

Programming

Microsoft

Windows
Shell Script

®

®

™

This page intentionally left blank

JERRY LEE FORD, JR.

ANDY HARRIS, Series Editor

Programming

Microsoft

Windows
Shell Script

®

®

™

© 2004 by Premier Press, a division of Course Technology.
All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage or retrieval system without written
permission from Premier Press, except for the inclusion
of brief quotations in a review.

The Premier Press logo and related trade dress
are trademarks of Premier Press and may not be
used without written permission.

Microsoft, Windows, Notepad, and VBScript are either
registered trademarks or trademarks of Microsoft Cor-
poration in the United States and/or other countries.

All other trademarks are the property of their respective
owners.

Important: Premier Press cannot provide software support.
Please contact the appropriate software manufacturer’s
technical support line or Web site for assistance.

Premier Press and the author have attempted through-
out this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style
used by the manufacturer.

Information contained in this book has been obtained
by Premier Press from sources believed to be reliable.
However, because of the possibility of human or me-
chanical error by our sources, Premier Press, or others,
the Publisher does not guarantee the accuracy, ad-
equacy, or completeness of any information and is not
responsible for any errors or omissions or the results
obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an
ever-changing entity. Some facts may have changed
since this book went to press.

ISBN: 1-59200-085-1

Library of Congress Catalog Card Number: 2003094425
Printed in the United States of America

04 05 06 07 08 BH 10 9 8 7 6 5 4 3 2 1

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

SVP, Retail Strategic Market Group:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Aquisitions Editor:
Todd Jensen

Associate Marketing Manager:
Kristin Eisenzopf

Project Editor/Copy Editor:
Dan Foster, Scribe Tribe

Technical Reviewer:
Keith Davenport

Retail Market Coordinator:
Sarah Dubois

Interior Layout:
Danielle Foster, Scribe Tribe

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Keith Davenport

Indexer:
Sharon Shock

Proofreader:
Kim Benbow

To Alexander, William, Molly, and Mary.

Acknowledgments

A
number of individuals deserve credit for their work on this book. I especially
want to thank Todd Jensen, who served as the book’s acquisitions editor
and who has worked with me on numerous other writing projects. I also

want to thank the book’s project editor and copy editor, Dan Foster, for his guid-
ance and suggestions. Finally, I want to acknowledge the book’s technical editor
and CD-ROM developer, Keith Davenport, as well as everyone else at Premier Press
for all their hard work.

About the Author

J
erry Lee Ford, Jr. is an author, educator, and IT professional with over 15
years of experience in information technology, including roles as an
automation analyst, technical manager, technical support analyst, auto-

mation engineer, and security analyst. Jerry is a MCSE and has earned Microsoft’s
MCP and MCP+ Internet certifications. In addition, he has a master’s degree in Busi-
ness Administration from Virginia Commonwealth University in Richmond, Virginia.

Jerry is the author of 12 other books, including Learn JavaScript in a Weekend,
Learn VBScript in a Weekend, Microsoft Windows Shell Scripting and WSH
Administrator’s Guide, VBScript Professional Projects, and Microsoft Windows XP
Professional Administrator’s Guide.

He has over 5 years of experience as an adjunct instructor teaching networking
courses in Information Technology. Jerry lives in Richmond, Virginia, with his wife,
Mary, and their children, William, Alexander, and Molly.

Contents at a
Glance

Introduction xvii

CHAPTER 1 Introducing Windows Shell Scripting 1

CHAPTER 2 Interacting with the Windows Shell 25

CHAPTER 3 Windows Shell Scripting Basics 57

CHAPTER 4 Storing and Retrieving Information in Variables 87

CHAPTER 5 Applying Conditional Logic 123

CHAPTER 6 Creating Loops to Process Collections of Data 155

CHAPTER 7 Creating Procedures and Subroutines 201

CHAPTER 8 Debugging and Error Handling 241

APPENDIX A Windows Shell Scripting Administrative Scripts 297

APPENDIX B What’s on the CD-ROM? 341

APPENDIX C What Next? 349

Glossary 355

Index 365

Introduction ... xvii

Introducing
Windows Shell Scripting 1

Project Preview: The Knock Knock Joke 2

Overview of Windows Shell Scripting .. 4

What Can Shell Scripts Do? ... 6

Supported Microsoft Operating Systems 7

Alternatives to Windows Shell Scripting 7

The Windows Script Host ... 7

Third-Party Scripting Languages ... 10

Understanding the Windows Shell .. 10

Assembling Your First Windows Shell Script 13

Creating a Scripting Environment ... 15

Back to the Knock Knock Joke ... 17

Designing the Game ... 17

The Final Result ... 22

Summary ... 24

Interacting with
the Windows Shell 25

Project Preview: The Unpredictable Command Prompt 26

Command Shell Command Syntax ... 27

Starting Windows Shell Sessions .. 29

Working with the CMD Command... 30

Working with the START Command 32

Contents

1
C H A P T E R

2
C H A P T E R

x

C
o

n
te

n
ts

Internal vs. External Commands .. 34

How Windows Locates Commands 35

Using the PATH Command .. 36

Other Useful Windows Commands....................................... 39

Customizing the Windows Command Console 44

Customization Options ... 44

Back to the Unpredictable Command Prompt 48

Designing the Game ... 48

The Final Result ... 53

Summary ... 55

Windows Shell Scripting
Basics 57

Project Preview: The Fortune Teller Game................................ 58

More Scripting Basics ... 59

Documenting Your Scripts with Comments 60

Creating a Script Template ... 61

Mastering Command Redirection .. 63

Examining Data Input and Output ... 64

Using One Command’s Output
as Another Command’s Input .. 65

Generating Reports ... 66

Creating Error Logs... 68

Conditional Command Execution .. 69

Chaining Two Commands Together 69

Setting Up Conditional Command Execution 69

Grouping Commands ... 70

Back to the Fortune Teller Game .. 70

Designing the Game ... 71

Establishing the Execution Environment 71

Creating a Welcome Screen ... 72

Building the Story Line ... 73

Collecting the Player’s Question .. 74

3
C H A P T E R

C
o

n
te

n
t s

xi
Creating an Exit Process... 77

Generating Random Answers.. 77

Displaying the Fortune Teller’s Prediction 78

Replaying the Game ... 79

The Final Result ... 79

Summary ... 85

Storing and Retrieving
Information in Variables 87

Project Preview: The Story of Buzz the Wonder Dog 88

Passing Data to Scripts at Execution Time................................ 90

Handling Large Numbers of Arguments............................... 92

Handling Arguments That Include Blank Spaces 93

Working with Variables ... 93

Accessing Environment Variables ... 94

Creating, Modifying, and Deleting Script Variables 98

Back to “The Story of Buzz the Wonder Dog” 105

Designing the Game ... 105

Configuring the Windows Command Console 105

Building the Welcome Screen ... 106

Providing the Reader with Instructions............................... 107

Collecting Key Story Elements from the Reader 108

Using Variable Substitution to Write the Story 109

The Final Result ... 111

Summary ... 122

Applying Conditional Logic 123

Project Preview: The Guess a Number Game 124

Applying Conditional Logic to Control Script Execution 126

Working with the IF Statement .. 126

Providing for an Alternative Course of Action 129

Determining Whether a Variable Already Exists 129

4
C H A P T E R

5
C H A P T E R

xii

C
o

n
te

n
ts

Keeping an Eye Out for Errors ... 130

Checking the Windows Shell Version 132

Looking for Files and Folders... 133

Reversing the Logic of Conditional Tests............................ 136

Building Multi-Line IF Statements ... 139

Creating Advanced Conditional Logic Tests 140

Performing Different Kinds of Comparisons 142

Back to the Guess a Number Game .. 143

Designing the Game ... 143

The Final Result ... 149

Summary ... 154

Creating Loops to Process
Collections of Data 155

Project Preview: The Six-Million-Dollar Quiz 156

Creating Loops .. 158

Looping Through String Contents 160

Looping Through Command Output 162

Processing Collections of Files .. 164

Processing Collections of Folders 166

Reading Text Files ... 169

Iterating a Specified Number of Times 172

Back to the Six-Million-Dollar Quiz .. 174

Using Pseudo Code .. 174

Designing the Game ... 175

The Final Result ... 184

Summary ... 200

Creating Procedures
and Subroutines 201

Project Preview: The Rock, Paper, Scissors Game 202

Reorganizing Your Windows Shell Scripts 204

7
C H A P T E R

6
C H A P T E R

C
o

n
te

n
t s

xiii
Understanding Labels .. 204

Defining Subroutines.. 204

Improving Script Organization with Procedures 208

Setting Up Internal Procedures ... 208

Creating External Procedures .. 212

Using Procedures to Localize Variable Access 216

Tunneling Data Out of Your Procedures 217

Back to the Rock, Paper, Scissors Game 218

Using a Flowchart as a Script Development Tool 218

Translating Flowchart Design
into Script Requirements ... 221

The Final Result ... 230

Summary ... 239

Debugging and
Error Handling 241

Project Preview: The Tic-Tac-Toe Game 242

Understanding Windows Shell Script Errors 244

Syntax Errors ... 245

Run-Time Errors .. 245

Logical Errors .. 246

Examining Windows Shell Script Error Messages 246

Common Syntax Errors .. 246

A Typical Run-Time Error ... 249

A Typical Logical Error ... 249

Examining Different Ways of Dealing with Errors 250

Educating Your Users ... 250

Tracing Logic Flow within Scripts 251

Command Error Checking .. 254

Logging Error Messages .. 256

Displaying Error Messages .. 257

Creating Scripts That Return a Custom Exit Code 259

Other Things to Look Out For .. 260

8
C H A P T E R

xiv

C
o

n
te

n
ts

Insufficient Authority .. 261

Dealing with Scripts That Are Difficult to Read
and Understand .. 261

Working with Windows Commands.................................... 262

Managing Arguments and Variables 262

Handling Files and Folders... 263

Taking Precautions with Loops .. 263

Keeping Procedures Straight ... 264

Back to the Tic-Tac-Toe Game .. 264

Designing the Game ... 264

The Final Result ... 280

Summary ... 294

Windows Shell Scripting
Administrative Scripts 297

Working with Network Drives .. 298

Account Administration .. 305

Disk Defragmentation ... 312

Scheduling Script Execution .. 315

The AT Command ... 315

The Scheduled Task Wizard ... 320

Starting the Task Scheduler Service.................................... 321

Running the Scheduled Task Wizard 321

Creating a Chat Script ... 324

Adding a Graphical Interface ... 330

Working with Third-Party Applications 334

What’s on the CD-ROM? 341

Windows Shell Scripting Examples .. 342

Shell Scripting Editors .. 343

JGsoft EditPad Lite ... 344

JGsoft EditPad Pro .. 345

A
APPENDIX

B
APPENDIX

C
o

n
te

n
t s

xv

What Next? 349

Recommended Reading ... 350

Locating Internet Resources ... 351

Glossary ... 355

Index ... 365

C
APPENDIX

Letter from the
Series Editor

A
t some point, you’ve probably begun to want more control of your
computer. You may want to make programs act a little bit differently
than the default behavior, automate tedious tasks, or perform certain

jobs automatically. Ultimately, such tasks come down to programming. The pro-
gramming world can be very intimidating, with all the integrated environments,
complex languages, and dizzying variety of resources. Programming looks hard,
and, frankly, it looks boring.

In this book, Jerry Lee Ford will show you how to control your computer in amaz-
ing ways. You’ll learn some relatively easy tricks that will profoundly improve the
way you work with your computer, and you’ll learn the basics of the programming
art along the way. Windows shell scripting is not the most complex programming
environment, and that’s a major part of its charm. This reasonably clean language
is ideal for beginners precisely because it is so focused.

While shell scripting is extremely useful, that doesn’t mean learning about it has
to be dry and boring. Like all the books in this series, this book teaches through
simple game programming. Nobody’s going to use Windows shell scripting to write
the next immersive 3-D action game, but games can be an interesting way to learn
about the process of writing more traditional programs. Don’t worry, there will be
lots of practical examples as you go through this book.

If you’re new to programming, you won’t find a better place to start than this
book. If you’re already an experienced programmer, you’ll be amazed at how you
can use the skills in this book to leverage your abilities. Regardless, you’ll learn a
lot and have a good time doing it.

Andy Harris

For the Absolute Beginner Series Editor

W
indows shell scripting is a built-in scripting language found on modern
Windows operating systems. It provides the ability to create and run small
programs or Windows script files made up of Windows shell script state-

ments and Windows commands. Windows shell scripts are created as plain text
files that are saved with .bat or .cmd file extensions and run from the Windows
command prompt.

Windows shell scripts are often small files that can be created and tested within
minutes. In fact, many good Windows shell scripts are less than 10 or 15 lines long.
This makes it a perfect language for quickly automating Windows tasks. This also
makes Windows shell scripting a great first language to learn.

Unlike many modern program languages, Windows shell scripting is not object ori-
ented. In addition, it does not require you to first learn how to operate a complex
development environment. However, Windows shell scripting does have a complete
collection of statements—the elements that make up its programming language.
This allows first-time programmers to focus on learning the basics of program de-
sign without being burdened with the added requirements imposed by many other
programming languages.

Windows shell scripts also provide a way to automate complex tasks, especially those
prone to human error. Once created, Windows shell scripts can be shared with other
people, allowing you to distribute and share your work. Using Windows shell scripts,
you can access and manipulate Windows resources such as the Windows file system
and disk and printer resources, and you can even automate the execution of net-
work tasks. In addition, as this book will demonstrate, you can create Windows shell
scripts that automate and control the execution of all kinds of things. For example,
this book will show you how to create Windows shell scripts that

• Play computer games like Rock, Paper, Scissors and Tic-Tac-Toe.

• Copy and move files and folders.

• Establish connections to network resources such as network disk drives
and folders.

• Create text reports and log files.

Introduction

xviii

I n
tr

o
d

u
c
t i

o
n

• Execute Windows utilities such as the Windows Disk Defragmenter.

• Create user accounts and administer group account membership.

• Control third-party applications such as WinZip.

Why Windows Shell Scripting?

Windows shell scripting is a great language for developing small scripts that auto-
mate commonly performed tasks. At the same time, you can use it to create some
incredibly complex scripts. However, in most cases you will find that most
Windows shell scripts are not very large. Often Windows shell scripts are only a
fraction of the size of programs written in higher-level languages such as Visual
Basic and C++. This reduces complexity and results in shorter development time. It
also makes Windows shell scripting a great tool for rapid development, allowing
you to quickly create and test scripts and then move on to other work.

Windows shell scripting makes an excellent first programming language. As far as
programming languages go, it is straightforward and easy to learn. Yet, using
Windows shell scripting you can learn even the most complex programming con-
cepts. All that you need to begin creating Windows shell scripts is a plain text
editor such as Windows Notepad.

By learning Windows shell scripting, you will begin to build a foundation for learn-
ing other programming languages. Once you have mastered Windows shell script-
ing you may wish to tackle other scripting languages such as VBScript or JScript,
both of which can be used to perform advanced shell scripting on Windows com-
puters. You may also want to use Windows shell scripting as a jumping off point
for more advanced object-oriented programming languages like Visual Basic and
C++. The bottom line is that learning how to use Windows shell scripts will give
you a foundation that will facilitate learning other programming languages.

Who Should Read This Book?

