatial structures of the solutions at four labelled
point indicated are plotted in the panels b-e of Fig. 7.39.

The balance between thermocline feedback and upwelling feedback strongly
affects the preferred spatial form of the cold tongue. Fig. 7.39 shows cases where
the surface-layer feedback is alternately shut off or increased (strong coupling is
used to highlight the differences). For the solution in Fig. 7.39b (point 1, δs = 0),
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Figure 7.39. (a) Bifurcation diagrams for different values of δs with fixed εa = 1.25. The quan-
tity T̂ECT is the difference of the total temperature and the external temperature in the cold tongue
(at x = 0.7). (b - e) Solutions of the total fields at the labelled points 1 - 4, respectively, in panel
(a).
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only the thermocline feedback is active. Since there is only externally induced up-
welling, SST departures from T0TT are governed by the temperature of the upwelled
water. The thermocline is deep in the west and very shallow in the east, giving
temperatures nearly equal to the surface equilibrium temperature in the west. The
cold tongue has constant temperature in the east due to saturation at minimum
subsurface temperature. Fig. 7.39d shows the case of strong surface-layer feed-
backs (point 3, δs = 1.0). Because the effect of wind modifications on upwelling
is stronger, the cold tongue shifts west toward the region of maximum easterlies,
which in turn shift further west. The deep thermocline in the western Pacific limits
this process. On the eastern side of the basin, westerly wind perturbations almost
cancel τxextττ , giving greatly reduced upwelling and consequent warming: a narrow
cold tongue in mid-basin results.
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Figure 7.40. (a) Bifurcation diagrams for different values of εa with fixed δs = 0.5. The quantity
T̂ECT is the difference of the total temperature and the external temperature in the cold tongue (at
x = 0.7). (b - c) Solutions of the total fields at two labelled points in panel (a).

Results so far have used the case of relatively small εa so that it is clear that
the decay scale in the atmosphere is not the primary length scale. Bifurcation
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diagrams for the standard value of εa = 2.5 and an intermediate value of δ = 0.5
are presented in Fig 7.40a with spatial patterns in the panels b-c. An increase of
εa leads to a more localized response of the wind field. The most significant effect
of εa is on the spatial pattern of the cold tongue and contrary to what might be
expected, decreases in the atmospheric spatial scale (larger εa) are not associated
with narrower spatial scale for the cold tongue in this range. Rather, the main
effect is to move the cold tongue minimum eastward. This is because larger εa
tends to weaken the easterly wind response to the west of a cold region relative
to the response within the region (see Fig. 7.14). This reduces upwelling to the
west and shifts the region of shallowest thermocline, with consequent feedbacks
on SST.

At μ = 0.5 (point 1, Fig. 7.40b), the cold tongue is situated at a reasonable
position (x = 0.8) and the extent of the SST minimum and the slight increase
in SST at the east coast are quite satisfactory. In fact, the climatology looks very
much like that of a constructed climatology forced with an approximation to ob-
served wind stress. If the coupling is increased to μ = 1.0, again perturbation
downwelling causes a rise in temperature at the east coast (point 2, Fig. 7.40c),
and also the cold tongue becomes broader and the minimum is shifted back to
the west. Slight changes in εa make only a modest difference but tend to shift
the cold tongue minimum. The main point of the results is that a reasonable cli-
matology (cold tongue position, shape, and amplitude) can be generated through
coupled feedbacks and a relatively small constant external wind stress (τext) in
this simple model. The shape and size of the contribution by coupled feedbacks
in (Fig. 7.40b) relative to the externally driven contribution in Fig. 7.38 neatly
illustrates the importance of coupling. The balance of processes involved in the
internal feedbacks is crucial to determining the shape of the cold tongue and the
position of the warm pool margin. The thermocline feedback tends to move the
cold tongue eastward, and favors broad spatial extent. The upwelling feedback
tends to move the cold tongue westward. Depending on other factors, the up-
welling feedback can narrow the cold tongue in the central basin, or can create
longitudinal variations of shorter spatial scale within the cold tongue. In an ex-
treme case, it is possible to develop a cold tongue which is strongest in the western
basin.

The most important role of the externally forced contribution to the cold tongue
is to create a basic cooling on which the coupled processes can then feed back to
amplify the cold tongue. The size of this externally maintained cooling strongly
affects the magnitude of the cold tongue that can be attained at reasonable values
of the coupling. However, it has little effect on the shape of the cold tongue. In
addition, the external wind is needed to provide a basic upwelling along the equa-
tor so that thermocline variations are communicated to the surface to affect SST.
If this externally forced contribution to the upwelling is small, coupled processes
alone can still generate a cold tongue since increased trades tend to increase up-
welling which amplifies the cold tongue, etc. However, the shape of the resulting
cold tongue differs from observed because the upwelling feedback dominates over
the thermocline feedback.



448 NONLINEAR PHYSICAL OCEANOGRAPHY

It is possible within this model to obtain ENSO-like unstable modes on a cli-
matology which has a reasonable warm-pool/cold-tongue structure. However, it
requires some level of tuning, mainly to get the period of the oscillation in the
correct regime; parameter values are given in Dijkstra and Neelin (1999). How-
ever, the simultaneous occurrence of desirable characteristics of the ENSO mode
with the right period, and a coupled climatology that has an adequate cold tongue
structure is not found over a large volume in parameter space within the model
simulating only the near equatorial response.

7.7. Unifying Mean State and Variability
The results in the previous section have clearly supported the fact that the spa-

tial form of the warm-pool/cold-tongue pattern depends on the nature of the cou-
pled feedbacks, referred to as the “climatological version of the Bjerknes hypothe-
sis” in Neelin and Dijkstra (1995). Since the model of the near equatorial response
is not sufficient to study variations of the ENSO mode with changes in the mean
state due to coupling, a next step is to consider the full model as described in
section 7.5.2 to compute simultaneously coupled mean states and their oscillatory
instabilities. This has been carried out in Van der Vaart et al. (2000), with the
numerical details for solving the set of governing equations (7.109) provided in
Van der Vaart (1998). Variables are expanded into spectral basis functions, with
Chebyshev polynomials in zonal direction and Hermite functions in meridional
direction. Using collocation techniques, a set of nonlinear algebraic equations is
obtained for the steady states of the model. The analysis of the stability of these
steady states leads to a generalized eigenvalue problem. Both steady states and
their linear stability are traced through parameter space using the continuation
techniques of chapter 4.

7.7.1. The warm pool/cold tongue state
At zero coupling (μ = 0), the ocean circulation and consequently SST is deter-

mined by the external zonal wind stress τ xextτ . This wind stress is assumed to have
the form

τxextτ = −F0FF e−
(αy)2

2 ; α =
λo
λa

(7.163)

where α controls the meridional extension and F0FF the amplitude of the external
wind. In response to the external wind with F0FF = 0.1, the equatorial temperature
TextTT increases monotonically from about 25.5 ◦C in the east to about 28.5 ◦C in
the west. The thermocline is approximately linear at the equator, its depth is
increasing westwards and it has slight off-equatorial maxima near the western
boundary.

At small μ, the additional wind stress due to coupling is approximately the at-
mospheric response to the cooling TextTT − T0TT . This enhances the easterly winds
over most of the basin, leading to larger upwelling and a stronger thermocline
slope, strengthening the cold tongue in the eastern part of the basin. The tem-
perature (T − T0TT )EC of the cold tongue and the vertical velocity just below the
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Figure 7.41. Eastern Pacific (x = 0.8) equatorial SST deviation from T0TT = 30 ◦C (a) and dimen-
sional upwelling velocity (b) as a function of the coupling strength μ.

cold tongue wE (Fig. 7.41) demonstrate that there is a unique steady solution as
a function of μ, with more upwelling as coupling gets stronger. At μ = 0.5, the
spatial structure of the mean state is shown in Fig. 7.42. The zonal scale of the
cold tongue (panel a) is set by a delicate balance of thermocline and surface layer
feedbacks (Dijkstra and Neelin, 1995a). The meridional extent of the cold tongue
is determined both by the Ekman spreading length (as/β0) and by meridional ad-
vection. The thermocline field (Fig. 7.42b) displays the off-equatorial maxima
and a deeper (shallower) equatorial thermocline in the west (east). This indicates
that the reservoir of heat content lies off-equatorial in the central and western part
of the basin. The zonal wind response U (Fig. 7.42c) shows the intensification of
the westward winds, with a maximum west of the cold tongue. The vertical ve-
locity structure (Fig. 7.42d) is clearly controlled by Ekman divergences. Upward
velocities are restricted to an equatorial zone and the maximum amplitude occurs
in the eastern part of the basin.

7.7.2. The ENSO mode
Along the branch of steady states in Fig. 7.41 the linear stability is determined

simultaneously, by writing the total solution vector φ, consisting of ocean, atmo-
sphere quantities and SST, as

φ(x, y, t) = φ(x, y) + φ̃(x, y) eσt. (7.164)

Here, the vector φ represents the mean state, φ̃ perturbations with respect to this
mean state and σ is again the complex growth rate of the perturbation. In Fig. 7.43,
the path of six modes – which become leading eigenmodes at high coupling – is
plotted as a function of the coupling strength μ. In Fig. 7.43a, a larger dot size
indicates a larger value of μ and both period and growth rate of the modes are
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Figure 7.42. The mean state at standard parameter values and μ = 0.5. (a) T∗TT − T0TT ; maximum
6.6 ◦C. (b) Thermocline depth; maximum 82.3 m. (c) Zonal wind U∗; maximum 9.5 m/s. (d)
Vertical velocity w1∗; maximum 1.44 m/day. In all panels, values are scaled with the maximum
value of each field and the contour levels (with interval 0.069) are with respect to this maximum.

given in year−1. In Fig. 7.43b, only the growth rate is plotted against μ. One
oscillatory mode becomes unstable as μ is increased and a Hopf bifurcation occurs
near μ = 0.5.