I have designed this book to teach you how to become a programmer using Windows
shell scripting. A previous programming background is not required. However, you
will need a basic understanding of computers in general and a good overall working
knowledge of at least one Microsoft operating system.

So whether you are a first-time programmer looking for a good language to learn as
you begin your programming career or you are looking to quickly learn a second
programming language, this book can help you. In addition, I think you will find
that this book’s games-based approach will help to keep things fun as you learn.

In
t ro

d
u

c
tio

n
xix

What You Need to Begin

To use this book effectively, you will need a number of things. First, you will need
a Windows operating system that supports Windows shell scripting. These operat-
ing systems include

• Windows NT 4.0

• Windows 2000

• Windows XP

• Windows 2003

You will also need an editor that supports the creation of plain text files. As a
starter editor, you can begin working with the Windows Notepad text editor. How-
ever, over time you will probably find that Notepad is rather limited, and you
will want to use a more advanced editor that supports features like syntax color-
coding and advanced search-and-replace features. To help you out, I have included
two excellent editors on this book’s companion CD-ROM. To learn more about these
two editors, check out Appendix B, “What’s on the CD-ROM?”

How This Book Is Organized

I wrote this book based on the assumption that you would read it sequentially,
from beginning to end. If this is your first programming experience or if you feel
that you need a programming refresher, I suggest that you read the book in this
manner. If you are a veteran programmer and intend to learn Windows shell script-
ing as an additional language, you may want to skip around and read topics that
are of the most interest to you.

The first part of this book introduces you to Windows shell scripting. It provides
an overview of Windows shell scripting and the Windows command prompt.

The second part of this book teaches you the basics of Windows shell script devel-
opment. It covers how to display script output and how to use comments and vari-
ables. It also covers the shell script statements that provide the ability to apply
conditional logic and establish loops.

The third part of this book focuses in on a variety of advanced topics. Here I’ll show you
how to improve the organization of your Windows shell scripts using procedures and
subroutines. I’ll also go over the steps involved in debugging and handling script errors.

The final part of this book contains the book’s appendixes. Here you will find a
collection of real-world sample scripts, information about the materials found on
the book’s CD-ROM, and information about places where you can go to continue
your Windows shell scripting education.

xx

I n
tr

o
d

u
c
t i

o
n

A detailed breakdown of the information you will find in this book is outlined below.

• Chapter 1—Introducing Windows Shell Scripting. This chapter explains what
Windows shell scripting is and why it is an excellent first programming lan-
guage to learn. This chapter provides a brief history of Windows shell script-
ing as well as a comparison to Microsoft’s other scripting technology, the
Windows Script Host, and explains the differences between these two script-
ing solutions. This chapter closes by teaching you how to write your first Win-
dows shell script by showing you how to develop your first Windows shell
script game, the Knock Knock joke.

• Chapter 2—Interacting with the Windows Shell. This chapter provides you
with a review of the Windows shell and explains how to work with it (e.g., start-
ing a new shell, issuing commands, and closing the shell). The chapter goes on
to discuss how to work with the Windows command prompt and explains basic
command syntax. Specific commands that affect the appearance of the
Windows command console are then reviewed. This will lead into a discussion
on command console customization. Finally, the chapter concludes by showing
you how to write a script called the Unpredictable Command Prompt.

• Chapter 3—Windows Shell Scripting Basics. In this chapter, I will provide you
with a review of basic Windows shell scripting techniques, including how to
control the display of output and how to format the display using blank lines.
I will discuss the importance of creating a documentation template. This
chapter will also show you how to control shell input and output and how to
redirect command output in order to create report and log files. This chapter
will also show you how to create the Fortune Teller game, which answers ques-
tions asked of it by the player.

• Chapter 4—Storing and Retrieving Information in Variables. This chapter
shows you how to write scripts that accept and process argument input at run
time. You will also learn how to retrieve information about your computer
from system variables. You will then learn about the rules that apply to the
creation of variables. This chapter will also demonstrate different ways to ma-
nipulate the value of numeric variables as well as how to access all or a por-
tion of text stored in string variables. The chapter will end by teaching you
how to create “The Story of Buzz the Wonder Dog” game, which creates a cus-
tomized story based on information it collects from the user.

• Chapter 5—Applying Conditional Logic. In this chapter, you will learn how to ap-
ply conditional logic in your scripts. This will enable you to create scripts that can
collect and test the value of data and then alter the way the script executes de-
pending on the value of the data. You will also learn how to develop more compli-
cated logic by nesting one logical test within another. This chapter concludes by

In
t ro

d
u

c
tio

n
xxi

introducing the Guess a Number game, in which the player is challenged to guess
a number between 1 and 32,000 using the fewest possible guesses.

• Chapter 6—Creating Loops to Process Collections of Data. This chapter covers
the creation of loops as a means of processing large amounts of data. It will
demonstrate how to use loops to process string contents, command output,
and file and folder contents. This chapter also introduces you to the use of
pseudo code as a tool for establishing a high-level script design. This chapter
ends by teaching you how to create the Six-Million-Dollar Quiz game. In this
game, the player is presented with a series of quiz questions that, once an-
swered, are graded and used to generate a game score card report file.

• Chapter 7—Creating Procedures and Subroutines. This chapter introduces
you to the use of flowcharts as a design tool. It also shows you how to execute
one script from within another script. The chapter also covers the use of pro-
cedures and subroutines, which enable you to improve script organization
while also reducing complexity. This chapter concludes by covering the devel-
opment of the Rock, Paper, Scissors game.

• Chapter 8—Debugging and Error Handling. In this final chapter, I’ll intro-
duce you to a number of different topics. I’ll give you tips on how to develop
your script in a modular fashion and how to test your scripts one module at a
time. You’ll also learn how to test intermediate results during script develop-
ment and testing. Things constantly change on a computer system, and as a
result your scripts may break or experience problems over time. To deal with
these situations, I’ll provide you with some basic debugging techniques and
give you advice that will help you to detect and deal with script errors. This
chapter will end by stepping you through the development of one final game
project called Tic-Tac-Toe.

• Appendix A—Windows Shell Scripting Administrative Scripts. This appendix
provides you with a collection of practical examples that demonstrate the use
of Windows shell scripting in real-world situations. I included this appendix
to assist you in making a transition from the book’s game-based approach to
real-world script development.

• Appendix B—What’s on the CD-ROM? In this appendix, I’ll supply you with
information about the sample scripts that you will find on the book’s accom-
panying CD-ROM. I’ll also provide you with a freeware copy of the EditPad Lite
text editor and a shareware copy of the EditPad Pro text editor along with a
brief overview of what these two editors can do.

• Appendix C—What Next? In this appendix, I give you advice on how to continue
your Windows shell scripting education. I’ll include references to other books
that I think you will find useful, and I’ll also provide you with information about

xxii

I n
tr

o
d

u
c
t i

o
n

HINT

TRAP

TRICK

DEFINITION

a number of Web sites where you’ll find more information, including plenty
of free sample scripts that you can download.

• Glossary. This unit provides you with a glossary of the key terms used
throughout the book.

This book uses computer game development as a means of teaching you how to
program using Windows shell scripting. Each game you encounter will be a little
more complex than the one before it. In the first few chapters, you’ll see scripts
that will include elements not yet covered in that point of the book. For these
scripts, you’ll need to keep reading with the understanding that everything you
see will eventually be explained. Meanwhile, I will provide you with as much infor-
mation as I can without overwhelming you in the early stages of the book.

Conventions Used in This Book

To make it easier for you to read and work with, this book uses a number of con-
ventions. These conventions are described below.

As you read along, I’ll offer suggestions for different or better ways of doing things

that will help make you a better and more efficient programmer.

I’ll also point out places where it’s easy to make mistakes, and I’ll give you advice

for avoiding them.

Whenever possible, I’ll share shortcuts and techniques that will make things easier

for you.

To aid your understanding, I’ll define key terms along the way. (You can also refer to

the glossary in this book for additional information.)

IN THE REAL WORLD

Throughout the book, I’ll stop along the way to point out how the knowledge and

techniques you are learning can be applied to real-world scripting projects.

E X E R C I S E S

At the end of every chapter, I’ll include a collection of small project suggestions that

you can do to continue building on the skills you’ve learned.

1

W
indows shell scripting is one of two scripting solutions provided by Microsoft
for developing small programs, or scripts, that automate a variety of tasks on
Windows computers. (The other scripting solution is known as the Microsoft Win-

dows Script Host, or WSH.) Scripts provide a means of developing small utility programs that
automate mundane or complex tasks with a minimal investment of time and effort.

Windows shell scripting provides a way to perform tasks on Windows computers with-
out requiring you to wade though the array of windows and dialogs boxes that make
up the Windows graphical user interface, or GUI. Scripts help to eliminate typing mis-
takes or other errors that often occur when you perform a task manually. Therefore,
scripts not only help you work faster but more accurately as well, especially when
you’re working on tasks comprised of a large number of steps. In this chapter, I’ll intro-
duce you to Windows shell scripting and provide you with the background information
you’ll need for the rest of the book. In addition, I’ll show you how to develop your first
Windows shell script game.

Specifically, you will learn

• The capabilities of Windows shell scripts

• The history of Windows shell scripting

• The differences between Windows shell scripts and the Windows Script Host

• How to configure the script development and testing environment

Introducing
Windows Shell

Scripting

C H A P T E R

2
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

DEFINITION

FIGURE 1.1

The Knock Knock
game begins by

displaying a Knock
Knock message.

Project Preview: The Knock Knock Joke

This chapter, like all other chapters in this book, concludes by showing you how to
develop a computer game using Windows shell scripting. The game you will learn
to write in this chapter is called the Knock Knock joke. By going through the steps
required to develop this game, you will learn the basic mechanics involved in cre-
ating and running Windows shell scripts.

The Knock Knock joke is a simple script as far as game-based Windows shell scripts go.
You will run it by opening the Windows command prompt, typing in the name of the
script, and pressing the Enter key. The script will respond by displaying the opening
Knock Knock message, as shown in Figure 1.1. The user must then type “Who is there?”
(including the opening and closing quotation marks) and press Enter. The script will
respond by displaying the reply of Orange. The user must then type “Orange Who?” as
shown in Figure 1.2.

The Windows command prompt appears, by default, in the form of a drive letter

followed by a colon, the backslash character, and then the “greater than” symbol

(for example, C:\>). The command prompt accepts text input that is passed to the

operating system for processing.

Finally, the script displays the joke’s punch line as shown in Figure 1.3. If the player
makes a typo when entering one of the required responses to the joke, one of the
two messages shown in Figure 1.4 and 1.5 will be displayed.

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

3

FIGURE 1.2

The game prompts
the player to

respond to the
second part of

the joke.

FIGURE 1.3

The game
delivers the joke’s

punch line.

FIGURE 1.4

The game notifies
the player of any
incorrect input.

FIGURE 1.5

With incorrect
player input, the

game may
prematurely exit and

generate an error
message.

4
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Don’t worry about trying to understand every line of code that you’ll type into the
script; you’ll learn what everything means as you read through this book. The
important thing to learn in this chapter are the steps involved in creating and
saving your first script. By completing this script, you will prepare yourself for the
more advanced programming concepts introduced in later chapters.

Overview of Windows Shell Scripting

In the very early days of Windows operating systems, there was no point-and-click
graphical user interface. Everything was done via the keyboard by typing in com-
mands at the Windows command prompt. This meant that users had to memorize
all kinds of commands in order to use their computers. Worse still, most Windows
commands could be entered using a number of variations, making it virtually
impossible to memorize all possible commands. Naturally, this meant that people
spent a lot of time looking up commands. Often users found that they needed to
type the same set of commands over and over again. To make this easier and to
eliminate typing errors, users and administrators created batch files. A batch file
is a plain-text file made up of the same Windows commands that you type in at
the Windows command prompt. Batch files have a .bat file extension. They are
executed by typing in their name at the command prompt and pressing the Enter
key. The operating system then executes each command in the batch file, one at a
time, starting at the beginning of the file.

In the early 1980s, Microsoft introduced its graphical user interface and most us-
ers happily left behind all memory of Windows commands and the command
prompt. However, batch files still remained valuable tools for automating the ex-
ecution of collections of commands and utilities, and were especially useful to
power users and administrators.

Batch files remained limited to sequential Windows command execution. The only
alternatives available to batch files were manually executing commands at the
Windows command prompt, purchasing an application written to perform equiva-
lent set tasks, or writing a custom program using an advanced programming lan-
guage such as C or C++ to create a new custom application capable of performing
the required tasks.

As I’m sure you must be thinking, none of these three options was very practical.
They required either too much money or more time than users and administra-
tors were willing to spend. Finally, in the early 1990s, Microsoft introduced Win-
dows NT. This Microsoft operating system featured a built-in scripting language
known as Windows shell scripting. Windows shell scripting differed from old-style

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

5
batch files in that it featured a complete set of programming statements, thus
allowing for the development of scripts that included support for conditional logic,
iterative logic, and the storage and retrieval of data using computer memory.

The term conditional logic refers to a script’s ability to examine data and then adjust

what it does based on the results of a conditional analysis.

The term iterative logic refers to a script’s ability to repeatedly execute a series of

steps over and over again.

A statement is a line of code. Most statements fit on a single line; however, lengthy

statements can be spread over multiple lines.

Microsoft has since added support for Windows shell scripting to all Windows
operating systems that have been built on Windows NT technology (e.g., Windows
2000, XP, and 2003).

While the collection of programming statements that make up the Windows shell

script language has remained essentially the same over the years, a few of the state-

ments have been modified to extend their functionality. Rather than attempt to iden-

tify and examine differences in Windows shell scripting statements between each

of the different Windows operating systems, this book uses Windows XP as its as-

sumed development platform.

If you plan on writing scripts that will be executed by older Windows operating

systems, you should retest the scripts on each operating system to make sure that

they work as you expect them to. In addition, you can check any Windows command’s

syntax to see what syntax it supports on a given operating system by accessing the

Windows command prompt and typing the name of the command followed by a space

and the word HELP.

Windows shell scripts are saved with a .bat (“batch”) or .cmd (“command”) file
extension. This way, when the operating system is asked to run them, it will know
to execute them using the Windows shell.

The .cmd file extension is another file extension that Windows associates with

Windows shell scripts.

HINT

DEFINITION

DEFINITION

DEFINITION

DEFINITION

6
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

What Can Shell Scripts Do?

Windows shell scripts can accomplish any task that can be completed from the
Windows command prompt. Despite continual efforts to improve the Windows
graphical user interface and to make things easier for users by providing only a
complete point-and-click experience, Microsoft has continued to update and ex-
pand the Windows command line functionality (e.g., each new Windows operat-
ing system adds new commands and refines existing commands).

Microsoft also adds command line access to many of its utility programs, allowing
them to be accessed and controlled by scripts. For example, the Defragmenter util-
ity (which reorganizes files stored on your disk drive for more efficient storage)
can be run from the Windows graphical user interface on Windows XP by select-
ing Start, All Programs, Accessories, System Tools, and then Disk Defragmenter. Alterna-
tively, you can execute this utility program from within a Windows shell script.
For example, by typing defrag C: /f you can automate the defragmentation of your
computer’s C drive using this utility.

Windows shell scripts can be used to automate all of the following categories of tasks:

• Complicated tasks. This category of scripted tasks includes any tasks that are
highly subject to error when performed manually, such as the administration
of system resources like disk drives and printers.

• Repetitive tasks. These scripted tasks include any tasks that must be per-
formed over and over again, such as the deletion of certain file types from spe-
cific folders on a regular basis.

• Lengthy tasks. These scripted tasks include any tasks that take too long to per-
form manually, such as the creation of a few hundred new user accounts.

• Scheduled tasks. These scripted tasks include any tasks that must be run dur-
ing off hours, at times when users and administrators are not using their
computers (such as the Disk Defragmenter utility).

You can develop Windows shell scripts that perform an assortment of different
tasks on Windows computers. Once completed, these scripts will help you work
faster and be more productive. For example, using Windows shell scripts, you can

• Collect and display information about your computer

• Manage Windows services

• Manage shared folders and drives

• Automate the creation of new user accounts

• Create output files and reports

• Process data stored in input files

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

7
• Create and manage scheduled tasks

• Manage local and network printers

• Set up connections to network folders and drives

• Execute Windows commands or command line utilities

Supported Microsoft Operating Systems

As mentioned previously, Windows shell scripting is supported on Windows NT,
2000, XP, and 2003. However, other Microsoft operating systems do not support it.
These other operating systems include Windows 95, 98, and Me. Of course, you can
still use old-style batch files to automate the execution of small collections of com-
mands on the operating systems, but the ability to add programmatic logic on the
level of Windows shell scripts is still missing. If you need to develop scripts for
these operating systems, you will need to look at other alternative scripting lan-
guages, which I’ll cover in the following sections.

Alternatives to Windows Shell Scripting

While Windows shell scripting may be the easiest scripting language to learn, there
are plenty of alternative scripting languages available from Microsoft and other
third-party software developers. Below, I briefly discuss some of these other script-
ing languages. However, if you are new to programming, I recommend that you
first master Windows shell scripting before you consider moving on and trying to
learn the somewhat more complicated scripting languages.

The Windows Script Host

The Windows Script Host, or WSH, provides Microsoft operating systems with an
advanced script execution environment. Using WSH, you can develop scripts that
can execute on any Windows operating systems starting with Windows 95. This
means that unlike Windows shell scripts, which run only on Windows NT, 2000,
XP, and 2003, WSH scripts can also run on computers that use Windows 95, 98, or
Me (provided that WSH is installed on these computers). The WSH runs as an add-
on to the Windows operating system and can be enabled or disabled. By default,
WSH is installed and enabled on Windows 2000, XP, and 2003.

The term execution environment refers to the grouping of resources that scripts re-

quire in order to execute, such as a script interpreter that translates script state-

ments into instructions that the computer can execute.

DEFINITION

8
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

WSH Advantages and Disadvantages

When deciding whether it is better to use Windows shell scripting or the WSH to
automate a task, there are a number of criteria to consider. WSH provides a more
comprehensive execution environment with direct access to many resources that
are not directly accessible to Windows shell scripts. For example, a WSH script can
write messages to Windows event logs or read and write to the Windows registry.
Therefore, if your scripts will need to access these resources, using the WSH may
make more sense. However, a great many tasks never require access to such re-
sources, thus negating these WSH advantages.

The Windows application event log is a log file maintained by the Windows NT,

2000, XP, and 2003 operating systems where application errors and messages are

recorded for later audit and review.

The Windows registry is a special built-in database that is a part of all Windows

operating systems, starting with Windows 95, where configuration information is

stored regarding system, application, hardware, and users settings.

To use the WSH you need to know how to write scripts using at least one scripting
language, such as VBScript or JScript. You also have to learn how to work with the
WSH execution environment.

Typically, it makes more sense to use the WSH to create scripts when

• You have expertise with another scripting language such as VBScript or
JScript and need access to a programming feature provided by these lan-
guages only

• You need to run your scripts on Windows operating systems other than Win-
dows NT, 2000, XP, and 2003

DEFINITION

DEFINITION

IN THE REAL WORLD

If you have access to the Windows Resource Kit for the operating systems for which

you are developing scripts, you can often use command line utilities provided by the

Resource Kit to indirectly access system resources. For example, using the LOGEVENT
command line utility you can write to the Windows application event log from within

a Windows shell script. Similarly, using the REG command line utility, you can access

and change information stored in the Windows registry. To learn more about Win-

dows Resource Kits, visit www.microsoft.com/windows/reskits/default.asp.

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

9
• You cannot find a Windows or Resource Kit command or command line util-

ity that can perform a specific task

• You need to communicate directly with users via graphical pop-up dialogs

• You need to work directly with other applications such as Microsoft Word
or Excel

• You need to perform advanced file and folder administration

In contrast, you may want to work with Windows shell scripting when

• You are writing a script that will run on Windows NT, 2000, XP, or 2003

• You know of a command or command line utility that can perform the
desired task

• You do not have expertise with a WSH-compatible scripting language

• You want to automate the execution of Windows command or command
line utilities

• You want to execute a collection of Windows commands repeatedly

WSH Complexities

In order to write scripts that work with the WSH, you must first learn how to write
scripts using a WSH supported scripting language. By default, the WSH provides
support for VBScript and JScript. VBScript is a scripting language that consists of a
subset of the Visual Basic programming language. JScript is Microsoft’s WSH-com-
patible version of Netscape’s JavaScript scripting language. In addition, you can
use third-party WSH-compatible scripting languages that allow the WSH to run
scripts written in the Perl, Python, and REXX scripting languages.

Unlike Windows shell scripts, these other scripting languages involve learning how
to use language-specific statements and commands, many of which are not very
Windows like. Therefore it takes longer to master these languages. In addition to
learning how to develop scripts using a different scripting language, you must also
learn how to work with the WSH object model in order to develop WSH scripts. The
WSH core object model provides access to Windows resources such as printers, drives,
files, and folders by representing them as objects that scripts can access and ma-
nipulate programmatically. The WSH object model is complex and requires a great
deal of time and effort to master. First-time programmers are better off learning
how to write Windows shell scripts. The Windows shell scripting language uses fa-
miliar Windows commands and does not require mastery of an object model, thus
allowing first-time programmers to focus on learning core programming concepts

10
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

and logic without the requirement of learning advanced concepts. In addition, Win-
dows shell scripting provides an excellent platform for jumping over to other more
advanced scripting and programming languages.

Third-Party Scripting Languages

In addition to Windows shell scripting and the WSH, you can also develop scripts
on Windows based computers using any of a number of third-party scripting lan-
guages. One scripting language that you could use is Perl. Perl stands for Practical
Extraction and Reporting Language. Perl started out as a scripting language for
the UNIX operating system where it was originally used to read and extract infor-
mation from text files and to create new reports.

Compared to Windows shell scripting, Perl is a complicated scripting language to
master, especially as a first language. Over the years, support for Perl has been added
to most major operating systems. Perl can be used as a WSH-compatible scripting
language, allowing you to create Perl scripts that leverage the strengths of the WSH.

Another scripting language with a UNIX heritage that has been ported to Windows
is Python. Python was named after the comedic troupe Monty Python. Python en-
joys enormous support among Linux users and is generally considered easier to learn
than Perl. A version of Python is available that is compatible with the WSH. However,
compared to Windows shell scripting, it is still a difficult first language to master.

Another scripting language available to Windows users and administrators is REXX.
REXX stands for Restructured Extended Extractor language. REXX was originally
developed as a mainframe scripting language. IBM later made it the built-in script-
ing language on its OS/2 operating system. Today, there are numerous versions of
REXX available for Windows.

Understanding the Windows Shell

To become an effective Windows shell script programmer, you must become inti-
mately familiar with the Windows shell. The Windows shell is a text-based inter-
face to the Windows operating system as opposed to the Windows desktop, which
is a GUI-based interface. Figure 1.6 depicts the Windows shell and its relationship
to the operating system and the user.

The Windows shell is accessed through the Windows command console. The Win-
dows shell accepts user commands and translates them into a format that can be
processed by the operating system. It then displays any output returned by the
operating system back in the Windows command console.

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

11

Users type commands at the Windows command prompt. To communicate with
the Windows shell, you must open up a Windows command console (as shown in
Figure 1.7) by clicking on Start, All Programs, Accessories, and then Command Prompt.

Windows Shell

Windows
Operating

System

FIGURE 1.6

The Windows shell
accepts input from

the Windows
command console

and translates it into
a format that can be

used by the
operating system.

You can also start up a new Windows command console session by clicking on

Start, Run, and then typing CMD and clicking on OK.

By default, the Windows command console is set up to display data that is 80
characters wide and 25 lines tall. However, you can modify the height and width of
the Windows command console to suit your own preferences. At the top of the
console, you’ll see a blinking underscore character. This is the command prompt’s
way of telling you that it is ready to receive input.

I’ll show you how to configure the Windows console in Chapter 2, “Interacting

with the Windows Shell.” If you can’t wait to see how it’s done, then jump ahead

to Chapter 2 and read “Customizing the Windows Command Console.”

FIGURE 1.7

The Windows
console provides

access to the
Windows command

prompt.

HINT

HINT

12
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

To send a command to the Windows shell for processing, type it in at the com-
mand prompt and press the Enter key. For example, to display the contents of the
current working directory, type DIR and press Enter.

The Windows shell then translates the DIR command into a format that the operat-
ing system can understand. The operating system processes the command by put-
ting together a list of the contents of the current working directory, which it then
passes back to the Windows shell. The Windows shell displays the listing in the
Windows command console. It then redisplays the command prompt in order to
allow you to type additional command input as demonstrated below.

C:\Documents and Settings\Jerry Ford>dir

 Volume in drive C is IBMDOS_6

 Volume Serial Number is 2B6A-58F8

 Directory of C:\Documents and Settings\Jerry Ford

11/10/2003 01:29 PM <DIR> .

11/10/2003 01:29 PM <DIR> ..

11/10/2003 01:38 PM <DIR> My Documents

11/10/2003 01:38 PM <DIR> Favorites

11/10/2003 01:02 PM <DIR> Desktop

11/10/2003 01:02 PM <DIR> Start Menu

12/03/2003 11:47 PM <DIR> WINDOWS

 0 File(s) 0 bytes

 7 Dir(s) 153,255,936 bytes free

C:\Documents and Settings\Jerry Ford> _

The term current working directory refers to the Windows folder that the Windows

command console is currently focused on. By default, Windows XP sets the current

working directory to the user’s own Documents and Settings folder.

DEFINITION

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

13
Assembling Your First
Windows Shell Script

Now let’s examine the steps involved in creating, saving, and executing a Windows
shell script. The best way to learn how to do this is by working though an example.
The example that I’ll show you will only be one line long; however, regardless of the
size of your scripts, the same process is used each time to create, save, and run them.

First, begin by opening your editor. For example, to use Windows Notepad you would
click on Start, All Programs, Accessories, and then Notepad. Notepad opens and displays
an empty file. Type the following line into Notepad (as shown in Figure 1.8).

Echo Hello World!

FIGURE 1.8

Using Notepad
to create your
first Windows

shell script.

IN THE REAL WORLD

Unlike many programming languages, Windows shell scripting does not require

you to first learn how to use a complicated GUI-based development environment to

write scripts. Instead, you can create Windows shell scripts using any editor that

can save your files as plain text. However, there are advantages to using GUI-based

script editors. These advantages include

• Statement color-coding of Windows shell script keywords to make code

more readable

• Line numbering to make locating a specific line easier

• Advanced find and replace capabilities

• Automatic indenting and outdenting of statements to make code more readable

• The ability to manage multiple scripts as a single project

Fortunately, a number of third-party text and script editors include these advanced

features. I have provided two excellent editors on this book’s companion CD-ROM.

To learn more about them, see Appendix B, “What’s on the CD-ROM?”

14
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Next click on File and then Save. The Save As dialog appears. Type Hello.bat in the File
name field, set the location where the file is to be saved as C:\ and click Save. You
should now have a Windows shell script stored on your computer’s hard drive. Now
let’s run the script and see what happens. First click on Start, All Programs, Accesso-
ries, and then Command Prompt. When the Windows console appears, type CD \ and
press the Enter key. This command changes your current working directory to the
same location where you saved the script. Now type the following command and
press Enter.

Hello.bat

You should see the following output displayed in the Windows console.

C:\>Echo Hello World!

Hello World!

C:\>

The first line of output shows the Windows shell script statement that is being
executed. The second line shows the results of the statement once it has been ex-
ecuted. Finally, the third line shows the Windows command prompt, indicating
that the Windows shell is ready for your next command.

If you created and ran this script for yourself and it did not run as described above,
then you probably made a typo. Reopen your script file and double-check its con-
tents. Once you have the script running as advertised, you can close the Windows
command console like any other Window by clicking on the X icon in the upper
right hand corner of the Window or by clicking on the command prompt icon
displayed in the upper left hand corner and selecting Close.

A quick way to close the Windows command prompt is to type EXIT and press Enter.

By default, Windows shell script automatically displays each statement in the script
just before executing it. The effect of this behavior is that output displayed when
the script is run may be intermingled with script statements, resulting in some
very unattractive output. You can view this behavior even when running the one-
line script above. Fortunately, you have the ability to suppress the display of Win-
dows shell script statements when your scripts execute such that only the script’s
output is displayed. To accomplish this trick, add the following statement to the
beginning of your script on a separate line, and then save and run it again.

@Echo off

HINT

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

15
The next effect of adding the statement as the first line in your Windows shell
scripts is a much cleaner output. For example, if you run the Hello.bat script after
making the change, you should see the following output:

C:\>hello

Hello World!

C:\>

You may have noticed that I ran the hello.bat script by simply typing hello and not

hello.bat. This works because when you type in a file name without specifying its

file extension, the Windows shell automatically looks for an executable file with

that same file name and executes the first one that it finds. I’ll go over how the

Windows shell knows which files are executable in Chapter 2, “Interacting with

the Windows Shell.”

As you can see, the script displayed only its output. As your scripts grow in size, you
will appreciate the ability to prevent the display of script statements in this manner.

Creating a Scripting Environment

In the previous script example, you saved your first Windows shell script in C:\>.
As a general rule, you should avoid storing any files, including scripts, in this loca-
tion. Instead, I recommend that you create a folder specifically for storing your
scripts. For example, when I was developing the scripts for this book, I wanted to
store all my Windows shell scripts in a convenient place for easy execution. So I
created a folder called C:\Scripts and stored all my scripts in it. You should create
the same folder on your computer before you work through the following example.

To further simplify the execution of Windows shell scripts, I added a shortcut to
my Windows desktop for the Windows command prompt. I accomplished this task
as follows.

1. Right-click on an open area of the Windows XP desktop and select New fol-
lowed by Shortcut.

2. The Create Shortcut wizard opens. Type cmd.exe in the Type the location of the
item field and click on Next.

3. Type Command Prompt in the Type a name for this shortcut field and then click
on Finish.

You should now see a shortcut on your desktop called Command Prompt. Double-
click on it to open a new Windows console and access the Windows command

TRICK

16
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

prompt. By default, the working directory will be the Windows folder. Type CD and
press Enter, and then type CD Scripts to switch over to the C:\Scripts folder. At this
point you can execute any script that you save in this folder by simply typing its
name at the command prompt.

You can make things a little easier by configuring your new shortcut to automati-
cally switch to C:\Scripts as it opens a new Windows console. The following proce-
dure outlines the steps involved in performing this task.