Figure 7.43. (a) Plot of the eigenvalues for the six leading eigenmodes in the (Re(σ), Im(σ))-
plane. Values of the coupling strength μ are represented by dot size (smallest dot is the uncoupled
case (μ = 0) for each mode, largest dot is the fully coupled case at the Hopf bifurcation (μc = 0.5)).
The Hopf-bifurcation that yields the ENSO mode occurs where the path of one eigenvalue first
crosses Re(σ) = 0. (b) The growth rate of the leading modes as a function of coupling strength.
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At the critical value μc = 0.5, for which the mean state was shown in Fig. 7.42,
time-longitude diagrams of the equatorial thermocline, temperature and zonal
wind anomalies of this oscillatory mode are shown in Fig. 7.44. The SST pat-
tern (Fig. 7.44b) displays a nearly standing oscillation for which the spatial scale
is confined to the cold tongue of the mean state. There is a slight eastward prop-
agation of the SST anomaly in the central equatorial Pacific. The thermocline
anomaly (Fig. 7.44a) shows western anomalies in heat content leading those with
the same sign at the eastern boundary. These anomalies are out of phase with the
SST anomalies with a lag of about 5 months. The wind response (Fig. 7.44c) is
much broader zonally and is in phase with the SST anomaly.

Figure 7.44. Time(t)-longitude diagram at the equator of the anomalies of (a) Thermocline depth
h̃∗ (max = 9.5 m), and (b) Sea-surface temperature T̃∗TT (max = 1.4◦C) and (c) Zonal wind Ũ∗UU (max
= 3.0 m/s). The period of the oscillation is 3.7 years. Note that the amplitude of the oscillation is
not determined by the linear stability analysis. The maximum amplitudes are relative magnitudes
of the different fields, i.e. the mode displays a thermocline deviation of about 10 m per degree SST
anomaly.

The phase relationships between wind, temperature and thermocline anomalies
can be seen more clearly in Fig. 7.45. Here, the thermocline depth in the western
Pacific hW and the zonal mean equatorial thermocline displacement hZM are re-
lated to the SST anomaly in the eastern Pacific (at x = 0.92) over one cycle of the
oscillation. Panel (a) shows the characteristic ENSO phase relationship between
SST and thermocline anomalies with a relatively shallow (deep) western thermo-
cline in case of a warm (cold) event. As the closed curve is traversed clockwise
over one cycle of the oscillation, it is seen that a cold event is followed by an ex-
treme positive western thermocline anomaly. As the SST anomaly becomes zero,
the western thermocline anomaly is still positive and panel (b) shows that this
also holds for the zonally averaged thermocline anomaly. Hence, the equatorial
heat content is slowly built up after the cold event by the increase of the trade
winds. This sets the stage for the following warm event in which the equatorial
heat content is discharged. After the warm event, the zonally averaged thermo-
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cline anomaly is negative as the SST anomaly goes through zero again and the
equatorial heat content is low, which causes the next cold event.

Figure 7.45. (a) Phase relation between the equatorial thermocline depth anomaly in the western
part of the basin and the SST anomaly in the east. (b) The phase relation between the zonally
averaged equatorial thermocline anomaly hZM and SST anomaly in the east (TET ). Note that the
amplitudes in both panels are arbitrary, but that their ratio is fixed. The direction of rotation with
time is clockwise in both cases.

The meridional structure of the ENSO mode is shown by plotting the different
fields (Figs. 7.46 to 7.48) at several phases of the oscillation relative to the period,
i.e. phase t = 1/2 indicates the fields after half a period. The starting point of the
description is a positive SST-anomaly in the eastern Pacific (early El Niño phase),˜
as shown in Fig. 7.46 at t = 0. Eastward zonal wind anomalies to the west of the
maximum in SST-anomaly (Fig. 7.46) are present as can be seen in Fig. 7.48 at
t = 0. The wind response amplifies the positive SST-anomaly (t = 1/16 to 1/8)
and the spatial scale of the SST anomaly is controlled by the shape of the cold
tongue (cf. Fig. 7.42). The equatorial thermocline response to the weaker surface
winds up to t = 1/8 results in a negative anomaly (i.e. negative heat content)
in the Western Pacific (Fig. 7.47, t = 1/8). This anomaly is at its minimum a
few months later than the maximum of equatorial SST. As long as the positive
thermocline/SST-anomaly in the eastern part of the basin does not weaken, this
negative anomaly cannot be discharged. However, due to ocean wave reflections
at the eastern boundary, the mass fed along the equator to the eastern basin is
transformed into a collective of long Rossby waves which propagates westward
(Fig. 7.47, t = 0 − 1/8). At the equator, the eastern positive thermocline
anomaly and consequently the SST anomalies are weakened. This reduces the
east-west SST gradient, causing the anomalous eastward winds to weaken (Fig.
7.48, t = 1/8 to 5/16). Termination of the El Niño phase sets in, as the western˜
warm pool discharges its previously built up negative heat content (t = 3/8 through
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Figure 7.46. Planforms of the SST anomaly during the oscillation in the x-y plane; times are with
respect to the period of the oscillation. Drawn (dotted) lines represent warm (cold) anomalies.

Figure 7.47. Planforms of the thermocline anomaly during the oscillation as in Fig. 7.46. Drawn
(dotted) lines represent positive (negative) anomalies.

7/16 in Fig. 7.47). As the thermocline rises in the east, the SST anomaly becomes
negative and through coupled processes its amplitude increases. The trade winds
recover (Fig. 7.48, t = 7/16) and the positive off-equatorial thermocline anomalies
propagate westwards (Fig. 7.47, t = 3/8 - 7/16). Then the cycle starts over again
but with the signs of the perturbations reversed.
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Figure 7.48. Planforms of the zonal wind anomaly during the oscillation as in Fig. 7.46. Drawn
(dotted) lines represent anomalous eastward (westward) winds.

7.7.3. Model reduction
The results of the linear stability analysis do not provide information on the

finite amplitude of the fields for supercritical conditions. In this section, the equi-
libration of the perturbations to finite amplitude is studied in a weakly nonlinear
context, i.e. for coupling values of μ just above the Hopf-bifurcation (Van der
Vaart, 1998). Let

ε =
μ− μc
μc

� 1 , (7.165)

be a measure of the distance beyond critical conditions, i.e. μ = μc at which
Re(σ) = 0. For these values of the coupling strength μ, equilibration of the
unstable perturbations will occur on a time-scale long compared to the time-scale
of growth. Therefore a new time variable τ = ε2t is introduced.

The coupling strength μ, time and the solution vector φ are expanded in terms
of ε and the ‘ENSO’ mode φ̃ with time-dependence eiωct, where ωc = �(σ) at
μ = μc,

φ = φ̄+ εA(τ)φ̃eiωct + ε2(|A(τ)|2φ̃02

+ A2(τ)φ̃22e
2iωct) + ε3φ̃13e

iωct + c.c. (7.166a)
∂

∂t
→ iωc + ε2

∂

∂τ
(7.166b)

μ = μc(1 + ε2m) , m = O(1) (7.166c)

In these expansions, c.c. denote complex conjugate, m is the new control parame-
ter, andA(τ) is the (complex) amplitude of the initially unstable mode with spatial
structure φ̃.
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By substitution of the expansions (7.166) into the governing equations and col-
lecting terms of like orders in ε and eiωct, one can reduce the full equations to a
scalar equation for the amplitude A(τ). This becomes a Landau equation

∂A

∂τ
= m

∂σ

∂μ
A− ΛA|A|2 (7.167)

where the coefficients are evaluated at μ = μc and which are calculated numeri-
cally within the pseudo spectral set-up (Van der Vaart, 1998). Solving (7.167) for
A, the solution for the SST field becomes

T (x, y, t) = T̄ (x, y) + εA(τ)T̃ (x, y)eiωct +O(ε2) (7.168)

where the mean state is represented by T and the SST pattern of the critical mode
by T̃ . If the coefficients ∂σ

∂μ and Λ satisfy the conditions for a supercritical Hopf

bifurcation, (�(∂σ∂μ) > 0 and �(Λ) > 0) finite amplitude solutions to (7.167) exist
of the form

A(τ) =

√
�(∂σ∂μ)

�(Λ)
eiΩτ ; Ω = �(

∂σ

∂μ
)− �(Λ)
�(Λ)

(7.169)

Using these expressions one can derive the amplitude and total period of the stable
periodic orbit for coupling values beyond the Hopf-bifurcation. For example, the
period P is given by

P =
2π

ωc + ε2Ω
, (7.170)

In Fig. 7.49a the period of the orbit is plotted as a function of the coupling
strength μ. The period of ENSO oscillation is set by the critical period (at the
Hopf-bifurcation), rather than the frequency of the instability at supercritical cou-
pling strength; this is also found in other studies (Battisti and Hirst, 1989; Neelin
et al., 1994; Jin, 1997b). The amplitude of the SST-anomaly in the cold tongue
increases strongly with coupling, being about 3◦C for ε = 0.1 (Fig. 7.49b).

7.8. Presence of the Seasonal Cycle
As already described in the beginning of this chapter, another major time-

dependent phenomenon in the Tropical Pacific is the seasonal cycle (Horel, 1982).
Important feature is the annual march of the ITCZ with the corresponding move-
ment of the trade winds as sketched in section 7.1. At the equator, eastern Pa-
cific SST is warmest during April/March and is coldest during August/September
when the southerly winds are maximal. In this section, the interaction between
the seasonal cycle and the ENSO oscillation is discussed.

7.8.1. Coupled processes and the seasonal cycle
The annual component of the seasonal cycle in the Eastern Pacific is a strange

phenomenon considering the semi-annual component of the solar forcing. There
are strong indications that coupled processes, in particular those in the surface
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Figure 7.49. The frequency (a) and amplitude (b) of the finite amplitude limit cycle as obtained
from the weakly nonlinear analysis within the fully coupled Zebiak-Cane model in a finite ocean
basin. Shown is the maximum amplitude of the SST-anomaly near the position of the cold tongue.

layer, are involved to get an annual response to a semi-annual forcing (Philan-
der et al., 1996; Mitchell and Wallace, 1992; Chang et al., 1995). Slight west-
ward propagation of equatorial SST anomalies is also seen in the eastern Pacific.
Since the seasonal thermocline anomalies are much weaker than the seasonal SST
anomalies, it is believed that surface layer processes play a dominant role. Hence,
of the coupled modes, SST modes are potential candidates for the seasonal signal
in the equatorial SST anomalies.

Do these coupled processes play a role to create such a strong equatorial asym-
metry as to get the ITCZ mostly north of the equator? For example, there is north-
south asymmetry due to the shape of the continents, but do coupled processes
amplify this asymmetry? Are coupled processes involved to causes the annual
period and the westward propagation of SST anomalies in the eastern Pacific?
Possible answers have been given in Xie (1994) and Xie and Philander (1994)
using zonally independent models, which include more detailed physics in the
atmosphere and oceanic mixed layer. In these type of models, both evaporation
(in combination with the amplification of the wind) and vertical mixing can break
equatorial symmetry and both seem to be are important in more extensive models
(Philander et al., 1996). Chang and Philander (1994) perform a stability analysis
exploring the hypotheses (Mitchell and Wallace, 1992) that meridional wind and
its interaction with local SST gradient play a crucial role. They find that a positive
feedback between SST and surface layer dynamics can give anti-symmetric and
symmetric unstable SST modes. Based on a similar model, Liu and Xie (1994)
suggest that the annual equatorial signal may come from the extratropics.

In all these studies a sufficiently strong southerly wind response at the equator
is essential. This is too demanding for the type models introduced in these chap-
ters. The Gill atmosphere model is known to give too small southerly winds at the
equator and this problem is not easily fixed. One way out is just to prescribe the
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annual signal into these models. In this way, the meridional asymmetry is created
through the observed seasonal heat flux and wind stress. Although this circum-
vents the interesting point about the role of coupled processes in the seasonal
cycle, the interaction of the seasonal cycle with ENSO can be explored.

7.8.2. Interaction of seasonal cycle and ENSO
The results of Zebiak and Cane (1987), as described in section 7.4 showed that

the warm events followed the seasonal cycle and peaks tend to occur either in
June or at the end of year. Observations of NINO3 seem to show a favorable peak
month at November-December (Rasmusson and Carpenter, 1982; Neelin et al.,
2000), but the standard deviation is also relatively large in this period.

First, the interaction of the annual cycle and ENSO is considered in the coupled
wave oscillator model (Cane et al., 1990; Münnich¨ et al., 1991). Using a particular
variant of these point-coupling models, the interaction of the ENSO mode and the
seasonal cycle has been studied (Tziperman et al., 1994a) by looking at solutions
of

dh∗
dt∗

= aA
[
h∗(t−

L

2cK
)
]
−bA

[
h∗(t∗ − (

L

2cK
+

L

2cR
)
]
+c cos ωat∗ (7.171)

The first term of the right hand side represents the direct feedback due to the
Kelvin wave which is initiated at half the basin and therefore has a travel time
L/(2cK). Similarly, the second term is the delayed feedback due to a Rossby
wave initiated at the same position, traveling westward, reflecting and travelling
back to the central part of the basin as a Kelvin wave. The last term is the seasonal
forcing with frequency ωa corresponding to a one-year period. An example of the
shape of the function A is a tangent hyperbolic function which saturates both at
large negative and positive thermocline anomalies and has a sharp transition near
h∗ = 0. For this function, κ is the slope at h∗ = 0 and measures the strength of
the coupled thermocline feedback; this parameter is used as a control parameter.

Results of the function h(t) = h∗(t)/H of 1,024 years integrations and its
spectrum are plotted in Fig. 7.50 for four values of κ. For small κ, there is a
simple periodic orbit with annual period induced by the forcing. For κ = 1.2, the
ENSO frequency appears which is incommensurate with the annual frequency and
hence a quasi-periodic signal is obtained. For larger κ, locking to the frequency
of the annual cycle occurs just as was seen for the circle map in section 3.4. The
dominant frequency is exactly 4 years and hence the system is located in one of
the ’Arnold’ tongues’. For even larger nonlinearity, the spectrum becomes broad
banded, which is an indication of chaotic behavior in the system.

Nearly simultaneously, similar results were presented in Jin et al. (1994) using
the equatorial strip approximation for the SST-equation and these were more ex-
tensively presented in Jin et al. (1996). The coupled model (7.109) is extended
with an off-equatorial strip having a temperature TAT ∗ and the SST equations be-
come

∂T∗TT
∂t∗

= −aTT∗TT +QE − u1∗
∂T∗TT
∂x∗
−H(w1∗)w1∗

T∗TT − TsTT ∗(h∗)
HuHH
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Figure 7.50. (a) Time series and (b) Power spectra of the wave oscillator model in Tziperman
et al. (1994a) for four values of (A) κ = 0.9, (B) κ = 1.2, (C) κ = 1.5, (D) κ = 2.0.

− 1
4λo

(H(vS∗)vS∗(T∗TT + TAT ∗) − H(−vN∗)vN∗(T∗TT − TAT ∗)) (7.172a)

∂TAT ∗
∂t∗

= −aTTAT ∗ +QA (7.172b)

with obvious meaning for the meridional velocities north and south of the equa-
torial strip. The seasonal heat fluxes QE and QA are approximated from observa-
tions and are prescribed together with observed seasonal wind stress to construct
a seasonal cycle with temperatures (T̄∗TT , T̄AT ∗). The time-longitude behavior of the
equatorial temperature T̄∗TT (with annual period) within this model compares fairly
well with observations (section 7.1) and the phase is about one month ahead, with
minimum temperatures occurring in August rather than in September.

In the coupled model, the Gill atmosphere response is calculated from the forc-
ing

Q∗ = αT (T∗TT − T̄∗TT + (TAT ∗ − T̄AT ∗)
y∗
λa

)e
− y2∗

2λ2
a (7.173)

In this way, both zonal and meridional wind anomalies are obtained. Note that
with the annual forcing in the wind stress and heat flux prescribed, the dynamical
system corresponding to the coupled model becomes non-autonomous with a pe-
riodic basic state. Hence, Floquet theory (see chapter 3) must be applied to study
the stability of the annual cycle. Again, the coupling strength μ, the surface layer
feedback parameter δs and the dimensionless atmospheric damping length εa are
main control parameters.

Results of the Floquet analysis were presented in Jin et al. (1996) and compared
with the unstable modes of the annual-mean state. For two different values of δs,
both eigenvalues (for the annual mean state) and Floquet exponents (for the annual
cycle) are shown in Fig. 7.51. For small δs, the Floquet exponents show basically
the same result as the eigenmodes for the annual-mean state (compare Fig. 7.51a
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(a)
(b)

(c)

(d)

Figure 7.51. (a) Collective plot (Jin et al., 1996) of the five leading eigenvalues for the annual-
mean climatology for (a) δs = 0.25 and (c) δs = 0.6. The range of the coupling strength μ is from
0.1 to 1.0. (b) Same but now the Floquet exponents for the seasonal cycle for δs = 0.25. (d) Same
as (b) but for δs = 0.6.

and Fig. 7.51c). The mode which becomes unstable through a Hopf bifurcation
on the annual-mean state is very similar to that destabilizing the annual cycle
through a Naimark-Sacker bifurcation. However, for larger δs the frequency of
the most unstable mode in the annual-mean case becomes modified and a Floquet
exponent with frequency π appears. This gives a Floquet multiplier with ρ = −1
and hence a period doubling bifurcation occurs; near onset, a periodic orbit of 2
years is expected. The pattern of this coupled mode (see Technical box 3.3) is
very similar (Fig. 7.52b) to that of the mode destabilizing the annual-mean state
(Fig. 7.52a).

When the coupling strength is increased above criticality, the time series of
the model become very complicated. For δs = 0.25, power spectra for three
values of μ are plotted in Fig. 7.53a. The annual cycle is stable for μ = 0.8, for
μ = 0.9, the solution is frequency locked to a subharmonic oscillation having
a 5-year period, with peaks at 1/5, 2/5, 3/5, 4/5 and 1 year−1. The relative
size of peak at 4/5 (which is the difference frequency of the annual cycle and
the ENSO mode) shows that their interaction is stronger than that with the other
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Figure 7.52. (a) SST-pattern of the mode destabilizing the annual mean state. (b) SST-pattern of
the periodic disturbance destabilizing the seasonal cycle; both (Jin et al., 1996) are for δs = 0.6.

subharmonics. As μ increases further, a 4 year locked regime is encountered
followed by a chaotic regime. The SST anomaly pattern for this case (Fig. 7.53b),
shows that irregularity is present, but that the unstable mode of the linear stability
analysis is still recognizable.

Similar behavior is found for other values of μ and δs and the behavior of the
system in this parameter plane is captured (Jin et al., 1996) in the Devil’s terrace
(Fig. 7.54). The colors indicate the frequency ratio of frequency locked solutions
and the light areas indicate the chaotic solutions. Although chaotic solutions are
nearly everywhere in parameter space over a fractal surface, the locked regime
is broad, with the frequency ratio becoming smaller for smaller δs. For many
solutions found, the phase locking to the annual cycle is near to that observed
with January being the preferred month of the peak of the warm event.

The interaction between seasonal cycle and ENSO mode has been analyzed in
Tziperman et al. (1995) within the Zebiak-Cane model. The coupling strength is
varied by changing the drag coefficient in the bulk wind stress formula. When the
amplitude of the annual cycle is zero, the annual-mean state is stable at standard
value of the coupling. With perpetual July conditions as mean state, the system
behaves very irregularly with a nearly continuous frequency spectrum; decreasing
the coupling gives a nice periodic ENSO signal. This shows that even without the
seasonal cycle, chaotic motion can appear in the ZC-model. This has later been
attributed to mode interaction between the ENSO mode and another so-called
’mobile’ mode (Mantua and Battisti, 1995). When the amplitude of the seasonal
cycle is increased, frequency locking occurs in the same way as seen above, with
chaotic regimes in between. Tziperman et al. (1997) analyze the factors which in-
fluence the interaction between seasonal cycle and ENSO in this model and point
to the seasonality of the atmosphere as the primary effect. A similar sequence of
transitions was also found in a more elaborate ICM by Chang et al. (1994), which



The Dynamics And Physics of ENSO 461

(a) (b) (c)

(d)

Figure 7.53. Power spectra of time series (Jin et al., 1996) for δs = 0.25 and three supercritical
values of μ, (a) μ = 0.9, (b) μ = 1.0 and (c) μ = 1.05. (d) Pattern of SST anomaly for the time
series for μ = 1.05.

simulates both the seasonal cycle and ENSO. They stress the relative importance
of the amplitude of the seasonal cycle and show that the ENSO frequency gets
entrained (disappears from the signal) if the amplitude of the seasonal cycle be-
comes too large. Variations in phase locking behavior has been analyzed in Neelin
et al. (2000).