1. Right-click on the new shortcut you just created and select Properties. The
cmd.exe Properties dialog appears.

2. Type c:\scripts in the Start In field, as shown in Figure 1.9.

FIGURE 1.9

Configuring the
shortcut to make the
C:\Scripts folder the

default starting
location.

FIGURE 1.10

Testing your new
command prompt

shortcut.

Add c:\scripts to the Start In field

3. Click on OK.

Now when you double-click on the shortcut, the Windows console that opens will
automatically set its focus to c:\scripts (Figure 1.10).

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

17
Back to the Knock Knock Joke

Now let’s turn our attention back to the chapter’s main project, the Knock Knock
joke. Through the development of this script, you will learn how to create a script
that interacts with the player by displaying messages, collecting player responses,
and displaying additional information based on the player’s responses. This basic
interaction forms the basis of all Windows shell scripts games.

Designing the Game

The first step in computer game development is to outline the game’s design. The
Knock Knock joke game is relatively simple, so a lot of up-front design is not re-
quired. Just like a regular Knock Knock joke, the game will begin by displaying the
message Knock Knock! in the Windows console. It will then wait for the player to
respond by typing “Who is there?” The player must type the response exactly as
shown, including the quotation marks and question mark character. Once the player
types the required response and presses the Enter key, the game will display the
message Orange! and wait for the player to type “Orange who?” Once the player types
in the second response correctly, the game will display its punch line and termi-
nate, redisplaying the Windows command prompt.

This project will be completed in six steps, as outlined below.

1. Create an initial blank script file and name it KnockKnock.bat

2. Configure the Windows command console’s title bar and color scheme

3. Format the display with blank lines

4. Collect player responses

5. Confirm that the player provided valid input

6. Display the joke’s final punch line

Starting the Script Development Process

The first step in creating the Knock Knock game is to create an empty file named
KnockKnock.bat and save it in the C:\Scripts folder. The following procedure outlines
the steps involved in performing this task using the Windows Notepad text editor.

1. Click on Start, All Programs, Accessories, and then Notepad. The Notepad text
editor appears.

2. Click on File and then Save. The Save As dialog appears. Type KnockKnock.bat
into the File name field and specify c:\scripts as the location where the file
should be saved.

3. Click on Save.

18
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Configuring the Execution Environment

At this point you should be looking at an empty Notepad file. Type in the following text.

@ECHO off

TITLE "KnockKnock.bat - The KnockKnock joke game!"

COLOR 0E

The first statement prevents the display of script statements during execution,
making the script’s output more presentable. The second statement uses the Win-
dows Title command to display the text KnockKnock.bat – The Knock Knock joke game! in
the Windows console’s title bar when the script is executed. The last statement
uses the Windows COLOR command to display all text in yellow when the script is
run. At this point, don’t worry about the specifics of any of these commands or
their syntax. I’ll go over them in detail in Chapter 2. Just accept my somewhat
high-level explanations of how things work and keep writing the script while fo-
cusing on the overall process you are going through.

Formatting the Display

The default behavior of the Windows command console is to display each line of
output immediately after the command that generated it. For example, if you en-
tered two commands, the Windows console would display the first command and
then its output, followed by the second command and its output. This can make
for a very cluttered display. To format your script’s output and make it easier to
interact with, you can do a couple of things. First, you can use the CLS command to
clear the Windows command console, thus displaying a blank display. You can
then use the ECHO statement to display blank lines to the Windows command con-
sole and control the location where text will be displayed. For example, the follow-
ing statements clear the Windows command console and then display 10 blank
lines. This way, the next line of text displayed will appear in the middle of the
Windows command console. Note that the period following the ECHO command
must be included exactly as shown.

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

19
CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

Collecting Player Responses

The script now needs to display the Knock Knock! message and collect the player’s
response. This is accomplished by adding the following line of code to the script:

SET /p reply="Knock Knock! C:>"

This statement uses the Windows SET command to display the Knock Knock! message
followed by the characters C:>, which are supposed to simulate the Windows prompt
and make the player feel like he is still interacting with the command prompt
when in fact he is communicating with your script. The SET command’s /p option
tells the command to assign whatever text the user types to a variable called reply.

A variable is a reference to a location in the computer memory where the script

stores a value. Variables provide scripts with the ability to store and retrieve data

that they collect while they execute.

Validating Player Input

Next, add the following statements to the script:

CLS

IF NOT %reply% == "Who is there?" (

 ECHO "Sorry, but you are not playing the game right!"

DEFINITION

20
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 GOTO :EOF)

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

The first statement clears the Windows console. The next three statements check
the value assigned to the reply variable to determine if the player properly typed in
“Who is there?” If the player provided an incorrect response, the script displays an
error message and terminates the script’s execution. However, if the player en-
tered the correct response, the script continues executing and writes ten blank
lines to the Windows console.

Now add the following statements to your script:

SET /p reply="Orange! C:>"

CLS

IF NOT %reply% == "Orange who?" (

 ECHO "Sorry, but you are not playing the game right!"

 GOTO :EOF)

The first statement displays the message Orange! and waits for the player to type in
a response, which again is assigned to a variable called reply. The second statement
clears the Windows command console. If the player fails to enter “Orange who?”, the
third statement displays an error message and terminates the script’s execution.
Otherwise, the script keeps going.

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

21
Displaying the Punch Line

Finally, add the following statements to the end of your script:

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Orange you glad you've written your first Windows shell script?"

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

The first collection of ECHO statements displays ten blank lines in the Windows
command console. Then the game’s punch line is displayed, followed by ten more
blank lines. The reason for adding the last ten blank lines was to move the display
of the Windows command prompt to the bottom of the Windows command con-
sole, so that when the script ends and the Windows shell redisplays the command
prompt, its reappearance will not interfere with the presentation of the joke’s
punch line.

22
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Final Result

Now look at the fully assembled script as shown below.

@ECHO off

TITLE "KnockKnock.bat - The KnockKnock joke game!"

COLOR 0E

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

SET /p reply="Knock Knock! C:>"

CLS

IF NOT %reply% == "Who is there?" (

 ECHO "Sorry, but you are not playing the game right!"

 GOTO :EOF)

ECHO.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 1

In
t ro

d
u

c
in

g
 W

in
d

o
w

s
 S

h
e
ll S

c
r i p

tin
g

23
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

SET /p reply="Orange! C:>"

CLS

IF NOT %reply% == "Orange who?" (

 ECHO "Sorry, but you are not playing the game right!"

 GOTO :EOF)

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Orange you glad you've written your first Windows shell script?"

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

24
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

As you can see the script is not very complicated, and if you remove the ECHO. state-
ments, you are really only left with a handful of lines of code. Each time the script
writes something to the Windows console, it first executes the CLS command to
clear the screen and add focus to the new line of displayed text. Don’t worry about
the rest of the statements that make up this script; they will be fully covered in
Chapter 2, “Interacting with the Windows Shell.”

Once you have typed and saved this script, run it. If it does not work as expected,
reopen the script and double-check your typing. Once you have everything work-
ing, move on to the next chapter where you will learn how to configure the Win-
dows command console.

Summary

You have covered a lot of ground in this chapter. You learned what the Windows shell
is and how it provides you with a text-based interface to the Windows operating sys-
tem. You also learned about other scripting options available for Windows operating
systems. You created, saved, and ran your first Windows shell script. Finally, you cre-
ated your first Windows shell script computer game, the Knock Knock joke.

E X E R C I S E S

1. As computer games go, the Knock Knock game is very simple. Its main purpose

was to introduce you to the mechanics of script creation and execution. Try

enhancing the scripts by adding additional Knock Knock jokes.

2. Experiment with the TITLE statement by changing the message the script dis-

plays in the Windows command console’s title bar.

3. Modify the text that is displayed when the player fails to respond correctly to

the joke’s prompts. Try to make the message more clear and understandable.

2

I
n this chapter, you will learn how to work with and control the Windows
shell environment. In doing so you will also learn how to configure the
appearance and behavior of the Windows command console and the Win-

dows command prompt. You will also learn about the commands internally defined by
the Windows shell. These commands include all of the programming statements that
make up the Windows shell scripting language.

This chapter will also explain how the Windows shell works with external commands
and utility programs, including how it locates and executes these commands and utili-
ties. The chapter will conclude by demonstrating how to develop the Unpredictable
Command Prompt script. This script provides a fun demonstration of how to automate
the configuration of the Windows shell environment.

Specifically, you will learn

• The basics of Windows command syntax

• Different ways of starting Windows command consoles and configuring the Win-
dows shell environment

• The differences between internal Windows shell script commands and external
Windows commands and utilities

• How to manually customize the Windows command console from the
Windows desktop

Interacting with
the Windows Shell

C H A P T E R

26
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project Preview:
The Unpredictable Command Prompt

This chapter’s main project is called the Unpredictable Command Prompt. It demon-
strates how to randomly alter the appearance of the Windows command console.
Among the Windows command console features customized by the script are the fore-
ground and background colors of the Windows command console, the text displayed
in the title bar, the format of the Windows command prompt, and the message that
is initially displayed when the Windows command console first appears.

The Unpredictable Command Prompt script randomly configures one of three dif-
ferent sets of configuration settings each time it is executed. For example, as Fig-
ure 2.1 shows, in one scenario the user may be greeted by name and told to Code
well and Prosper. The text displayed in the Windows command console appears in
green on a black background.

FIGURE 2.1

The Windows
command console
displays the first of

three different
greeting messages.

Figure 2.2 shows a second view that the user may see. In this case, the user is
greeted by the message, “Hello. It is good to be working with you today!” In addition,
the color of the foreground text is changed to yellow and the Windows command
prompt now displays both the day of the week and the date.

Figure 2.3 shows the final view the user will see. In this case, the text message,
“Boo! Did I scare you?” is displayed and the text appears as black characters on a
yellow background.

This script also gives you a sneak peak of several other important Windows shell
scripting techniques, which are explored further later in the book. These tech-
niques include the storage of data in variables, the use of conditional logic to con-
trol script execution, and the ability to perform numeric comparisons.

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

27

Command Shell Command Syntax

The Windows shell provides an interface for working with text-based commands
and utilities. In addition, you will use it to run your Windows shell scripts. Inte-
grated into the Windows shell is the Windows shell scripting language. This script-
ing language includes a large number of statements.

Each Windows command has its own unique syntax that must be followed strictly
for the command to work. However, all Windows commands follow a common
format. Figure 2.4 breaks down this format.

FIGURE 2.2

The Windows
command console’s
title bar message is

also changed.

FIGURE 2.3

Foreground and
background colors

are changed
as well.

Command Arguments

Switch

Modifier

Switch

Parameter

cmd /t:70 /k dir

FIGURE 2.4

Examining the basic
format used by all

Windows
commands.

28
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

To execute Windows commands from the Windows command prompt, you type
the name of the command followed by one or more optional arguments that tell
the command what you want it to do. Command arguments can consist of several
different elements, including

• Switches. Modify the way in which a command is processed. Switches consist
of a forward slash followed by one or more characters. Each Windows com-
mand has its own unique set of switches.

• Modifiers. Change the behavior of a switch. Modifiers consist of a colon fol-
lowed by one or more characters. Each Windows command has its own set of
modifiers.

• Parameters. Arguments passed to commands for processing.

If you are uncertain of a command’s syntax, you can view it from the Windows com-

mand console by typing Help followed by the name of the command. For example, if

you type HELP DATE and press Enter, you will see the following:

C:\>HELP DATE

Displays or sets the date.

DATE [/T | date]

Type DATE without parameters to display the current date setting and a prompt

for a new one. Press ENTER to keep the same date.

If Command Extensions are enabled the DATE command supports the /T switch

which tells the command to just output the current date, without prompting

for a new date.

C:\>

A good way to gain an understanding of Windows command syntax is by looking at
an example. The following example shows the command syntax of the CMD command.

CMD [/A | /U] [/Q] [/D] [/E:ON | /E:OFF] [/F:ON | /F:OFF] [/V:ON | /V:OFF]

 [[/S] [/C | /K] string]

HINT

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

29
As you can see, the syntax of the CMD command consists of its name, a collection of
switches, some of which have modifiers, and a string which would consist of any
data that you wanted the CMD command to process (such as the name of a Windows
shell script).

You must follow a number of formatting rules when working with Windows com-
mands. These rules are outlined below.

• Spaces must be used to separate each component of the command

• Arguments shown inside brackets are optional

• Arguments inside brackets that are not shown in italics must be typed exactly
as shown

• Arguments in italics represent values that you must supply

• Arguments inside brackets and separated by a | sign are mutually exclusive

• Arguments that contain spaces must be enclosed within a matching pair of
double quotes

When referring to Windows commands, the term mutually exclusive means that only

one of a collection of options can be selected. For example, when executing the CMD

command you have the option of specifying the E:/ON or E:/OFF, but you cannot

specify both options at the same time.

In this book I have chosen to display Windows commands in upper case. However,
Windows commands are not case-sensitive, which means that you can type them
using upper case, lower case, or a combination of upper and lower case and achieve
the same results. For example, as far as the Windows shell is concerned, all of the
following commands are equivalent:

• ECHO Greetings

• echo Greetings

• Echo Greetings

• EcHo Greetings

Starting Windows Shell Sessions

You can use one of two commands to open Windows shell sessions. These com-
mands are CMD and START. When executed from the Windows Run dialog (click on
Start, Run, type CMD, and click on OK), CMD opens a new Windows command console.

DEFINITION

30
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

However, when executed within an open Windows command console, the CMD com-
mand opens a new Windows shell session within the current console. In contrast,
the START command (which works only from within an already open Windows com-
mand console) starts a new Windows shell session by opening a new Windows
command console each time.

Working with the CMD Command

Most often, you will use the CMD command to initiate a Windows shell session. The
syntax of the CMD command is shown below. Table 2.1 defines each of its switches.
Don’t worry if you see some terms mentioned in the table that you have not yet
learned. They will be explained as they are used throughout the rest of the book.

CMD [/A | /U] [/Q] [/D] [/E:ON | /E:OFF] [/F:ON | /F:OFF] [/V:ON | /V:OFF]

 [[/S] [/C | /K] string]

TABLE 2.1 CMD.EXE COMMAND SWITCHES

Switch Function

/C Executes the command and closes the Windows shell

/K Executes the command but does not close the Windows shell

/S Changes the handling of the string after the /C or /K switch

/Q Disables echo

/D Prevents the execution of AutoRun commands specified in the registry

/A Formats command output in ANSI format

/U Formats command output in Unicode format

/T:FG Sets the Windows command console’s foreground and background colors

/E:ON Enables extensions to the Windows shell required by certain commands

/E:OFF Disables extensions to the Windows shell (required by certain commands)

/F:ON Enables file and folder name completion

/F:OFF Disables file and folder name completion

/V:ON Allows for the delayed expansion of environment variables

/V:OFF Prevents the delayed expansion of environment variables

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

31
Command line extensions are improvements made to Windows commands in later

versions of Windows operating systems. By default, command line extensions are

enabled. The only reason you might want to disable them is to allow an old script

that uses the old version of a Windows command that does not support the execu-

tion of command line extensions. Many Windows commands support these exten-

sions, including ASSOC, CALL, CD, COLOR, DEL, ENDLOCAL, FOR, FTYPE, GOTO, IF, MD,

POPD, PROMPT, PUSHD, SET, SETLOCAL, SHIFT, and START.