7.8.3. The irregularity of ENSO
From the Devil’s terrace picture, one observes that parameter regimes with

chaotic behavior are relatively scarce with respect to frequency locked ones.
Hence, although the interaction of the seasonal cycle and ENSO can give irregu-
lar behavior, it may not be the only source. Of course, there is strong variability
due to various weather phenomena that have short lag-correlations of hours to
days, related to processes which are unrelated to those controlling ENSO and are
usually referred to as ‘noise’.
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Figure 7.54. (in color on page 532). The Devil’s terrace as computed in Jin et al. (1996). Colors
indicate the frequency locked regimes, with chaotic regimes in between. Along a section for fixed μ,
a Devil’s staircase, as discussed in section 3.4 appears.

In the model of Van der Vaart et al. (2000), for which results of the ENSO mode

were shown in section 7.6, the applied noisy forcing incorporates no preferred

spatial nor temporal scales. The stochastic forcing appears as an additional term

in both the zonal wind stress and the upwelling.

τx = F0FF τxextττ + μA(T − T0TT ) + τxnoiseττ , (7.174a)

w1 = w + ws + wnoise, (7.174b)

where τxnoiseττ , wnoise have the actual form

τxnoiseττ (x, y, t) = anoiseRτ (x, y, t)e−y
2/4, (7.175a)

wnoise(x, y, t) = anoiseRw(x, y, t)e−y
2/4 (7.175b)

The coefficient anoise controls the relative strength of the stochastic term. The

functions Rw and Rτ are obtained through a pseudo random number generator
and updated every time step. This gives a decorrelation time of about 1 − 2
months, using a time step of 30 days (Blanke et al., 1997). Note that this time

step is possible, because the model is integrated using a fully implicit scheme.

The seasonal cycle is represented through variations of the radiative equilibrium

temperature T0TT with time and latitude, i.e.

T0TT (y, t) = T̄0TT cos(γs(y + as sin(ωat))) (7.176)

The amplitude T̄0TT is taken as 30 ◦C , the coefficient γs follows from a fit to the

observed seasonal cycle and has the value 0.06. This accounts for an equilibrium
temperature of 27 ◦C at 10 ◦N in the absence of temporal variations. The ampli-

tude of the seasonal variations as is set to a value of 0.11, by the condition that T0TT
has a maximum at 20◦N at t = π/2ωa.
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Figure 7.55. (a) Powerspectrum of equatorial SST at (x = 0.8), for the case of supercritical
coupling strength (μ = 0.7) with stochastic forcing and annual cycle included. (b) Phase diagram
of eastern Pacific SST anomaly (TET ∗) versus western Pacific thermocline depth anomaly hW∗.

With supercritical coupling strength (μ = 0.7), and no stochastic and seasonal
forcing, the model exhibits a regular periodic solution. When the seasonal cycle
and noise are included, with anoise = 0.2, at supercritical conditions the ENSO
signal dominates over the seasonal cycle as can be seen in Fig. 7.55. The deter-
ministic period of the supercritical solution retains its identity over the influence
of stochastic forcing. The phase space view of eastern basin SST anomaly ver-
sus western Pacific thermocline depth, shows the effect of the noise as a fuzzy
signature of the otherwise stable periodic orbit (Fig. 7.55b). At subcritical condi-
tions (μ = 0.48), ENSO variability is excited as is indicated by the low frequency
signal in Fig. 7.56, but it remains of reasonably weak amplitude.

7.9. ENSO in General Circulation Models
From the previous sections, a framework emerges to understand the ENSO

variability but as the ICMs contain only a limited part of relevant physical pro-
cesses, the theory is far from complete to satisfactorily answer all questions as
posed in section 7.1.5. Clearly, more work is needed to confirm that the physical
mechanisms of ENSO variability as deduced from ICMs are actually dominant
in these more detailed models and to answer the questions related to the sea-
sonal cycle. Such a modelling effort has started since the early 1980s and the
models are generally referred to as tropical General Circulation Models (GCMs).
Many types of models are used but essentially two different classes can be distin-
guished: hybrid coupled models (HCMs) and coupled general circulation models
(CGCMs). Both type of models consist of a state-of-the-art ocean model, but
the atmospheric components differ substantially. In CGCMs, the atmosphere is
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Figure 7.56. As Fig. 7.55, for the case of subcritical coupling strength with stochastic forcing
and annual cycle included. Again in (a) the power spectrum of SST is shown and in (b) the phase
space diagram.

a full physical-dynamical model whereas in HCMs, it is an empirically derived
(statistical) model.

In the HCMs, the atmospheric response to variations in SST is captured by
statistical relations inferred from data. The advantages of an HCM are a rela-
tively low computational cost with respect to a CGCM. In addition, there is no
oversimplification of nonlinear oceanic processes as in ICMs while still the level
of complexity is lower than in a CGCM allowing an easier understanding of the
phenomena simulated. HCMs have been quite successful in simulating many as-
pects of ENSO variability (Chang et al., 1995; Syu et al., 1995; Blanke et al.,
1997; Eckert and Latif, 1997; Syu and Neelin, 1995; Tang, 2002). Under steady
forcing, the central Hopf bifurcation associated with the ENSO is found in HCMs
as a transition from steady to periodic behavior. With seasonal forcing, a phase
locking behavior similar to that in ICMs is found.

The CGCMs can be subdivided in so-called TOGA models and global models.
In TOGA models, a high-resolution tropical Pacific ocean basin model is cou-
pled to a global atmosphere model. In global CGCMs, a relatively low-resolution
global ocean and atmosphere model are coupled. An extensive overview of the be-
havior of all these models is beyond the scope of this book and several reviews are
available for this purpose (Neelin and coauthors, 1992; Mechoso and coauthors,
1995; Delecluse et al., 1998; Latif et al., 2001; AchutaRao and Sperber, 2002;
Davey et al., 2002). In the remainder of this section, however, a brief impression
is given of the general capabilities (and remaining problems) of these models.

Many of the early models (in particular the coarse-resolution models) showed
major errors in the annual-mean temperature and its zonal gradient, while inter-
annual variability ranged from weak to moderate (Neelin and coauthors, 1992).
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The errors in the annual-mean state have been an obstacle in coupled modelling
for some time (Delecluse et al., 1998) and were generally referred to as climate
drift4. In some models, the cold tongue cut right across the basin or migrated to
mid-basin. In others, the warm pool was displaced or warm water occurred in the
eastern as well as in the western part of the basin. In many models, weak zonal
SST gradients across the equator were common (Sperber et al., 1987; Gordon,
1989; Meehl, 1990; Endoh et al., 1991; Neelin and coauthors, 1992).

Since the early 1990s, relatively good seasonal cycles were obtained in TOGA-
type CGCMs (Giese and Carton, 1994; Robertson et al., 1995a,b; Terray et al.,
1995). In Mechoso and coauthors (1995), the capabilities of eleven different
CGCMs in simulating the seasonal cycle were compared. Each CGCM was able
to simulate a reasonable annual-mean state with sufficient zonal asymmetry along
the equator. The development of the cold tongue over the year was more difficult
to capture by the models and quite diverse behavior was found. Most CGCMs
tended to develop a too narrow cold tongue around the equator, in some mod-
els warm water appeared south of the equator in April and most models had a
too (equatorially) symmetric response. Some models generated a semi-annual
component along the equator and some developed a convergence zone over the
southeastern Pacific in March-April. Philander et al. (1996) conjectured that the
movement of the ITCZ is caused by the equatorial asymmetry of the continents in
the eastern Pacific. This small asymmetry is then amplified by the coupled feed-
backs and leads to the strong asymmetry as seen in observations. The simulation
of a correct seasonal cycle, however, poses (even today) a significant challenge to
CGCMs.

ENSO-like behavior in early CGCMs was described in Sperber et al. (1987)
and Philander et al. (1989), although significant drift occurred in the latter model.
In Neelin and coauthors (1992), a multitude of behavior with both propagating
and standing SST signals of interannual variability was found. It appeared that a
correct structure of the annual-mean state was not an important factor to find inter-
annual variability. Also in the Mechoso and coauthors (1995) intercomparison, a
good simulation of the seasonal cycle did not seem to guarantee good interannual
behavior.

Sometime ago, the Coupled Model Intercomparison Project (CMIP) was
started with the aim to evaluate the behavior of the different models. More in-
formation on the models and the scientists participating in this intercomparison
can be found on http://www-pcmdi.llnl.gov/modeldoc/cmip. The El Niño Simu-˜
lation Intercomparison Project (ENSIP) has been one of the activities within the
CMIP project (Latif et al., 2001). The results show the capabilities of about 24
models in the simulation of the annual-mean state, the seasonal cycle and El Niño
variability. For each of the models – in Latif et al. (2001), a short description of
each model is provided – a 20-year simulation was used.

4The term ‘drift’ is used for both the equilibrium departure of the model climatology from observations and for

the process of adjustment toward this equilibrium



466 NONLINEAR PHYSICAL OCEANOGRAPHY

Figure 7.57. Model simulated equatorial SSTs, averaged over 2◦S - 2◦N. The thick curve is the
1961-1990 mean from the GISST dataset (from Latif et al. (2001)).

In Fig. 7.57, the simulated annual-mean SST is shown for all of the models used
(the acronyms of the models are explained in Latif et al. (2001)). The zonal tem-
perature gradient in the central part of the basin is well simulated by most models
which is a considerable improvement over earlier models (Neelin and coauthors,
1992). Many of the models have a cold bias in the central part of the basin and
simulate too warm SSTs near the eastern boundary. Moreover, some models have
large errors near the western boundary.