Let’s look at a few examples of how to work with CMD. First, click on Start, Run, and
then type CMD and click on OK to start a new Windows shell session. This opens a
new Windows command console with which you can begin working with the Win-
dows command prompt.

If you want, you can start a new Windows shell session and pass it a command to
execute at the same time by clicking on Start, Run, and then typing CMD followed by
a command as shown below.

CMD /K TITLE Welcome

In this example, a new Windows command console will open and display the text
message of Welcome in its title bar. Sometimes you may want to simply start a new
Windows shell session, pass it a command, have the command execute, and then
automatically close the Windows command console. You can do this as follows.

CMD /C DEL C:\Temp*.txt

The CMD command’s /K and /C switches are examples of mutually exclusive param-
eters. /K specifies that the Windows command console should remain open after
executing the command whereas /C specifies that the Windows command console
should close after the command completes processing.

The next example demonstrates how to use a modifier to control the execution of
the CMD command. In this example, the /T switch, which sets foreground and back-
ground colors, is used to invert the Windows color scheme from white on black to
black on white.

CMD /T:F0

In this example, the switch is /T. It has a modifier, which is preceded by the colon
character. The first character in the modifier sets the Windows command console’s
foreground color (e.g., the color of text) and the second character of the modifier
sets the background color. You can specify a range of different foreground and
background colors in the Windows command console, as shown in Table 2.2.

TRAP

32
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r TABLE 2.2 COLORS FOR THE WINDOWS

COMMAND CONSOLE

Color Value

Black 0

Blue 1

Green 2

Aqua 3

Red 4

Purple 5

Greenish Yellow 6

Light Gray 7

Gray 8

Light Blue 9

Light Green A

Light Aqua B

Light Red C

Light Purple D

Light Yellow E

Bright White F

Working with the START Command

The START command provides an alternative way of opening a Windows command
console and starting a new Windows shell session. The START command automati-
cally opens a new Windows command console each time it is executed. This pro-
vides a handy way to open and work with multiple Windows command consoles at
the same time. The START command also provides more control over new Windows
shell sessions. The START command’s syntax is shown below.

START ["TITLE"] [/Dpath] [/I] [/MIN] [/MAX] [/SEPARATE | /SHARED]

 [/LOW | /NORMAL | /HIGH | /REALTIME | /ABOVENORMAL | /BELOWNORMAL]

 [/WAIT] [/B] [Program/Command] [Parameters]

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

33
As you can see, the START command accepts a large number of parameters, which
are explained in Table 2.3. Again, don’t worry if you see some terms mentioned in
the table that you have not yet learned. They will be explained further as they are
used throughout the rest of the book.

Now look at an example of the START command in action. In this example, the START
command opens a new Windows command console in a maximized state with
above normal priority.

START /MAX /ABOVENORMAL

To test this command, open a Windows command console, type in the command
at the command prompt, and press the Enter key.

TABLE 2.3 START COMMAND PARAMETERS

Parameter Description

"title" Text to be displayed in the Windows command console’s title bar

/d Path Specifies the startup folder

B Starts a script without opening a new Windows command console

I Resets the execution environment to the original state of the
parent environment

MIN Opens a new Windows command console in a minimized state

MAX Opens a new Windows command console in a maximized state

SEPARATE Starts a 16-bit program in its own memory space

SHARED Starts a 16-bit program in a shared memory space

LOW Starts an application using the low priority

NORMAL Starts an application using the normal priority

HIGH Starts an application using the high priority

REALTIME Starts an application using the real-time priority

ABOVENORMAL Starts an application using the above normal priority

BELOWNORMAL Starts an application using the below normal priority

WAIT Starts an application and waits for it to end

Program/Command An optional program or command to be processed by the
Windows shell

Parameters One or more arguments to be passed to the program or command

34
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Internal vs. External Commands

The Windows shell works with two different types of commands: internal and
external. Internal commands are built into the Windows shell, whereas external
commands exist as separate executable files stored on the computer’s hard drive.
Most Windows commands are found in \Winnt\System32. Both internal and external
commands follow the same basic syntax rules. Table 2.4 provides a listing of the
Windows shell’s internal commands.

TABLE 2.4 BUILT-IN WINDOWS SHELL COMMANDS

Command Overview

ASSOC Displays or modifies file name extension associations

CALL Calls one script from another without stopping the calling or parent
script. Also provides the ability to switch processing control to labels
specified within a script

CD (CHDIR) Changes the current directory

CLS Clears the Windows command console screen

COLOR Sets Windows command console foreground and background colors

COPY Copies one or more files from one location to another

DATE Displays or modifies the system date

DEL Removes one or more files

DIR Displays a list of files and folders located in the specified directory

ECHO Displays text messages in the Windows command console

ENDLOCAL Terminates variable localization by restoring variables to their values as
they existed before the preceding SETLOCAL command was executed

ERASE Removes one or more files

EXIT Closes the Windows command console and ends a command shell
session

FOR Executes a command for each file in a collection of files

FTYPE Displays and modifies file types that are associated with file name
extensions

GOTO Alters processing flow in a script by transferring it to a line containing a
specified label

IF Performs conditional processing and alters the execution flow within the
script based on tested results

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

35

The number of external commands and command line utilities are too numerous and
varied to attempt to cover here. You learn more about them as you work your way
through this book. These commands consist of any executable file provided by the
operating system and any applications that you may have installed on your computer.

How Windows Locates Commands

To work efficiently with the Windows shell, it helps to understand how it locates
the commands that you want it to execute. The following series of steps outlines

TABLE 2.4 BUILT-IN WINDOWS SHELL COMMANDS (CONTINUED)

Command Overview

MD (MKDIR) Creates a new directory or subdirectory

MOVE Moves one or more files from one location to another

PATH Configures the search path used by Windows to locate executable files

PAUSE Halts script execution until the user presses a key

POPD Changes the current folder to the folder stored by a corresponding PUSHD
command

PROMPT Changes the display of the Windows command prompt

PUSHD Changes to a specified folder and stores the previous folder for later
reference by the POPD command.

RD (RMDIR) Removes a specified folder

REM Provides the ability to add comments to a script

REN (RENAME) Renames a file or folder

SET Creates, modifies, and deletes variables

SETLOCAL Records the current value assigned to environment variables in the
Windows shell, allowing them to be restored later by the ENDLOCAL
command

SHIFT Alters the position of script parameters

START Starts a new Windows shell session and executes specified commands

TIME Displays and modifies the system time

TITLE Modifies the text displayed in the Windows command console title bar

TYPE Displays the contents of a text file in the Windows command console

VER Displays the Windows version number

36
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

the process that the Windows shell goes through in order to try to execute the
commands you specify.

1. If you supply the command’s complete path name, the Windows shell looks
in the specified folder and executes the command. If the command is not
found, an error is generated.

2. If you specify a command without its path, the Windows shell first checks to
see if the command is one of its internal commands and executes the com-
mand if it is.

3. Next, the Windows shell looks for the command in the current working di-
rectory and executes the command if it is found.

4. If the command is not found at this point, the Windows shell begins looking
through each of the folders specified in the path variable (in the order in
which they are listed). If a matching command is found, it is executed and
the search stops. If the command is not found, an error is generated.

Using the PATH Command

Windows stores information about the location of commands in a variable called
path. This variable stores a list of folders that the Windows shell will search when it
needs to locate an external Windows command. You can view and modify the con-
tents of this variable using the PATH command, which has the following syntax.

PATH [[drive:]path[;...]] [%path%]

To view the list of folders stored in the path variable, open the Windows command
prompt and type PATH. The output displayed by the command will resemble the
following output.

C:\>path

PATH=C:\WINNT\system32;C:\WINNT;C:\WINNT\system32\WBEM

C:\>

The output displayed in this example shows that the Windows shell will search
three folders when looking for a command to execute. The folders are searched in
the order presented, from left to right. Therefore C:\Winnnt\system32 will be searched
first and if the command is not found, C:\Winnt will be searched second followed by
C:\Winnt\system32\wbem.

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

37
If you want, you can add additional folders to the search list stored in the path
variable. For example, you might want to add the folder where you store all your
Windows shell scripts to the path variable so that the Windows shell can always
find them.

The following example demonstrates how to add a folder named C:\Scripts to the
beginning of the list of folders stored in the path variable.

PATH C:\scripts;%path%

As you can see, the structure of this command is PATH followed by the name and
path of the folder to be added, a semicolon character, and then %path%.

Placing a folder at the beginning of the path variable’s search list ensures that it

will be the first folder checked. This way, if you give a script a name that happens to

match a Windows command, your script will be executed in place of the Windows

command. Remember, the Windows shell stops looking for commands as soon as it

finds the first match.

I have not yet covered the use of variables in this book, but they are such a funda-

mental part of scripting that it’s almost impossible to do anything without using them.

For now, just note that to reference them from within a script you must enclose the

variable’s name inside a pair of percentage characters. Keep reading along and I

will explain how to work with variables in detail in Chapter 4, “Storing and Retriev-

ing Information in Variables.”

You can just as easily add a folder to the end of the search list, as shown below.

PATH C:\scripts;%path%

Don’t forget to always add the %path% variable to either the beginning or the end of

the PATH command when modifying the command’s search path. Otherwise, the list

of folders that made up the original search path will be deleted and replaced by

your new addition, which is not what you’ll want to do.

Any changes that you make to the path variable by modifying it from a Windows shell
script are just temporary. In other words, the changes you make are lost when you
close the Windows command console and terminate your Windows shell session.

TRICK

TRAP

TRAP

38
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

PATHEXT

When you type an external command, you must specify its name. Optionally, you
can specify an external command’s file extension. Normally, all that you’ll need is
the name of the command itself. When you type in a command’s name without its
file extension, the Windows shell uses the list of file extensions stored in the pathext
variable to search for a matching command. The pathext variable lists all of the file
extensions that Windows associates as being executable files.

When you type a command without its file extension, the Windows shell uses the
collection of file extensions stored in pathext to search for a matching file. It does
this by substituting each file extension listed in pathext as the command’s file ex-
tension until it finds a match. The first match that is found ends the search. The
Windows shell then executes this command.

By default, the pathext variable lists the following file extensions in the follow-
ing order.

• .COM

• .EXE

• .BAT

• .CMD

You can display the contents of the pathext variable by typing the following com-
mand at the Windows command prompt.

ECHO %pathext%

The output you get back should look something like this:

C:\>ECHO %pathext%

.COM;.EXE;.BAT;.CMD

However, you may see additional file extensions listed depending on what soft-
ware you have installed on your computer. If you wish, you can add a new file
extension to pathext as demonstrated below.

SET pathext=%pathext%;.shl

In this example, the file extension .SHL is added to the end of the pathext variable
using the SET command. You’ll find yourself using the SET command a lot when
working with variables. I will explain the command in detail in Chapter 4, “Stor-
ing and Retrieving Information in Variables.”

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

39
Other Useful Windows Commands

In addition to the commands that you have seen in this chapter, there are a num-
ber of other commands you can use to configure a Windows shell session. These
commands include

• TITLE

• PROMPT

• COLOR

• CLS

• ECHO

You’ll need to know how to work with these commands to complete this chapter’s
scripting project, so I’ll go over them in the sections that follow.

Using the TITLE Command

The TITLE command provides the ability to display a custom text message in the
Windows command console’s title bar area. The syntax of the TITLE command is
shown below.

TITLE [string]

To see how the TITLE command works, create a new Widows shell script made up of
the following statement.

TITLE Greetings!

When you run your script, you’ll see the message Greetings! in the title bar area, as
shown in Figure 2.5.

FIGURE 2.5

Posting a message
in the Windows

command console’s
title bar.

40
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Working with the PROMPT Command

The PROMPT command is used to modify the display of the Windows command
prompt. By default, the Windows command prompt shows the currently selected
disk drive and folder in the form of the drive letter followed by a colon, a backward
slash, and the “greater than” character as shown below.

C:\>

However, using the PROMPT command you can display any of the information listed
in Table 2.5.

TABLE 2.5 COMMAND PROMPT ARGUMENTS

Argument Displays

$A & - Ampersand character

$B | - Pipe character

$C (- Left parenthesis character

$D The current date

$E ANSI escape code 27

$F) - Right parenthesis character

$G > - Greater-than character (greater-than sign)

$H Backspace character

$L < - Less-than character (less-than sign)

$N The current drive name

$P The current drive and path names

$Q = - Equal character (equal sign)

$S A blank space

$T Current system time

$V The Windows version number

$_ Performs a carriage return and linefeed

$$ $ - Dollar character (dollar sign)

$+ A + sign representing the depth of the pushd stack.

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

41
The syntax of the PROMPT command is shown below.

PROMPT [text]

The value of text represents a combination of one or more of the arguments listed
in Table 2.5. For example, to replace the current drive letter with the current time
you would type the following:

PROMPT $D

When executed, the previous command would modify the command prompt as
shown below.

C:\>PROMPT $D

Wed 06/18/2003

If you prefer a shorter, less intrusive command prompt, then try the following
command:

PROMPT $G

This command turns the command prompt into the > character. If desired, you can
combine multiple arguments when modifying the command prompt, as demon-
strated below.

C:\>PROMPT DG

Wed 06/18/2003>

As you can see, the command prompt now display the date followed by the “greater
than” character. You can also insert any free-form text that you want as the com-
mand prompt, as shown below.

C:\>PROMPT Welcome to my PC$G

Welcome to my PC>

Here I changed the command prompt to display a greeting message followed by the
“greater than” character. Finally, if you decide that you want to restore the command
prompt to its default format, just type PROMPT and hit the Enter key as shown below.

Welcome to my PC>PROMPT

C:\>

42
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Changing Colors

By using the COLOR command, you can take control of the foreground and back-
ground colors displayed in the Windows command console. The syntax of the COLOR
command is outlined below.

COLOR BF

The COLOR command requires two arguments. B represents a numeric value that
specifies the background color to be used, and F represents the foreground color
(e.g., the color of displayed text). The COLOR command supports the same colors as
the CMD command, which were listed earlier in this chapter in Table 2.2.

By default, the Windows command console displays text in white on a black
background. Using the COLOR command, you can change these settings as dem-
onstrated below.

COLOR E4

This command modifies the Windows command console so that it displays all text
in red on a yellow background. To restore the Windows command console color
settings to their default setting, you can type COLOR 0F, or, as a shortcut, just type
COLOR and the Windows command console default white-on-black color scheme will
be restored.

CLS

The Windows command console automatically scrolls text off of the display as its fills
up. However, this can make the console look cluttered and difficult to read. If you
prefer, you can use the CLS command to clear out all currently displayed text, leaving
only the command prompt visible. The CLS command’s syntax is outlined below.

CLS

As you can see, the CLS command does not accept any arguments, making it ex-
tremely easy to use.

ECHO

The ECHO command gives you the ability to display text messages in the Windows
command console. Using the ECHO command you can create scripts that keep the
user informed about their execution status and display their results. The syntax of
the ECHO command is outlined below.

ECHO [ON | OFF] [message]

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

43
As you have already seen, the ECHO command’s use is very straightforward. For ex-
ample, create a new Windows shell script consisting of the following text:

ECHO This is an example of how to use the ECHO command

When executed, the Windows shell displays the following output:

C:\>ECHO This is an example of how to use the ECHO command

This is an example of how to use the ECHO command

C:\>

As you can see, the original ECHO command and its resulting output are both displayed.
To clean up the display, it is generally a good idea to prevent the display of the original
command and leave only its output visible. You can accomplish this by adding the @
character to the beginning of the ECHO command, as demonstrated below.