The performance of two of the models, the TOGA-type CERFACS model
(Terray et al., 1995) and the global GFDL-R30 model (Knutson and Manabe,
1998; Delworth et al., 2002), in simulating the seasonal SST field is presented in
Fig. 7.58. Both models do rather well in capturing the annual signal in the eastern
Pacific and the semi-annual signal in the western Pacific. They also have a cor-
rect amplitude of the seasonal signal, but the CERFACS model shows a slightly
better westward propagation than the GFDL-R30 model. Other models, however,
have problems to simulate a correct amplitude and pattern of the seasonal cycle
and many, in particular the coarse-resolution CGCMs, simulate a weak seasonal
signal. Some models show a semi-annual signal in the eastern Pacific and some
an annual signal in the western Pacific. It appears that a high-resolution ocean
model component is necessary to simulate a correct seasonal cycle in the tropical
Pacific.

The Hovmoeller diagrams of SST anomalies (with respect to the seasonal cy-
cle) over the 20-year simulation period of both the CERFACS and GFDL-30
model are shown in Fig. 7.59. The CERFACS model (Fig. 7.59b) simulates very
strong interannual variability during the first 10 years but weak variability over the
next 10 years. The GFDL-R30 model displays (Fig. 7.59c), as many other models,
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(a) (b) (c)

Figure 7.58. (a) Observed and (b-c) model simulated equatorial seasonal SSTs, averaged over
2◦S - 2◦N; (b) CERFACS model; (c) GFDL-R30 model. Results are from Latif et al. (2001).

too weak variability. According to Latif et al. (2001), the models can be separated
into two classes with respect to interannual variability. There are models which
simulate westward propagating SST anomalies (in particular the coarse-resolution
models such as the GFDL-R30 model) and there are models which correctly sim-
ulate near standing SST anomalies. When the standard deviation of the NINO3
index is considered, there are only a few models which have a correct NINO3 am-
plitude and all of these models have deficiencies in simulating the seasonal cycle.
The periods of the ENSO variability for the ensemble of models are in the range
from 2 – 4 year.

There are only a few models which simulate the phase locking of ENSO to the
seasonal cycle well and only one of these models (the CERFACS model) simulates
a good seasonal cycle. This can be seen in Fig. 7.60, where the standard deviation
of the NINO3 index is plotted versus calendar month. Many models do not capture
the seasonal dependence of ENSO variability (weakest variability in April and
strongest variability in December). There are models which show no seasonal
dependence at all; these have also a weak seasonal signal. On the other hand, it
is remarkable that there are models which do not simulate a good seasonal cycle,
but still display a reasonable phase-locking behavior.

Also the regression patterns of SST and the heat content are analyzed in the
models. There is a large range of patterns; many of the models do not capture
an adequate wind response to SST anomalies. However, the high correlation of
the NINO3 index and eastern upper ocean heat content at zero lag and the slow
eastward propagation of the heat content is well captured in surprisingly many
models. As concluded by Latif et al. (2001), there are unfortunately no CGCMs
yet which simulate all aspects of the tropical climate and its variability well.
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(a)

(b) (c)

Figure 7.59. (a) Observed and (b-c) model simulated equatorial seasonal SST anomalies, av-
eraged over 2◦S - 2◦N; (b) CERFACS model; (c) GFDL-R30 model. Results are from Latif et al.

(2001).

7.10. Synthesis
The results from the previous section may appear as a disappointment hav-

ing gone through the earlier sections where a clear mechanistic view of ENSO
variability has been obtained through ICMs. One must realize, however, that the
CGCMs aim to represent a multi-scale, multi-process ‘virtual’ reality and that in
ICMs only a few of these processes and scales are represented. In this last section,
we discuss the results of the ICMs in a broader context having the questions posed
in section 7.1.5 in mind.
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Figure 7.60. Model simulated standard deviation of the NINO3 index versus calendar month
(Latif et al., 2001). The thick curves is from the GISST dataset.

7.10.1. A summary of ICM results
The coupled feedbacks discussed in section 7.3.4 shape the interesting and

complicated tropical Pacific climate system. The strength of the feedbacks in

the system is measured by the dimensionless coupling parameter (7.115)

μ =
γαTΔTL2

c2oc
2
a

(7.177)

which scales with the square of the basin size. The zonal extent of the Pacific basin
is a factor 3 larger than that of the Atlantic basin and consequently the coupling

parameter is much larger. The feedbacks are thus stronger in the Pacific than in

the Atlantic and hence more complicated behavior can be expected in the Pacific.

Section 7.6 provided strong arguments that the coupled feedbacks are involved

to shape the zonal gradient of equatorial SST. If there is a weak background ex-

ternal wind stress τxextτ , the weak zonal SST gradient is amplified by coupled feed-

backs to give a cold tongue – warm pool contrast. The analysis indicated that a

subtle balance between the different feedbacks, thermocline and upwelling feed-

back, provides a correct spatial structure. A dominance of either of these feed-

backs in ICMs may give a wrong zonal SST contrast in the annual-mean state

(Dijkstra and Neelin, 1995a).

It would be strange if coupled processes would not be active in shaping the

seasonal cycle. As mentioned in section 7.8.1, although there are many indica-

tions for this involvement, we do not have such a clear mechanistic view of how
coupled processes operate in the seasonal cycle. This is a remaining fundamental

problem — which is linked to the problem of the northern preference of the ITCZ

(Philander et al., 1996) — that still needs to be tackled with ICMs.
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Linear stability analysis of annual-mean states, obtained under steady forcing

in ICMs, convincingly show that coupled ocean-atmosphere internal modes are

responsible for the interannual variability in these models. One can continuously

follow these modes in the hierarchy of ICMs, starting with the Hirst (1986) pe-

riodic basin model in section 7.5.1 through the Jin and Neelin (1993a) model

in section 7.5.2 to the Van der Vaart et al. (2000) model in section 7.7. If one

starts with the motionless flow solution, there are two classes of modes. One

class comes from the time derivative of the SST equation (the SST modes) and

one class comes from the shallow-water dynamics (the ocean-dynamics modes).

In the Hirst model, these modes are explicitly separated because of the simple

structure of the steady state of which stability is analyzed. Both classes of modes

interact in Jin and Neelin (1993a) to give the mixed SST-ocean dynamics modes

(presented in section 7.5.3). The sole reason for the merging of these modes is

the more complicated spatial structure of the annual-mean state and the presence
of the zonal boundaries. A representation of these modes was presented in sec-

tion 7.5.4. When variations of the coupling strength μ do not only influence the

growth rate of the perturbations but also the underlying annual-mean state, the

mixed SST-ocean dynamics modes as in the model of Van der Vaart et al. (2000)

are obtained.

When the coupling parameter μ is increased, the annual-mean state becomes

unstable through a supercritical Hopf bifurcation, say at μc. In several ICMs,

the position of this Hopf bifurcation has been explicitly computed (for example,

Van der Vaart et al. (2000)) and in others this Hopf bifurcation can be inferred

from a transition from steady to periodic behavior. At the Hopf bifurcation, the

growth rate of one of the mixed SST-ocean dynamics modes, i.e., the ENSO mode,

becomes positive. The propagation mechanism is best described by the recharge-

oscillator mechanism of Jin (1997a).

From the spatial patterns of the thermocline anomaly field in section 7.7.2.
(Fig. 7.47), it can be seen that the ENSO mode is not simply a sum of a j = 1
Rossby mode (Fig. 7.12) and a Kelvin mode (Fig. 7.10), but that higher meridional

Rossby modes are involved. Due to the presence of zonal boundaries, the free

wave solutions do not exist and many of them combine to give a spatial structure

more like the ocean-basin modes in Cane and Moore (1981). The consequence of

this multimode structure is that the ocean adjustment time scale is much longer

than that based on the propagation time scales of an individual Rossby and Kelvin

wave. To obtain the correct spatial structure and time scale of the mode, the results

in Van der Vaart et al. (2000) show that the spatial structure of the annual-mean

state is important as the SST perturbations are mostly located in the cold tongue

region.

For coupling values larger than that at the Hopf bifurcation (supercritical condi-

tions), nonlinear processes become involved in the time-dependent behavior. The

dependence of the period on μ is substantially different than that inferred from
the angular frequency of the ENSO mode (see section 7.7.3). The precise mech-

anistic explanation still has to be given and this is also an important fundamental

problem.
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Under a seasonal cycle forcing, the periodic ENSO orbit nonlinearly interacts
with the external seasonal forcing to give frequency and phase locking. Although
the mathematical origin is the same as that causing the Arnold’ tongues for the
circle map (section 3.4.3) it is not easy to understand the physics of this synchro-
nization phenomenon. As mentioned above, the interaction of the seasonal cycle
and the ENSO mode has only been studied in ICMs under a prescribed seasonal
cycle and not with a seasonal cycle which depends also on coupled processes.

In this framework, the time-dependent behavior under supercritical conditions
can be modulated by slowly varying background changes, for example in the
annual-mean state, to give decadal-to-inderdecadal variability of ENSO.

7.10.2. Multi-scale physics
The ICMs represent only part of the physical processes at work in the Pacific

ocean-atmosphere system and one may ask which elements of this deterministic
framework remain identifiable when placed in the context of a multi-scale phys-
ical system. Apart from observations, also the results from HCM and CGCM
models are available to provide representations of this multi-scale system. In the
next subsection, we first look whether we can recognize the ‘building blocks’
of ENSO dynamics provided by ICMs in the results of GCMs and observations.
Next, we discuss the effect of the high-frequency variability (‘noise’) and in the
last subsection, we discuss the effects of low-frequency background variability.

Recognition of ‘building blocks’
Examining again the observations of the time-longitude diagrams of Fig. 7.7b, one
sees that SST anomalies in the eastern and central part are associated with same-
sign zonal wind anomalies further west. Thermocline anomalies have a tendency
to propagate from the west to the east, while SST variations are dominated by a
standing component. Most of these aspects can be reasonably captured by ICMs.
However, in contrast to the atmosphere response in many ICMs, there are no clear
systematic zonal wind anomalies west of SST anomalies.

The strong relation between SST anomalies and thermocline anomalies in the
eastern Pacific (Fig. 7.7b) is an indication that the thermocline feedback is op-
erating there. However, it is hard to make here a distinction between the ther-
mocline and the zonal advection feedback because both have a similar signature
(Picaut et al., 1996; Jin and An, 1999). The central part of the Pacific exhibits the
strongest correlations between local SST and wind. This is an indication that the
zonal advection feedback and the upwelling feedback are probably more impor-
tant in this region of larger mean zonal temperature gradient and wind anomalies.
Probably, local-wind effects are important for the SST development in the cen-
tral Pacific and wave-dynamic adjustment effects are dominating in the eastern
Pacific.

Structures that correspond to the ocean adjustment waves, and reflection of
these waves, have been observed by altimetry and TAO/TRITON measurements
(Boulanger and Menkes, 1999; McPhaden and Yu, 1999). A complication in es-
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tablishing properties of these waves, such as wave speeds and reflection coeffi-
cients, arises from the interaction of waves with the wind-stress variability, re-
sulting in a huge uncertainty. In CGCMs, wave reflection is well-established, al-
though wave dynamics is much more complicated than in ICMs, because there are
several vertical modes instead of one, and because the background state is much
more complicated. In Van Oldenborgh et al. (1999), the sensitivity of the NINO3
index to earlier sea-level fields and wind-stress fields is determined. Ocean adjust-
ment waves can be seen in sea level influence fields that travel over the Pacific and
reflect at the western boundary in agreement with the delayed-oscillator picture.
A study of the energetics of El Niño variability (Goddard and Philander, 2000)˜
within a CGCM also suggests a strong role for the delayed oscillator mechanism.
In the half cycle after the El Niño peak, energy is fed into the ocean by the wind˜
in the central and western Pacific, increasing the potential energy of the system.
The gained energy adjusts via equatorial-wave dynamics and is released after the
El Niño peak to the atmosphere.˜

Noise and its role in ENSO
From the perspective of El Niño, processes that evolve independently with smaller˜
time and space scales can be considered as “noise”. Noise has an important influ-
ence on the irregularity and predictability of El Niño, and probably is also impor-˜
tant for sustaining El Niño variability.˜

In the atmosphere, an important phenomenon is the 30-60 day or Madden-
Julian oscillation (Madden and Julian, 1994). This oscillation gives rise to west-
erly wind bursts, events of anomalous westerlies lasting typically a week, which
are strongest somewhat west of the region of the El Niño wind response (Weller˜
and Anderson, 1996; Vecchi and Harrison, 2000). They are stronger in boreal
winter and spring, and are enhanced by local air-sea interaction. The Madden-
Julian oscillation has substantial interannual variability. but El Niño events do˜
not seem to affect westerly wind bursts although the location of the latter may
shift slightly (Slingo et al., 1999). The atmospheric variability not only causes
wind stress anomalies, but also heating anomalies.

A comprehensive study of oceanic variability in the equatorial Pacific is pre-
sented in Kessler et al. (1996). Kelvin waves are excited very effectively by the
Madden-Julian oscillation because they travel eastward with a similar speed. Also
Rossby waves are excited by individual westerly wind bursts (Kessler et al., 1995;
Van Oldenborgh, 2000). Inertia-gravity waves, which have periods up to about a
week (Philander, 1990), play a role as well. A striking feature of oceanic variabil-
ity are tropical instability waves associated with the high shear of the equatorial
currents at the northern boundary of the cold tongue (Legeckis, 1977). However,
there is no evidence that these westward propagating structures are very relevant
for El Niño variability.˜

The spectra of the NINO3 index and the SOI in Fig. 7.6 are moderately peaked
compared to those of many deterministic ICMs. Hence, it is generally agreed that
noise contributes substantially to the irregularity and predictability of El Niño.
This is confirmed by many studies of the effect of explicit stochastic forcing in
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ICMs and HCMs (e.g. Kleeman and Power (1994); Chang et al. (1996); Jin
(1997a); Blanke et al. (1997); Eckert and Latif (1997)). Roulston and Neelin
(2000) stress a sometimes overlooked basic fact: for linear systems, it is not
the high-frequency part of the spectrum of the noise which influences the low-
frequency part, but the low-frequency part. Case studies of the development of
the 1997/1998 El Niño by McPhaden (1999) and Takayabu˜ et al. (1999) and of
events in the period 1986–1998 by Vecchi and Harrison (2000) point to a large
role for variability associated with the Madden-Julian oscillation.

In CGCMs simulations, the noise is naturally present but its effect on the inter-
annual variability has not been studied in detail. The HCM models, where noise
can be added and which are much less expensive to run, have been used for this
purpose. In Blanke et al. (1997) the noise forcing was estimated by removing
variance associated with SST from the observed wind stress record in a way to
get a white noise product preserving spatial correlations. The effect of realistic
noise forcing applied to the HCM in a regime which otherwise would be periodic
are sufficient to produce irregularity generally consistent with observations. In
power spectra, the main spectral peak is broadened and rises modestly above the
noise background, similar to that in ICMs. In the regime where the ENSO mode
is damped, the stochastic forcing was able to get an ENSO signal above the noise
level (Chang et al., 1996).

A more theoretical approach to study how a perturbation x(t0), given at an
initial time t0, develops at later times t is to linearize the system around a ref-
erence trajectory xref (t) which gives the tangent linear model for x(t), i.e.
x(t) = A(t, t0)x(t0), where A = A[xref (t)]. The adjoint AT of the tangent
model can be used to study the sensitivity of a function of the final state to pertur-
bations at earlier times (Van Oldenborgh et al., 1999). The singular vectors of A
are the perturbation patterns that give the largest effects on the final state. Math-
ematically, due to the non-normality of A, transient error growth can be larger
than that of the fastest growing mode (Blumenthal, 1991). Physically, this is re-
lated to the fact that disturbances propagate: perturbing the wind stress along the
equator in the western Pacific has the largest effect on the NINO3 index a few
months later. The above techniques can be applied both to unstable chaotic and
stable noise driven systems. Transient error growth in a linearized version of the
Cane-Zebiak model in a variety of parameter regimes is studied by Thompson and
Battisti (2000). Moore and Kleeman (1999) extend the singular vector approach
by considering the collective effect of noise at all earlier times. The stochastic op-
timals, noise patterns that give the largest contribution to interannual variability,
have a large overlap with westerly wind burst variability. Van Oldenborgh (2000)
uses the adjoint of an OGCM for studying what caused the development of the
1997/98 El Niño. He estimates that the initial-state wind anomaly of December˜
1996 and westerly wind bursts between December 1996 and May 1997 gave about
equal contributions to the value of the NINO3 index in June 1997.

As was mentioned in the previous subsection, the ENSO mode has a positive
growth rate when the coupling is larger than a critical value and the period and am-
plitude of ENSO variability are set by nonlinear effects. However, in the presence
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of noise, even if the system is linearly stable, it still exhibits oscillations. In this
case of a so-called stochastic Hopf bifurcation (Gardiner, 2002), the amplitude is
determined by the noise characteristics. The record of El Niño indices is too short˜
to determine directly whether the El Niño system is stable or not, although it is˜
clear that the stability properties depend on the season (Fedorov and Philander,
2000). Nonlinearity can show up in a broadening or even splitting of the central
part of the probability density function of an index, such as the SOI. Originally,
most research concentrated on the unstable regime, although the scenario of a sta-
ble oscillator excited by noise was already mentioned in the context of a HCM by
Neelin (1991a).

Penland and Sardeshmukh (1995) concluded, through analysis of SST obser-
vations, that El Niño variability is noise driven and can be explained by the con-˜
structive interferences of three damped modes. Chang et al. (1996) add stochastic
forcing to an ICM and to a HCM, and compare the behaviour to a CGCM. Their
results indicate that El Niño in the CGCM was likely to be noise driven. Moore˜
and Kleeman (1999) analyze the sensitivity of an intermediate model to stochas-
tic perturbations and suggest that El Niño is a stochastically forced phenomenon,˜
with westerly wind bursts being an important ingredient of the noise.

Burgers (1999) investigates how well a single “stochastic oscillator” can de-
scribe El Niño. The assumption of a complex damped mode leads to the autocor-˜
relation function ρ(t) = exp(−κt) cos(ωt + α)/ cos α, which is very much like
observed. A fit of the stochastic oscillator to observations of the NINO3 index
yields 2π/ω = 46 ± 6 months, 1/κ = 17 ± 5 months and α = 10◦ ± 5◦. The
fact that the spectra of the SOI and of the zonal wind fluctuations show a white
background, and the NINO3 index hardly any, fits nicely with a picture of El Niño
as stochastic oscillator driven by atmospheric noise. However, part of this white
background could be due to observational noise, and the periods of rapid rise and
decline of the 1997/1998 El Niño do not fit in this stochastic oscillator.˜

The picture that emerges from the above studies is that the sensitivity of the
Tropical climate system to perturbations depends on the season, but that the sys-
tem is close to neutral, with noise having a significant influence on the amplitude
of the El Niño variability (Fedorov and Philander, 2000).˜

External processes and decadal variability
The decadal-to-interdecadal variability in the Pacific SST is currently an active
field of research and it is impossible to review many of the ideas and studies here.
A first mechanism that has been suggested is that white noise will inevitable lead
to some decadal variability (Kirtman and Schopf, 1998). Latif (1998) have studied
these decadal variations induced by stochastic forcing in a HCM and Flügel and¨
Chang (1996) provide modeling evidence for stochastically induced shifts in El
Niño behaviour. A second mechanism is that decadal variability arises due to com-˜
plex nonlinear interactions between the basin-scale instabilities and smaller scale
processes. After all, the deterministic system may be chaotic (Mantua and Battisti,
1995; Tziperman et al., 1997) and thus contain a component of low-frequency
variability. Finally, the annual-mean state on which the El Niño mode oscillates˜
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may be changed by external (to the Pacific basin) processes on a decadal time
scale (Gu and Philander, 1997; S.-I. and Jin, 2000).

With respect to the latter possibility, it is recognized that the equatorial Pacific
is part of the global climate system. The link between the equatorial Pacific sys-
tem and the rest of the globe is both through the ocean and the atmosphere. The
equatorial atmospheric circulation in the Pacific is intrinsically linked to extrat-
ropical circulation systems and the Asian monsoon system. The equatorial surface
ocean current system is complicated and connects to the midlatitude circulation
in the North- and South Pacific. Through transport of heat, both the thermocline
shape and the sub-surface temperature may be changed on time scales which are
controlled by processes other than those involved in El Niño .