@ECHO This is an example of how to use the ECHO command

If you make this change to your script and run it again, you’ll get the following output.

This is an example of how to use the ECHO command

C:\>

As you can see, this time only the text message is displayed, followed by the Win-
dows command prompt. Using this same technique, you can suppress the display
of any number of ECHO commands, as demonstrated below.

@ECHO Once upon a time there was a little boy

@ECHO who lived with his mother in a small

@ECHO cabin out in the woods far away from

@ECHO the big city. Once day a wolf came upon

@ECHO their house and

Since displaying output is a very common task in Windows shell scripts, a short-
cut has been provided to simplify your scripts. To use this shortcut, just type the
following statement at the beginning of your Windows shell scripts:

@ECHO Off

For example, the following statements demonstrate how to rewrite the previous
example using the @ECHO Off statement.

44
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

@ECHO Off

ECHO Once upon a time there was a little boy

ECHO who lived with his mother in a small

ECHO cabin out in the woods far away from

ECHO the big city. Once day a wolf came upon

ECHO their house and

Customizing the Windows Command
Console

The Windows command console provides you with a text-based interface to the
Windows shell. By default, it displays text in a Window that is 25 lines long and 80
characters wide. All text is displayed in white and the background color is set to
black. Like most Windows features, the Windows command console can be config-
ured from the Windows desktop in a number of different ways.

Customization Options

Windows command console customization is performed from the Command
Prompt Properties dialog. You can open this dialog by opening the Windows com-
mand console and right-clicking on the Command Prompt icon in the upper-left
corner of the console and selecting Properties. This dialog is organized into four
property sheets as listed below.

• Options

• Font

• Layout

• Colors

Each of these property sheets configures a different set of properties for the Win-
dows command console as explained in the sections that follow.

Configuring Options Settings

The Windows XP Options property sheet, shown in Figure 2.6, provides access to
the following configuration settings:

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

45

• Cursor Size. Sets either a small, medium, or large cursor size.

• Display Options. Sets the Windows command console to open either in a win-
dow or in full screen mode.

• Command History. Sets the number of commands that the Windows com-
mand console can recall, the number of available buffers, and controls
whether duplicate commands are discarded.

• Edit Options. Enables or disables the QuickEdit and Insert modes. QuickEdit al-
lows text to be copied and cut from the Windows command console and pasted,
and for text to be pasted to the Windows command prompt. Insert Mode con-
trols whether text is overwritten or inserted when editing command input.

Specifying Font Settings

The Font property sheet, shown in Figure 2.7, provides the ability to configure font
size and font type. When you configure font size, you also affect the size of the
Windows command console. Any changes you make to font size are immediately
reflected in the Window Preview section of the property sheet.

Making changes to font type also has an impact on the size of the Windows com-
mand console. Depending on the font type you select, the Bold fonts option (to the
right of the selection list) may become enabled. This option can help to make text
easier to read. You can preview the effects of your font selection in the Selected
Font section.

FIGURE 2.6

Use the Options
property sheet to
configure cursor

size and command
history as well as
display and edit

options.

46
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Setting Up the Windows Command Console Layout

The Layout property sheet, shown in Figure 2.8, allows you to configure the Win-
dows command console’s initial size and location on the display where it will open.
In addition, you can use it to configure the number of lines that it can display as
well as the number of lines that it can scroll back to display previous text. Specifi-
cally, you can configure the following settings:

• Screen Buffer Size. The Width setting controls the number of characters that
can be displayed on a single line. The Height setting determines the number
of lines of text the Windows command console will retain in memory (i.e., the
lines that you can scroll back and view).

• Windows Size. The Width setting specifies initial width of the Windows com-
mand console. The Height setting specifies the Windows command console’s
initial height. However, you can manually resize the Windows command con-
sole by right-clicking on one of the console’s edges and dragging it to a new lo-
cation. However, you cannot resize the Windows command console any larger
than the height and width setting specified in the Screen Buffer Size section.

• Windows Position. These settings allow you to specify the location on the dis-
play where you’d like the Windows command console to open. Position is
specified in pixels, starting in the upper-left corner.

• Let System Position Window. Selecting this option lets the operating system
determine where to open the Windows command console on the display.

The term pixel is short for picture element and represents the smallest area that a

computer can display or print.

FIGURE 2.7

Configuring font
type and size for

the Windows
command console.

DEFINITION

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

47
Set the Screen Buffer Size Height setting to three or four times larger than the height

of the Window Size setting. This way you’ll be able to scroll back and view previous

commands and their output.

TRICK

Specifying Color Settings

You can modify the Windows command console’s foreground and background
colors from the Colors property sheet, as shown in Figure 2.9. The top portion of
this property sheet provides you with the following options:

• Screen Text. Select this option and then click on a color from the list of dis-
played colors to configure the Windows command console’s foreground color
(e.g., text color).

• Screen Background. Select this option and then click on a color from the list of
displayed colors to configure the Windows command console’s background color.

• Popup Text. Select this option and then click on a color from the list of dis-
played colors to configure the foreground color of the Windows command
console’s command history dialog box.

• Popup Background. Select this option and then click on a color from the list
of displayed colors to configure the background color of the Windows com-
mand console’s command history dialog box.

• Selected Color Values. If you prefer, you can select one of the four previous
options and then set a custom color for foreground and background colors by
specifying various levels of red, green, and blue.

The bottom portion of the Colors property sheet provides a sneak preview of how
any changes that you make will affect the Windows command console.

FIGURE 2.8

Configuring screen
size and the

Windows position of
the Windows

command console

48
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FIGURE 2.9

Configuring the
Windows command

console’s
foreground and

background colors.

IN THE REAL WORLD

Any true Windows power user or system administrator is, by definition, good at

working with the Windows shell. Often working with the Windows shell means

typing in the same sets of commands repeatedly. To speed things up and increase

their efficiency, power users and administrators learn all kinds of tricks to help them

work faster. One technique that many people use is to access command history,

which provides a list of previously executed commands that you can quickly access

and run again. To access the Windows shell’s command history, press the F7 key.

Then use the up and down arrows to select a previously executed command and

press the Enter key.

Back to the Unpredictable
Command Prompt

Now let’s turn our attention back to the chapter’s main project, the Unpredictable
Command Prompt. Through the development of this script, you will learn how to
create a script that interacts with the Windows shell environment and the Win-
dows command console. You will also get some more exposure to working with
variables and using simple conditional logic.

Designing the Game

The Unpredictable Command Prompt is designed to randomly modify the Win-
dows command console environment each time it is executed. In total, three dif-
ferent scenarios may occur, each of which will modify the Windows title bar, com-
mand prompt, and foreground and background colors. In addition, a different

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

49
greeting message will be displayed each time. I’ll show you how to complete the
Unpredictable Command Prompt script in nine steps, as outlined below.

1. Get a random number

2. Clear the Windows command console

3. Post a message in the Windows command console’s title bar

4. Modify foreground and background colors

5. Greet the user

6. Modify the appearance of the command prompt

7. Terminate the script

8. Build the second scenario

9. Build the third scenario

As in the previous chapter, I will use a couple of programming techniques in this
script that I have not yet covered in this book. Specifically, I will use environment
variables and the IF statement to do a little conditional logic. It is hard to write a
useful script without using either of these resources. However, I wanted to provide you
with some foundation concepts regarding Windows shell scripting and the Windows
shell before I delve into specific Windows shell scripting. So for now, just follow along
with my high-level explanations of the portions of the script that use these program-
ming techniques as you go through the steps involved in creating the script.

Selecting a Random Number

The first step in creating the Unpredictable Command Prompt script is to create a
new script and add the following statements:

@ECHO off

SET TestVariable=%random%

The first statement prevents the Windows shell from displaying script statements
as it processes them. This will make the script’s output less cluttered and present
a cleaner and more polished looking output. The second statement uses the SET
command to assign a random number to a variable called TestVariable. The random
variable is generated automatically by the operating system on Windows 2000, XP,
and 2003 computers. Whenever it is referenced, it returns a random number be-
tween 1 and 32,767.

The script will reference the random value assigned to this variable to determine
which of three possible actions to take. Specifically, it will take one set of actions if

50
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

the value assigned to the variable is greater than 22,000. It will take a different set of
actions if the value is greater than 11,000 but less than 22,000. Finally, a third set of
actions is taken if the variable’s value is less than 11,000 but greater than zero.

The rest of the script consists of three major sections. The statements that make up
each section are very similar, so I’ll explain the statements that comprise the first
section in detail and then provide a high-level overview of the remaining sections.

Clearing the Windows Command Console

Now check the value stored in the TestVariable to see if it is greater than 22,000.
You can do this by adding the three lines of code you see below.

IF %TestVariable% GTR 22000 (

 CLS

)

The first line can be translated like this: “If the value assigned to TestVariable is
greater than 22,000, then perform the following action.” The action to be performed
is enclosed within parentheses (a pair of () characters). Actually, the opening (
character is shown at the end of the first line and the closing) character is on the
third line. Nonetheless, the CLS command is still considered enclosed within them.
This command clears the Windows command console, giving the script a clear
screen onto which to write additional text.

Modifying the Windows Command Console Title Bar

Next, add the statement shown below in bold. This statement uses the TITLE com-
mand to post a text message in the Windows command console’s title bar. The
message consists of two parts. The first part is a text string (e.g., UCP - The Unpredictable
Command Prompt -). The second part is a reference to the TestVariable. When referenced
in this manner, the randomly assigned numeric value assigned to the variables is
displayed in place of %TestVariable%. I added the display of this numeric value to
the end of the title bar message to make it easy for you to see the randomly assigned
number. This way you can validate that your script is executing the right collec-
tion of statements each time it runs.

If %TestVariable% GTR 22000 (

 Cls

 TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

)

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

51
Changing Background and Foreground Colors

Now add the statement shown below in bold. This statement uses the COLOR com-
mand to change the Windows command console’s foreground color to yellow and
its background color to black.

If %TestVariable% GTR 22000 (

 Cls

 TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

 COLOR 02

)

Greeting the User

The next step in creating the Unpredictable Command Prompt script is to add the
two lines shown below in bold. The first of these two lines displays a personalized
greeting to the user by wrapping the username variable inside a text message dis-
played using the ECHO command. username is an environment variable that Windows
creates each time you log on. It stores your username. The second line uses the ECHO
command to display a blank line. This will make the script’s output a little easier
to read when the script ends and redisplays the Windows command prompt.

If %TestVariable% GTR 22000 (

 Cls

 TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

 COLOR 02

 Echo Greetings %username%. Code well and Prosper.

 Echo.

)

Changing the Command Prompt

Now add to your script the statement shown below in bold. When used without
any additional arguments, the PROMPT statement resets the Windows command
prompt to its default setting.

If %TestVariable% GTR 22000 (

 Cls

 TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

 COLOR 02

52
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 Echo Greetings %username%. Code well and Prosper.

 Echo.

 PROMPT

)

Terminating Script Execution

Now add the statement shown in bold below. This statement uses the GOTO com-
mand to alter the default order of statement execution in the script. In this case, it
tells the script to go to :EOF, which is a shortcut way of saying jump to the end of
the file (i.e., stop executing). By placing this statement here, you ensure that the
script will stop running after executing all of the statements in this section of the
script. This way, if the value assigned to TestVariable was greater than 22,000, the
script will process only the seven lines of code shown below.

If %TestVariable% GTR 22000 (

 Cls

 TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

 COLOR 02

 Echo Greetings %username%. Code well and Prosper.

 Echo.

 PROMPT

 GOTO :EOF

)

If you were to forget and leave out the GOTO :EOF statement from this section of the
script, then any changes made by this portion of the script would always be overrid-
den by changes made in the two sections that follow. This will happen because the
script would keep on processing the statements that follow. For example, the third
section of this script is set up to process whenever the value assigned to TestVariable
is greater than zero. Therefore, if the value assigned to TestVariable happens to be
26,000, then any changes made by this first section of the script will be undone later
in the script. By adding the GOTO statement, you prevent this from occurring.

Creating the Second Scenario

OK. The second portion of the script is really just a variation of the first part. I
have highlighted the differences between the two sections below. As you can see,
this section is set up to run whenever the value assigned to TestVariable is greater

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

53
than 11,000. In addition, a different message is displayed in the Windows com-
mand console’s title bar, and different foreground and background colors are
established. In addition, the greeting message has been changed. Also, the Win-
dows command prompt was changed to display the system date followed by the
“greater than” character.

If %TestVariable% GTR 11000 (

 CLS

 TITLE Demo - Manipulating the Windows command console environment - %TestVariable%

 COLOR 0E

 ECHO Hello. It good to be working with you today!

 ECHO.

 PROMPT dg

 GOTO :EOF

)

Setting Up the Third Scenario

The last part of the script defines the third possible execution scenario (i.e., ex-
ecuting only when the value of TestVariable is greater than zero and less than 11,000).
I have again highlighted the differences between this section and the first section.

If %TestVariable% GTR 0 (

 CLS

 TITLE Windows Shell Scripting Example. - %TestVariable%

 COLOR E0

 ECHO Boo! Did I scare you?

 ECHO.

 PROMPT $p

 GOTO :EOF

)

The Final Result

Now look at the fully assembled script, as shown below. To run it, open a new
Windows command console, type the name of the script at the command prompt,
and press Enter.

54
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

@ECHO off

SET TestVariable=%random%

If %TestVariable% GTR 22000 (

 Cls

 TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

 COLOR 02

 Echo Greetings %username%. Code well and Prosper.

 Echo.

 PROMPT

 GOTO :EOF

)

If %TestVariable% GTR 11000 (

 CLS

 TITLE Demo - Manipulating the Windows command console environment - %TestVariable%

 COLOR 0E

 ECHO Hello. It good to be working with you today!

 ECHO.

 PROMPT dg

 GOTO :EOF

)

If %TestVariable% GTR 0 (

 CLS

 TITLE Windows Shell Scripting Example. - %TestVariable%

 COLOR E0

 ECHO Boo! Did I scare you?

 ECHO.

 PROMPT $p

 GOTO :EOF

)

C
h

a
p

te
r 2

In
t e

ra
c
tin

g
 w

ith
 th

e
 W

i n
d

o
w

s
 S

h
e
ll

55
Summary

The focus of this chapter was to introduce you to the Windows shell and get you
comfortable working with it. This included showing you how to modify the ap-
pearance of the Windows command console. Specifically, you learned how to change
the color scheme, command prompt, and title bar text. In addition, you learned
about the differences between internal and external commands as well as how the
Windows shell locates and executes these commands. You then completed the
Unpredictable Command Prompt script, which helped tie together many of the
concepts presented in this chapter.

E X E R C I S E S

1. Create a new Windows shell initialization script that automatically adds to the

path variable the name and path of the folder where you plan to store your

Windows shell scripts.

2. Create a new Command Prompt shortcut and configure it to automatically ex-

ecute your new Windows shell initialization script. Hint: Use the /K switch and

specify the complete path of the folder where the scripts reside.