In some simulations of global climate models, the dominant mechanism of low
frequency variability of El Niño has its origin in the decadal variability in the ex-˜
tratropical atmospheric winds (Barnett et al., 1999; Pierce et al., 2000). The large
scale changes influence the trade winds and precondition the mean state of the
thermocline in the equatorial ocean leading to prolonged periods of enhanced or
reduced El Niño variability. Wang˜ et al. (1998) stress the importance of the cou-
pling between Walker and Hadley circulation to produce out-of-phase differences
between tropical and extratropical SST anomalies.

There is also a clear linking of the Walker circulation with other tropical cir-
culation systems, such as that over the Atlantic and the South-Asian monsoon
(Webster and coauthors, 1996). Each year in northern Spring, the center of trop-
ical convection migrates from the western Pacific warm pool to the northwest,
announcing the arrival of the Asian monsoon. Normally, a weak Asian summer
monsoon circulation is found during strong El Niño events. The normal low pres-˜
sure system over the western Pacific shifts eastwards during El Niño events. Be-˜
cause of anomalous high pressure over the western Pacific/South Asian continent,
precipitation is decreased. On the other hand, a strong monsoon with heavy rains
and corresponding strong easterly winds tends to oppose El Niño conditions. Re-˜
cently, this relation has weakened and no abnormal precipitation occurred during
the last decades of increased El Niño occurrence (Kumar˜ et al., 1999).

Sub-surface propagation of midlatitude ocean temperature anomalies may also
lead to interdecadal variability as demonstrated in a simple model (Gu and Phi-
lander, 1997). Temperature anomalies are formed in the winter mixed layer at
midlatitudes, subduct when restratification occurs, propagate along the subtrop-
ical gyre and affect the tropical thermocline. Changes in tropical SST influence
the midlatitude wind pattern which in turn affect the temperature in the midlati-
tude mixed layer, providing for an oscillation with an (inter)decadal time scale. In
Zhang et al. (1998), observational evidence is presented of sub-surface tempera-
ture anomalies, which propagate over a period of about 10 years from the North
Pacific to the low latitude Pacific. However, recent studies have indicated that
these anomalies may not reach the equatorial region with sufficient amplitude to
affect El Niño dynamics (Pierce˜ et al., 2000). Other oceanic connections have
been suggested, such as (i) the signal of extratropical waves into the western equa-
torial Pacific (Lysne et al., 1997) and (ii) the coupling of the meridional extent
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of the cold tongue to the shallow meridional overturning circulation connecting
the equatorial upwelling region and the North Pacific subtropical gyre (Kleeman
et al., 1999).

7.10.3. The future of ENSO
Apart from a fundamental understanding of the basic physics of El Niño vari-˜

ability, most of the studies cited here were carried out because of (A) to predict
the occurrence of next El Niño events and/or (B) to determine the changes of El˜
Niño variability due to increased levels of greenhouse gases in the atmosphere.˜

The question (A) is intimately related to how well one is able to model the link
between the interannual basin wide fluctuations associated with El Niño and the˜
shorter time and smaller space scale variability in the Pacific. Different type of
models are used to provide El Niño forecasts, ranging from statistical schemes˜
to high-resolution coupled CCGMs. These can incorporate information from dif-
ferent data sources, e.g., in combining sub-surface data with wind-stress data and
SST data. CGCMs can readily calculate the response to global SST patterns which
is important for finding the teleconnections between equatorial variability and ef-
fects elsewhere in the world. However, the best statistical schemes are still com-
petitive with the best CGCMs. In CGCMs, it is hard to find the ‘right balance’
of the coupled processes, since the way the various feedbacks and noise sources
interact is quite subtle. None of the models predicted the onset of the 1997-1998
El Niño , but once this event was well underway, predictions of subsequent de-˜
velopment were reasonable. Interpreting the past and future observations with the
concepts of ICMs will make it possible to examine the performance of CGCMs in
much more detail than is done so far, and allow CGCMs to be improved substan-
tially.

The question (B) is related to how well one is able to model the link between
El Niño variability and the global climate system. Whereas on the shorter time˜
scale, there is immediate verification from available observations, this is not very
well possible on the scale on which the global climate is changing. To properly
capture El Niño variability in global models, these models should have enough˜
resolution to represent (i) longwave ocean adjustment, (ii) the basic coupled feed-
backs (iii) a representation of diabatic processes that provides the correct atmo-
sphere response to equatorial SST anomalies (Newman et al., 2000) and (iv) the
influence of the annual-mean state on El Niño variability and vice versa.˜

The qualitative different results so far clearly show that modeling the effect
of global warming on El Niño variability is still in its infancy. In some models˜
(Knutson et al., 1997) the mean zonal SST gradient decreases, with little change in
‘El Niño-like’ activity. In others models (Timmermann˜ et al., 1999; Timmermann,
2001), increasing greenhouse-gas concentrations induce a more “El Niño-like”˜
mean state with more pronounced cold events than warm events. In the second
Hadley Centre model (Collins, 2000a) changes in activity, frequency and phase-
locking are found. However, in the third Hadley Centre model no change in El
Niño statistics is found (Collins, 2000b). This is attributed to the difference in˜
physical parameterization and not to the difference in resolution between the two
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versions. In one coupled model (Noda et al., 1999), a change towards a more ‘La
Niña-like’ mean state is found.˜

The latter problems indicate that still much work has to be done in the coming
decades to get better solutions to the problems (A) and (B). Going through time,
and considering that the connection between oceanic and atmospheric phenomena
was only discovered in 1969 (Bjerknes, 1969), the subject has undergone a rapid
transition to maturity. At the moment, the spatial and temporal patterns of interan-
nual El Niño variability are well characterized, their dynamics is reasonable well˜
understood and a diversity of models is used to predict the state of the Pacific a
few months ahead. This work is continually stimulated by El Niño itself, which˜
uncovers itself patiently every few years to have us learn a bit more of its identity.
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7.11. Exercises on Chapter 7

(E7.1) Reflection of equatorial waves

Consider the reflection of an equatorial Rossby wave, with dispersion relation
(7.17) for j = M , at the western boundary x = 0. The incoming wave has a
wavenumber

kI = − 1
2σI

+ (σ2 +
1

4σ2
− (2M + 1))

1
2

and hence its group velocity is westward.

a. Show that the incoming velocity field of the wave is given by

vI(x, y, t) = ei(kIx−σt)ψM (y)

uI(x, y, t) =
i

2
ei(kIx−σt)(

√√
(2(M + 1))
σ − kI

ψM+1(y) +

√√
(2M)

σ + kI
ψM−1(y))

hI(x, y, t) =
i

2
ei(kIx−σt)(

√
(2(M + 1))
σ − kI

ψM+1(y) +

√
(2M)

σ − kI
ψM−1(y))

The reflected wave is a superposition of Rossby waves (with amplitude
Bm,m = 1, ...,M ) and a Kelvin wave (with amplitude BK).

b. Provide an expression for the zonal velocity field uR(x, y, t) of this
superposition.

c. Determine the coefficients Bm and BK .

d. Show that long Rossby waves reflect into a Kelvin wave.

Further reading: Philander (1990).

(E7.2) Upwelling

In the formulation of the Zebiak-Cane model, there is a Heaviside function
in the vertical heat flux formulation (see e.g., (7.100)). Describe the physics
motivating this representation.

Further reading: Zebiak and Cane (1987).
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(E7.3) Characteristics

In section 7.5.4, the two-strip model is introduced. From this model, the
delayed oscillator equations can be derived explicitly from the shallow-water
model and SST evolution. Central in this derivation is the integration over
characteristics defined by Kelvin and Rossby waves.

a. Determine the characteristics of a free Kelvin wave along the equator and
sketch these in the x− t plane.

b. Determine the characteristics of a free j = 1 Rossby wave along the ymax
value in Table 7.1 and also sketch these in the x− t plane.

c. Why can yn in the two-strip model be identified with ymax?

d. Carry out the integration of the equations (7.135) along both characteristics
under a. and b. and derive the equations (7.145).

Further reading: Jin (1997b).

(E7.4) Exchange of heat and mass

It is useful to ask how the mass and heat are transported during one ENSO
cycle. The most transparant model to look at this transport is the recharge
oscillator model in section 7.5.4.4.

a. Describe the exchange of mass between the equatorial strip to the off-
equatorial region during one oscillation cycle.

b. Describe the exchange of heat between the equatorial strip to the off-
equatorial region during one oscillation cycle.

Further reading: Philander (1990).

(E7.5) ENSO Period

In many CGCMs, the ENSO period is about 2-2.5 year and hence too short
compared to that of the observed variability. One of the hypothesis of the
cause for this short period is that the wind response of the atmosphere model
is too meridionally confined to the equator.

a. With reference to the Gill model in section 7.3, formulate a few reasons
why the wind response may be too localized.



480 NONLINEAR PHYSICAL OCEANOGRAPHY

b. Why does this localized wind response lead to a shorter ENSO period?

Further reading: Cane et al. (1990) and Van der Vaart et al. (2000).

(P7.1) Pacific climate equilibria

In this exercise, bifurcation analysis will be applied to a ‘toy’ model of the
Tropical Pacific. In this model, the atmospheric wind response to SST anoma-
lies is purely local,

A(T ′) = μT ′

where T ′ is the perturbation from the appropriate reference temperature and
μ is the coupling strength. As discussed in section 7.6, in the flux-corrected
case we find that T ′ = T̂ = T − T̄ , where T̄ is a solution for all values of μ.
In the fully coupled case we find that T ′ = T − T0TT , with T0TT being the fixed
surface heat flux equilibrium temperature.

Thermocline depth h is parameterized to deepen locally under a westerly wind
stress τ and the surface layer velocities are given by

h = τ ; w = −δsτ ; −vN = δsτ

with the scale of h suitably chosen. We introduce a homotopy parameter αF
and write the total wind stress τ as

τ = τ ext + αF (τ obs − τ ext) + μ{αF (T − T ) + (1− αF )(T − T0TT )}

where T is the flux-corrected solution for αF = 1 (the response to ‘observed’
wind stress τ obs) and τ ext is the external wind stress.

We use a piecewise continuous version of the TsT parameterization

TsTT (h) = T1TT , h ≥ h1;
TsTT (h) = T2TT , h ≤ h2;
TsTT (h) = T2TT + γ(h− h2), h1 ≥ h ≥ h2

where γ = (T1TT − T2TT )/(h1 − h2) ≥ 0, T2TT ≤ T1TT ≤ T0TT and h1 ≤ h2.

The steady temperature equation, due to the local approximations, reduces to
the single scalar equation for T ,

H(w)w(T − TsTT (h)) −H(−vN )vN (T − TNT ) + εT (T − T0TT ) = 0

where H is the Heaviside function.

a. Show that h, w and vN are given by

w = w0 − μδs{αF (T − T ) + (1− αF )(T − T0TT )}; vN = w
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with
w0 = −δs(τ ext + αF (τ obs − τ ext))

and

h = τ ext + αF (τ obs − τ ext) + μ{αF (T − T ) + (1− αF )(T − T0TT )}

b. Implement the SST equation into the AUTO software (see the beginning of
chapter 4 how to get this software) and determine the bifurcation diagram for
αF = 0.

c. Follow the branches into αF and determine the change in the bifurcation
diagrams. What is the physical reason for the differences between the
branches when changing αF ?

Further reading: Neelin and Dijkstra (1995).

(P7.2) Frequency locking

In this exercise, you will get more familiar with frequency locking as occurs
between the ENSO mode and the seasonal cycle. Although there are relatively
simple models where this can be demonstrated (Neelin et al., 2000), it is bit
much involved for an exercise to program these models and hence we turn to
the familiar Van der Pol equation, which is now forced externally. The so-
called forced Van der Pol equation is

θ′′ + ε(θ2 − 1)θ′ + θ = A cosωt

a. With x = θ and y = θ′, write this equation as a first order non-autonomous
system.

You can either implement these equations yourself in a numer-
ical solver for ordinary differential equations (such as available
in MATLAB) or use a JAVA integrator on the web at the URL
http://www.iro.umontreal.ca/∼eckdoug/vibe/Relaxation/VanDerPolForced.html.

b. Consider first the caseA = 0. Compute and plot trajectories for ε = 0.5, 1.0
and 2.0.

c. Next, consider A = 3.0 and ω = 1.2. Compute and plot trajectories for
ε = 0.05, 0.25 and 0.45. Do you observe any frequency locking?

d. Next, consider A = 0.4 and ω = 1.2. Compute and plot trajectories for
ε = 0.05, 0.25 and 0.45. What type of behavior is found at ε = 0.25?
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e. Finally, consider A = 5.0 and ω = 1.788. Compute and plot trajectories
for ε = 1.0, 2.0 and 3.0. What type of behavior is found at ε = 3.0? How
does this behavior arise?

Further reading: Neelin et al. (2000) and Pikovsky et al. (2001).
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Figure 1.14. Estimated section integrated mass transports as determined in Ganachaud and
Wunsch (2000) from the WOCE data. See text for an explanation of the colors and symbols.

Figure 1.15. Estimated section averaged heat transport over WOCE sections (Ganachaud and
Wunsch, 2000); the latter are indicated by their number (such as P12, A8, etc.), and 1 PW = 1015W.
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Figure 5.2. Multipass image of the SST field of the Gulf Stream region as determined
by the Advanced Very High Resolution Radiometer (AVHRR) in May 1996 (obtained from
http://fermi.jhuapl.edu/avhrr/gallery/sst/stream.html).
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Figure 5.36. Upper layer streamfunction snapshots of the ocean in a 3200 km square basin for
varying Reynolds numbers, Re, with Re = 0.375, 1.5, 6.0, 24 for the panels (A)-(D), respectively.
Here, Re = UL/AH , with U = 10−3 ms−1 and L = 3200 km. The time-mean flow consists
of an anticyclonic midlatitude subtropical gyre and a cyclonic subpolar gyre. The resolution in
the computations increases from 25 km in (A) to 1.56 km in (D). Note the appearance of coherent
vortices throughout the circulation in the highest value of Re results (from Siegel et al. (2001)).
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Figure 5.54. Plot of the two-year mean of the sea-surface height of a high-resolution (1/12◦)
simulation with MICOM (Chassignet and Garaffo, 2001).
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(a)

(b) (c)

Figure 5.55. (a) Contour plot of zonal geostrophic velocity (ms−1), calculated from SSH gradi-
ents in POCM, at 75◦W as a function of latitude for the period 1979-1997. Contour plot of monthly
mean SSH deviations (cm), superimposed on a shaded contour plot of monthly mean SST for (b)
January 1979, representing the ‘deflected’ Gulf Stream in POCM, characterized by a northerly po-
sition of its cold wall at 75◦W and (c) January 1981, representing the ‘separated’ Gulf Stream in
POCM, characterized by a southerly position of its cold wall at 75◦W.
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(a)

(b) (c)

Figure 5.56. (a) Contour plot of zonal geostrophic velocity (ms−1), calculated from sea surface
height (SSH) gradients in POCM, at 136◦E as a function of latitude for the period 1979-1998. (b-
c) Contour plot of monthly mean SSH deviations (cm), superimposed on a shaded contour plot of
monthly mean SST for (b) January 1988, representing the Kuroshio small meander state in POCM
and (c) January 1996, representing the Kuroshio large meander state in POCM.
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Figure 6.2. Reconstruction of the approximately 52-year signal (panels are about 4.3 years
apart) in SST and SLP from Delworth and Greatbatch (2000). Units of SST are in ◦C (from -0.6◦C
(blue) to 0.6◦C (red)) and that of SLP in hPa.
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(a)

(b) (c)

Figure 6.3. (a) Time series of ocean heat content (1022J) in the upper 300 m of the Atlantic for
the half-century 1948–1998. For comparison, the climatological range of upper ocean heat content
for the North Atlantic is about 5.6 × 1022 J. (b-c) Heat storage difference (Wm−2) for the North
Atlantic between 1988–1992 and 1970–1974 within (b) the upper 300 m and (c) the upper 3000 m;
warming is indicated by pink and cooling in light blue (from Levitus et al. (2000)).
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(a)

(b)(b) (c))

(d)(dd) (e))

Figure 6.59. Properties of the statistical mode, having a 44-year timescale, in the GFDL-R30
model. (a) Maximum of the meridional overturning streamfunction anomaly (Sv). (b-e) Patterns of
meridional overturning streamfunction anomaly (Sv) in the North Atlantic region. The patterns are
shown at a 6-yearly interval, starting in model year 600, over about one half-cycle of the oscillation;
the other half-cycle is similar but with anomalies of reversed sign.
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(a) (b)

(d)

Figure 6.60. Properties of the statistical mode, having a 44-year timescale, in the GFDL-R30
model. Potential density (kg m−3) and horizontal velocity (cm s−1) anomalies at 680 m depth in
the North Atlantic region. The patterns are shown at a 6-yearly interval, starting in model year
600, over about one half-cycle of the oscillation; the other half-cycle is similar but with anomalies
of reversed sign.
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Figure 6.62. (a) Difference in SST fields between maximum and minimum strength of the MOC
in the MOM3.1 model. (b) As in (a), but for the statistical 44-year mode in the GFDL-R30 model.
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Figure 7.3. Depth-longitude section of the near-equatorial temperature in the Pacific monthly
averaged over November 1996. This situation is close to annual-mean conditions for the Tropical
Pacific Kessler and McCreary (1995). The crosses in the figure indicate the measurement positions
of the TAO-buoys.
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Figure 7.4. SST and wind-stress climatologies for (a) April and (b) October. The contours give
the 1961–1990 SST climatology (contour interval 2◦C) from NCEP (National Centers for Envi-
ronmental Prediction), the arrows the 1961-1992 pseudo-wind stress climatology (in m2s−2) from
FSU (Florida State University, (Stricherz et al., 1997). Pseudo-wind stress has the direction of the
surface wind and the magnitude of the wind speed squared.

Figure 7.5. Seasonal cycle in 1993 of the monthly averaged equatorial SST (left panel) and zonal
wind (right panel). The figure is plotted through the graphics software and data made available
through the TAO realtime data-access site at http://www.pmel.noaa.gov/toga-tao/realtime.html.
Note that time is downwards.



Figure 7.6. Spectra of monthly mean SOI and NINO3 index. Shown are normalized periodograms
smoothed over 11 bins, that is over 0.11 cycles per year. Note that x-axis is logarithmic, and f∗S(f)
rather than S(f) is shown, in order that equal areas make equal contributions to the variance.

anomaly field of at the height of the 1997/1998
El Nino. Data from NCEP.˜
Sea-surface temperature anomaly field of
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Figure 7.7. Time-longitude diagrams of equatorial anomalies of zonal wind (left panel), SST
(middle panel) and in the right panel the depth of the 20◦ isotherm (a measure for the thermocline
depth). Data are for the period 1986-2000, and measured by the TAO/TRITON array. The plot is
made through data and software at http://www.pmel.noaa.gov/tao

Figure 7.8. Plot of the SST averaged over the box [120◦W, 80◦W] × [5◦S - 5◦N] in the Eastern
Pacific on a background of decadal variability, the latter obtained through a low-pass filter (from
Fedorov and Philander (2000)).
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Figure 7.17. Sketch to illustrate the thermocline feedback, the upwelling feedback and the zonal
advection feedback as indicated. In each case, a warm SST anomaly induces wind-stress anomalies.
(i) Thermocline feedback: the wind anomaly leads to changes in the thermocline slope, which in
turn induces — with constant background upwelling — an amplification of the SST anomaly. (ii)
Upwelling feedback: the wind anomaly leads to changes in the upwelling which in turn induces — in
a background stably stratified temperature field — an amplification of the SST anomaly. (iii) Zonal
advection feedback: the wind anomaly induces stronger zonal advection which, if the annual-mean
zonal SST gradient is negative, leads to amplification of the SST anomaly.

Figure 7.54. The Devil’s terrace as computed in Jin et al. (1996). Colors indicate the frequency
locked regimes, with chaotic regimes in between. Along a section for fixed μ, a Devil’s staircase, as
discussed in section 3.4 appears.
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