This page intentionally left blank

3

I
n this chapter, I’ll explain the importance of adding comments to your Windows
shell scripting to make your code self-documenting. I’ll also provide you with
a Windows shell script template that you can use as the basis for organizing

and documenting your scripts. You will learn about a programming technique called
redirection, and you’ll learn how to use it to control script input and output.

This chapter also shows you how to group commands and make the execution of one
command dependent on the outcome of another command. Finally, you will learn how to
create the Fortune Teller game. This game builds on the programming techniques that
have been used in previous games and also demonstrates how to create a script that
continues to execute indefinitely by looping back and re-executing previous statements.

Specifically, you will learn

• How to add comments to your Windows shell scripts

• How to place two or more statements on the same line

• How to set up conditional command execution

• How to make the output of one command the input for another command

• How to create report and log files and append data to existing report and log files

Windows Shell
Scripting Basics

C H A P T E R

58
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project Preview: The Fortune Teller Game

This chapter’s main project is called the Fortune Teller game. It demonstrates the
application of a number of programming techniques, including how to collect
input from the player, how to evaluate player input, and how to create a script that
continues to run until the player decides to quit the game.

The game begins by presenting the player with a welcome screen that helps to
define the premise of the game, as shown in Figure 3.1.

FIGURE 3.1

The Fortune Teller
game begins

by welcoming
the player.

FIGURE 3.2

The fortune teller
enters the room.

The player must press a key for the game to continue, at which point the next
screen continues to build upon the game’s story line, as shown in Figure 3.2.

Next, the fortune teller invites the player to ask a question and promises to try and
provide an answer, as shown in Figure 3.3.

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
59

After answering the player’s first question, the fortune teller continues to allow
additional questions to be asked, as shown in Figure 3.5. The game continues until
the player closes the Windows command console or types the lower case letter e to
end, or exit, the game.

FIGURE 3.3

She invites the
player to ask
a question.

FIGURE 3.4

With as much
drama as she can
create, the fortune
teller answers the
player’s question.

FIGURE 3.5

Players may
continue to ask as
many questions as

they wish.

The game then describes the process that the fortune teller goes through as she uses
her psychic powers to come up with an answer. As shown in Figure 3.4, the fortune
teller is not always able to provide the player with a conclusive Yes or No response.

More Scripting Basics

So far, you have learned how to create, save, and run Windows shell scripts. You
have learned how to display text output, post messages in the Windows command
console’s title bar, and perform other tricks like command prompt modification.
Now you should learn a few script housekeeping matters. Specifically, I’ll show

60
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

you how to add comments to scripts in order to make them self-documenting. In
addition, I’ll discuss the importance of using comments to create a Windows shell
script documentation template that you can use to improve the overall organiza-
tion and manageability of your scripts.

Documenting Your Scripts with Comments

Adding comments to your Windows shell scripts makes them easier for other people
to understand. Comments provide you with the ability to embed documentation
with a script so that you can explain how and why you wrote it the way that you
did. Adding comments to scripts is a little bit like adding a trail of bread crumbs.
They give you something to follow if you find that you need to fix or modify a
script sometime down the road.

Comments are added to Windows shell scripts using the REM statement, which has
the following syntax:

REM Comment

Comment is a text string representing the documentation that you wish to embed
in the script. REM statements have no impact on the execution of your script. The
Windows shell ignores them during script execution. You can use the REM state-
ment in either of two ways. One way to use the REM statement is to include it on a
line by itself to describe or document the action of one or more statements that
follow, as demonstrated below.

@ECHO off

REM Display the Welcome Screen

ECHO.

ECHO.

ECHO W E L C O M E T O T H E

ECHO.

ECHO F O R T U N E T E L L E R G A M E !

ECHO.

ECHO.

ECHO.

REM Make the player hit a key in order for the game to continue

PAUSE

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
61

A second way to use the REM statement is to place it at the end of another state-
ment, as demonstrated below.

PAUSE REM Make the player hit a key in order for the game to continue

Always begin with the @ECHO off statement as the first script statement. If you

forget and leave this statement out of your script, all your script statements (includ-

ing your comments) will be displayed as the script executes, thus defeating much of

the benefit for adding comments to your scripts.

Creating a Script Template

Now that you know how to use the REM statement to add comments to your Win-
dows shell scripts, consider a second application for this highly useful statement.
Instead of using the REM statement just to document your script’s logic, how about
using it to improve your scripts overall organization? Specifically, I am suggest-
ing that you create a Windows shell script template similar to the one I have
created below.

@ECHO off

REM ***

REM

REM Script Name: Xxxxxxxx.bat

REM Author: Xxxx Xxxxx

REM Date: Xxxxx XX, XXXX

REM

REM Description: Xxx

REM

REM ***

REM Script Initialization Section

REM Main Processing Section

REM Subroutine and Procedure Section

TRAP

62
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In this example, the template begins with the @ECHO off statement and then uses
the REM statement to format a script header in which you can document informa-
tion about the script, including its name, author, creation date, and a description.
Three additional statements have been added to the bottom of the template and
can be used to organize your scripts into three major sections. In the Initialization
section, you would add statements that perform functions such as setting fore-
ground and background colors or posting the name of the script in the Windows
command console’s title bar.

The Main Processing section is where you would type the core logical portions of
your script. Later, in Chapter 7, “Creating Procedures and Subroutines,” I’ll go over
how to isolate portions of your code into discreet subroutines and procedures,
which you would then locate in the third section of the template.

By using the template I have provided or by creating one of your own, you lay down
a foundation for all future script development with a consistent organizational
structure that will be easy to follow and update. For example, the following script
demonstrates how to use the template in the creation of a new script.

@ECHO off

REM ***

REM

REM Script Name: ScriptInit.bat

REM Author: Jerry Ford

REM Date: June 21, 2003

REM

REM Description: Customize a Windows shell scripting work environment

REM

REM ***

REM Script Initialization Section

REM Modify the Windows command console title bar

TITLE = Script Environment Configuration

REM Set background color to white and foreground color to black

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
63

COLOR F0

REM Add C:\Scripts to the search path

PATH %path%;C:\Scripts

REM Modify the command prompt to display the greater than sign

PROMPT $g

REM Main Processing Section

REM Clear the screen

CLS

REM Tell the user that everything it set up

ECHO Script environment initialization complete

REM Subroutine and Procedure Section

As you can see, anyone who views the script can quickly identify the script’s pur-
pose and its author. By looking for the three main script comments, you can also
easily locate different sections of the script. By adding additional comments, you
can create self-documenting scripts. Note that while this particular example does
not have any subroutines or procedures, you might still want to include that sec-
tion comment in the script as a placeholder for possible future development.

Mastering Command Redirection

So far, all the examples you’ve seen in this book have demonstrated that script
output is, by default, written to the Windows command console. In addition, all
input has come directly from the computer’s keyboard. However, the Windows
shell let’s you specify different sources of input, such as

• The keyboard

• A file

• The output generated by another command

64
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In addition, the Windows shell let’s you send output to different destinations,
such as

• The Windows command console display

• A file

• A printer

Examining Data Input and Output

The Windows shell can work with three different command sources, as outlined
below.

• Standard Input. The location where the Windows shell looks for command in-
put. By default, this is the computer’s keyboard.

• Standard Output. The default location where the Windows shell sends all out-
put. By default, this is the Windows command console.

• Standard Error. The default location where the Windows shell sends all error
messages. By default, this is the Windows command console.

When you modify the Windows shell’s default source for input or output, you
perform what is known as redirection. Input and output redirection is remarkably
easy to set up and can be used to perform a number of useful tasks, including

• Automatically supplying commands with input to process

• Report generation

• Error log file creation

To support input and output redirection, the Windows shell uses a number of
special characters. These characters and their function are outlined in Table 3.1.

In addition to redirecting output to files, you can also send it to a printer by specify-

ing the appropriate port number, such as LPT1.

I’ll demonstrate how to work with these redirection operators in the sections
that follow.

TRICK

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
65

Using One Command’s Output
as Another Command’s Input

The | redirection operator enables you to feed, or pipe, the output of one com-
mand to another command as input. The best way I can explain this is by showing
you an example. First, let’s say that you created a text file called TestFile.txt, and
then added the following lines to it:

Strawberry

Apple

Grape

Blue Berry

Orange

One way to view the contents of this file from the Windows command console
would be with the TYPE command, as demonstrated below.

c:\scripts>TYPE TestFile.txt

Strawberry

Apple

Grape

Blue Berry

Orange

The TYPE command displays the contents of files by sending its output to standard

output. By default, this is the Windows command console.

TABLE 3.1 REDIRECTION OPERATORS

Operator Example Description

> command > file Sends all output to a file or device

< command < file Retrieves input from a file

>> command >> file Appends output to a file

2> command 2> file Sends all error output to a file or device

2>&1 command 2>&1 Sends all error output to the same location as
all normal output

| command1 | command2 Uses the output from one command as the input
for another command

DEFINITION

66
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As you can see, the TYPE command displays the contents of the TestFile.txt file ex-
actly as they are stored. However, suppose that you wanted to sort the entries in the
file before displaying them. One way to accomplish this is to redirect the output of
the TYPE command and use it as input for the SORT command, as demonstrated below.

c:\scripts>TYPE TestFile.txt | SORT

Apple

Blue Berry

Grape

Orange

Strawberry

The SORT command sorts data as input and sends the result to standard output.

Generating Reports

The > redirection operator enables you to send command output to a destination
other than standard output. It provides an easy way to generate report and log files.
In addition, the >> operators provide the ability to append data to the end of existing
report and log files. Look at an example of these two redirection operators in action.

@ECHO off

REM ***

REM

REM Script Name: Reporter.bat

REM Author: Jerry Ford

REM Date: June 28, 2003

REM

REM Description: A report generation example

REM

REM ***

REM Script Initialization Section

REM Specify folder where report is to be saved

DEFINITION

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
67

SET dest=C:\Scripts\LogFiles\Sample.txt

REM Display report data

ECHO Sample Windows shell script report > %dest%

ECHO. >> %dest%

ECHO Date: %date% >> %dest%

ECHO. >> %dest%

ECHO Created by %username% >> %dest%

ECHO. >> %dest%

ECHO. >> %dest%

ECHO Scripts residing in C:\SCRIPTS: >> %dest%

ECHO -- >> %dest%

ECHO. >> %dest%

DIR *.bat >> %dest%

REM Notify user that the report is now ready

ECHO Sample.txt report has been created in %dest%

The DIR command provides a list of all files and folders stored in the specified folder

or directory.

In this example, a variable called dest is established using the SET command. It is
assigned the name and path of a report that the script will create. The report is
actually created when the first ECHO statement is executed and has its output redi-
rected to the folder specified by the dest variable. Once the file is created, the script
continues to write to the file by redirecting the output of ECHO statements using
the >> (append) operator.

This script will fail unless the complete path to the target folder already exists.

Before you run this script, make sure that you create a subfolder called LogFiles

within your C:\Script folder.

DEFINITION

TRAP

68
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Be sure you remember to switch from the > operator to the >> operator after the first

redirection operation in the script. Otherwise, instead of appending additional data

to the end of the report, your script will continue to overwrite the text stored in the

report, leaving only the last line of output in the report.

Figure 3.6 shows an example of the report created by this script.

TRAP

FIGURE 3.6

Examining the
report created by a

Windows shell
script using output

redirection.

Creating Error Logs

By default, Windows shell scripts send error messages and output to the same loca-
tion (e.g., the Windows command console). However, if you wish, you can redirect any
errors that occur to someplace else. For example, you might want to send all errors to
a log file that you can monitor over time to see what’s going on with your scripts.

For example, let’s say that you created an empty file called Errors.log, located in
C:\Scripts in order to have a centralized place to record script error messages as you
developed and tested them. Once created, you can write error output from any of
your scripts to this file using the 2> redirection operator, as demonstrated below.

TYPE C:\Reports\Report.txt 2> C:\Scripts\Errors.log

In this example, the TYPE command is used to display the contents of a file called
Report.txt located in C:\Reports. If Report.txt exists, then its contents are displayed.
If the Report.txt file does not exist, the following error will occur and be written to
the C:\Scripts\Errors.log file.

The system cannot find the file specified.

In addition, since the error shown above was redirected to the log file, it would not
have been displayed in the Windows command console when the script executed.

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
69

Conditional Command Execution

The Windows shell provides the ability to chain together the execution of mul-
tiple commands using a technique referred to as compound commands. Compound
commands use a collection of reserved characters, shown in Table 3.2, to set up a
relationship between two or more commands.

TABLE 3.2 COMPOUND COMMAND OPERATORS

Operator Example Description

& command & command Runs the first command followed by the
second command

&& command && command Runs the second command if the first
command was successful

|| command || command Runs the second command if the first
command had an error

() (command || command) || Defines the order in which

(command & command) commands are to be executed

Chaining Two Commands Together

The most straightforward type of compound command is created using the & op-
erator. Using this operator, you can chain together the execution of any two com-
mands, as demonstrated below.

MKDIR C:\Scripts\Reports & COPY *.txt C:\Scripts\Reports

This compound command begins by executing the MKDIR command, which cre-
ates a new directory or subfolder called Reports in the C:\Scripts folder. Once
this command completes execution, the second command in the compound com-
mand executes. In this example, the COPY command copies all files ending with a
.txt extension in the current working directory to C:\Scripts\Reports.

Setting Up Conditional Command Execution

A more advanced compound command is created using the && operator. This op-
erator executes the second command only if the first command was successful.
Otherwise, the execution of the second command is omitted. For example, the

70
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

following statement is set up to display all .log files found in the current working
directory and to copy those log files, if any exist, to C:\Scripts\LogFiles.

DIR *.log && COPY *.Log C:\Scripts\LogFiles

The || compound command operator is the exact opposite of the && operator, per-
forming the second command only in the event that the first command fails. For
example, the following compound command begins by displaying all .log files in
the current working directory. If no .log files are found, then the text of the ECHO
statement is redirected to C:\Scripts\Debug.log.

DIR *.log || ECHO No .log files were found >> C:\Scripts\Debug.log

The Windows shell allows you to chain together more than two commands at a time
if needed. For example, the following statement chains together three commands:

DIR *.log & COPY *.log C:\Tmp & ECHO .LOG files have been copied.

Grouping Commands

The Windows shell also enables you to explicitly group commands together to dic-
tate the order in which they are executed. This is accomplished using the () opera-
tors. For example, the following statement consists of five different commands:

CD C:\Scripts\Reports && (COPY *.txt A:\ & COPY *.bak A:\) && (DEL *.txt & DEL *.bak)

The first command changes the current working directory to C:\Scripts\Reports.
The first && operator ensures that the remaining commands execute only if the
first command is successful. The second and third commands have been grouped
together to ensure that they both execute before the last two commands are
processed, which execute only if the second and third commands are both pro-
cessed successfully. These two commands copy all .txt and all .bak files to the
computer’s floppy drive (A:\). Finally, if both of these commands executed suc-
cessfully, the last two commands execute and delete all .txt and .bak files found
in C:\Scripts\Reports.

Back to the Fortune Teller Game

Now let’s return to the chapter’s main project, the Fortune Teller game. Through
the development of this script, you will continue to expand on your Windows shell
scripting skills. Specifically, you will develop a script that begins by introducing
the player to a fictional fortune teller who promises to try to use her psychic pow-
ers to answer the player’s every question.

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
71

The script will answer the player using one of the following three responses:

• No!

• Yes!

• Only time will tell.

The script begins by presenting the player with a series of screens that provide back-
ground information for the game, introducing the fortune teller, and having her prompt
the player to ask a question. The script will then generate an answer to the player’s
question by displaying one of three randomly selected responses. The script then con-
tinues to allow the player to keep asking questions until the player either closes the
Windows command console or types the lower case letter e to end the game.

Designing the Game

The Fortune Teller game will be completed in eight steps, as outlined below

1. Add the script template and establish execution settings

2. Display the initial welcome screen

3. Introduce the fortune teller

4. Collect a question from the player

5. Determine if the player wants to exit the game

6. Randomly select a response

7. Display the fortune teller’s answer

8. Prompt the player to ask a new question

As you read the rest of this chapter, I’ll break down the programming statements
that must be created in each of these steps in detail. By the time you’re done, your
Fortune Teller game will be ready to begin making predictions, and you’ll have
something really neat to share with your friends.

Establishing the Execution Environment

The first step in creating the Fortune Teller game is to create a new Windows shell
script called Fortune.bat and type the following statements into it:

@ECHO off

REM ***

REM

72
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

REM Script Name: Fortune.bat

REM Author: Jerry Ford

REM Date: June 22, 2003

REM

REM Description: This Windows shell script game provides random answers to

REM question posed by the player.

REM

REM ***

COLOR 5e

TITLE The Fortune Teller Game

CLS

The first statement presents the display of script statements during execution.
The next 10 statements provide a place to document the script’s name, author,
and creation date as well as to provide a brief description. The COLOR statement sets
the Windows command console’s color scheme to yellow text on a purple back-
ground. The TITLE statement then posts the name of the game in the Windows
command console’s title bar. Finally, the CLS statement clears the display and pre-
pares it for the game’s first screen.

Creating a Welcome Screen

The first screen the player will see is a welcome screen that displays a welcome
message and a text-based graphic of a crystal ball, as shown below.

ECHO.

ECHO.

ECHO.

ECHO ^|

ECHO.

ECHO W E L C O M E T O \ /

ECHO ***

ECHO T H E F O R T U N E * *

ECHO __ * * __

ECHO T E L L E R ' S M A G I C * *

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
73

ECHO * *

ECHO C R Y S T A L B A L L ! ***

ECHO / \

ECHO -----

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Prepare to be mystified by the great psychic power of the Fortune Teller.

ECHO She knows all, she sees all and she tells all!

ECHO.

ECHO.

Pause

To prevent the above screen from scrolling off of the display as the game executes,
thus giving the player a chance to read it, the PAUSE command has been added.

Building the Story Line

Next, another CLS statement clears the display so that the game’s second screen
can be displayed. The statements that generate this screen are shown below.

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Quiet! Here she comes.......

ECHO.

ECHO The door opens and a small woman with a cane and a limp slowly

ECHO.

74
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO enters into the room.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

As you can see, the PAUSE command is again used to ensure that the player has an
opportunity to view the information on this screen.

Collecting the Player’s Question

Once again, the CLS statement is used to clear the screen—this time, to allow the
fortune teller to prompt the player to ask a question. Again, this screen consists
mostly of ECHO statements that set up the story line.

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Well, well, well....."

ECHO.

ECHO "I see that I have a visitor today."

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
75

ECHO.

ECHO "Come ask me your question."

ECHO.

ECHO "I shall reveal the answer that you so desperately need to know."

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

:QUESTION

ECHO.

SET /p reply="What is your question? "

SET trigger=%reply:~0,1%

Near the end of this section of code, you see a statement that looks like this:

:QUESTION

This statement represents a label, which is a location in a Windows shell script
that can be called upon for execution. Later, you’ll see where I add a GOTO statement
at the end of the script to create a loop to allow the game to continue to replay over
and over again.

A loop is a collection of statements that are executed repeatedly.

The next statement prompts the player to enter a question for the fortune teller to
answer. By placing the :QUESTION label just before the SET statement, I have provided
the ability to loop back to this portion of the script and replay the game starting at
the point where the fortune teller instructs the player to ask a question.

DEFINITION

76
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Next, another SET statement is executed. This statement extracts the first charac-
ter from the text string entered by the player to see if it is equal to the letter e. If
is does equal the letter e, the script assumes that the player is done and wants to
end the game.

Even though I have not yet covered it in this book, I wanted to use the substring

operation presented here to introduce you to a different method of control script

termination. Unfortunately, whether it be substring operations, conditional logic, or

loops, for your best learning experience I will only formally introduce and explain a

limited number of programming concepts at a time. My goal in this book is to intro-

duce and explain basic programming concepts and to continue to build upon them

as I go along. However, it’s almost impossible to write Windows shell script games

without using some advanced scripting techniques. Without some advanced tech-

niques, the game projects in the first two-thirds of this book would have remained

very simple while I covered all the concepts that you’ll need to write more advanced

scripts. But this approach takes away most of the fun and I wanted to present you

with game scripts that become increasingly interesting (and therefore difficult) as

the book progresses. Whenever I need to use a programming technique that I have

not yet formally introduced to you, I’ll try to provide a brief explanation of what’s

going on. I’ll then provide a reference to the chapter where the programming tech-

nique is more fully explored, and then I’ll keep moving on with the script project.

I used a substring operation above to provide a quick way for the script to end.

When coded in this way, the player could end the game by typing end, exit, or e.

Be careful when using a substring operation as shown above because if the player

somehow formulates a question using a word that begins with the letter e, the game

would end instead of providing the player with an answer. In a game like this one,

it’s a fairly safe bet that most questions will begin with phrases such as “Will I” and

“Should I,” so using the letter e is probably safe enough.

TRAP

TRAP

TRICK

IN THE REAL WORLD

The statement SET trigger=%reply:~0,1% is an example of a substring operation. A

substring is simply a portion of a string found within another string. Extracting or

parsing out substrings is a very common practice in programming. For example,

scripts often have to read and process strings of user input or portions of text files in

order to extract specific pieces of data to work with.

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
77

Creating an Exit Process

The next few lines in the script perform a test to determine whether the player wants
to end or exit the game. If the letter e was typed, then the GOTO :EOF statement is
executed, terminating the script’s execution. Otherwise, the script continues to run.

IF %trigger%==e (

 GOTO :EOF

)

Generating Random Answers

The next portion of the script begins by displaying a little more of the story line, as
shown below.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO The old fortune teller closes her eyes and slowly leans her head back.

ECHO.

ECHO She begins to mumble aloud in an ancient dialect sending chills up your back.

ECHO.

ECHO Suddenly she sits upright and stares you in your eyes!

ECHO.

ECHO.

ECHO.

ECHO.

SET z=%random%

If %z% GTR 22000 (

 SET answer=NO!

 GOTO :Continue

)

If %z% GTR 11000 (

78
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 SET answer=YES!

 GOTO :Continue

)

If %z% GTR 0 (

 SET answer=uncertain. Only time will tell.

 GOTO :Continue

)

After describing the actions of the fortune teller, a SET statement is used to assign
a random number to a variable called z. As in previous script examples, a series of
IF statements are then used to assign a value to a variable called answer based on
the value of the randomly selected variable. Specifically, if the randomly selected
variable is greater than 22,000 the answer returned by the fortune will be NO! and
the GOTO statement causes the script to jump down to the label called :Control and
continue executing from that point in the script, thus bypassing any remaining
validation of the randomly selected value. If the value of the variable is less than
22,000 and greater than 11,000, the answer returned will be YES! Otherwise, the
answer will be set to Uncertain. Only time will tell.

Displaying the Fortune Teller’s Prediction

The next portion of the script begins with a label called :Continue. This label provides
the ability to jump to this location within the script and continue processing. Next,
the screen is formatted using a collection of ECHO statements, and the answer se-
lected by the fortune teller is displayed. A PAUSE statement then halts the script’s
execution and gives the player time to read the answer to his or her question.

:Continue

ECHO The answer which you are searching for is %answer%

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
79

ECHO.

ECHO.

PAUSE

Replaying the Game

Once the player’s question has been answered by the fortune teller, the screen is
cleared and a GOTO statement is used to jump back in the script to the :QUESTION
label, thus allowing the player to ask the fortune teller a new question.

CLS

GOTO :QUESTION

The Final Result

Now look at the fully assembled script, as shown below. To help further document
the script, I have added comments throughout that help to explain the logical
processes that are taking place.

@ECHO off

REM ***

REM

REM Script Name: Fortune.bat

REM Author: Jerry Ford

REM Date: June 22, 2003

REM

REM Description: This Windows shell script game provides random answers to

REM questions posed by the player.

REM

REM ***

REM Post the name of the game in the Windows command console title bar

TITLE The Fortune Teller Game

REM Clear the display

80
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

CLS

REM Set the console colors to yellow text on a purple background

COLOR 5e

REM Display the welcome screen

ECHO.

ECHO.

ECHO.

ECHO ^|

ECHO.

ECHO W E L C O M E T O \ /

ECHO ***

ECHO T H E F O R T U M E * *

ECHO __ * * __

ECHO T E L L E R ' S M A G I C * *

ECHO * *

ECHO C R Y S T A L B A L L ! ***

ECHO / \

ECHO -----

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Prepare to be mystified by the great psychic power of the Fortune Teller.

ECHO She knows all, she sees all and she tells all!

ECHO.

ECHO.

REM Wait for the player to press a key

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
81

Pause

REM Clear the display

CLS

REM Display additional story text

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Quiet! Here she comes.......

ECHO.

ECHO The door opens and a small woman with a cane and a limp slowly

ECHO.

ECHO enters into the room.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Wait for the player to press a key

82
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

PAUSE

REM Clear the display

CLS

REM Display additional story text

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Well, well, well....."

ECHO.

ECHO "I see that I have a visitor today."

ECHO.

ECHO "Come ask me your question."

ECHO.

ECHO "I shall reveal the answer that you so desperately need to know."

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM This label provides a callable return point in the script

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
83

:QUESTION

ECHO.

REM Prompt the player to type their question

SET /p reply="What is your question? "

REM Extract the first character of the player's response

SET trigger=%reply:~0,1%

REM If the player typed the letter "e" then it's time to end the game

IF %trigger%==e (

 GOTO :EOF

)

REM Clear the display

CLS

REM Display the text that precedes the fortune teller's answer

ECHO.

ECHO.

ECHO.

ECHO.

ECHO The old fortune teller closes her eyes and slowly leans her head back.

ECHO.

ECHO She begins to mumble aloud in an ancient dialect, sending chills up

ECHO.

ECHO your back. Suddenly she sits upright and stares you in your eyes!

ECHO.

ECHO.

ECHO.

84
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

REM get a random number

SET z=%random%

REM If the random number is greater than 22,000 the answer is NO!

If %z% GTR 22000 (

 SET answer=NO!

 GOTO :Continue

)

REM If the random number is greater than 11,000 the answer is YES!

If %z% GTR 11000 (

 SET answer=YES!

 GOTO :Continue

)

REM If the random number is greater than zero the answer is uncertain.

If %z% GTR 0 (

 SET answer=uncertain. Only time will tell.

 GOTO :Continue

)

REM This label provides a callable return point in the script

:Continue

REM Display the fortune teller's answer

ECHO The answer which you are searching for is %answer%

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 3

W
in

d
o

w
s
 S

h
e
ll S

c
r ip

ti n
g

 B
a
s
ic

s
85

ECHO.

ECHO.

ECHO.

ECHO.

REM Wait for the player to press a key

PAUSE

REM Clear the display

CLS

REM Loop back and let the player ask the fortune teller another question

GOTO :QUESTION

Summary

In this chapter, you learned how to add comments to your Windows shell scripts in
order to document your scripting logic and to create a documentation template. You
also learned how to take control of input and output. This included setting up the
output of one command to provide another command’s input. This also included
learning how to create reports and error log files. This chapter also showed you how
to combine more than one command to create a compound command as well as
how to make the execution of one command conditional on the success of another
command. Finally, you had some fun by creating the Fortune Teller game.

E X E R C I S E S

1. The Fortune Teller game’s story line is very basic. Add additional story text that

helps to better describe what is occurring as the game plays out.

2. The Fortune Teller game currently makes a random selection from one of only three

possible answers. Expand the range of available answers to six and then to nine.

3. Currently, the Fortune Teller game ends when the player types the letter e instead

of a question. Add instructions to the game that explicitly inform the player of

this capability. In addition, experiment with other possible ways to end the game

such as requiring that the player enter the word Bye, at which time the Fortune

Teller could invite the player to return again later to ask more questions.

This page intentionally left blank

4

T
his chapter begins by showing you how to pass data to scripts at execution
time and how to write scripts that can accept and process this data. In addition,
you will get a formal education on the use of variables within Windows shell

scripts. You will learn about environment variables that are created and maintained by
the operating system as well as how to create and modify your own script variables.

You will also learn how to replace portions of the contents of string variables and to
perform mathematical operations on variables containing numeric data. The chapter
will then conclude by showing you how to build a Mad lib-style story called “Buzz the
Wonder Dog,” in which the reader helps to write the story by supplying key story ele-
ments collected from questions presented at the beginning of the script’s execution.

Specifically, you will learn

• How to pass data to scripts in the form of arguments

• How to access system information using system environment variables

• How to access user information using user environment variables

• How to create, modify, and delete script variables

• How to limit access to variables within scripts

Storing and
Retrieving

Information in
Variables

C H A P T E R

88
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project Preview:
“The Story of Buzz the Wonder Dog”

This chapter’s main project is “The Story of Buzz the Wonder Dog.” This Mad lib-style
story collects input from the reader, stores it in variables, and then uses variable sub-
stitution to tell a story using the reader’s input. The story will begin by displaying an
initial welcome screen that introduces the story, as shown in Figure 4.1.

FIGURE 4.1

The story begins by
displaying its
title screen.

FIGURE 4.2

The reader is
informed that his
help is needed to
write the story.

The reader is then informed that in order for the story to be told, he will need to
participate, as shown in Figure 4.2.

The reader will be asked a series of five questions, as shown in Figure 4.3. These
questions will be asked without providing any context as to their ultimate use.
This will help to ensure that the story is both unpredictable and humorous.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
89

Once the reader’s input has been collected and assigned to variables within the
Windows shell script, the story is told, as shown in Figure 4.4. As the story unfolds,
the input collected from the reader is woven into the story line.

FIGURE 4.3

The answers
collected from five

questions are
substituted into

the story.

FIGURE 4.4

The story begins by
introducing Buzz the

Wonder Dog and
his friend.

FIGURE 4.5

The story ends. Buzz
saves the day again.

After the entire story has been presented, the script will end and the Windows
command prompt will be displayed, as shown in Figure 4.5.

90
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

By completing this project, you will reinforce your understanding of how to use
variables within Windows shell scripts and lay some foundation for developing
more advanced scripts.

Passing Data to Scripts
at Execution Time

Often you can write completely self-contained scripts, meaning that they do not
require any additional information in order to execute and perform a useful func-
tion. However, many scripts, especially games, require interaction with the user in
order to execute. Earlier in this book, you have seen several sneak previews of the
use of variables as a means of collecting input from the user. This chapter will
explain in detail how to work with and control variables.

But before I go over this material, I want to take a little time to go over another
option for passing data to scripts. Using this option, you pass data or arguments to
the script when you run it. Arguments are passed to scripts by typing the name of
the script followed by a space and then one or more arguments, each of which is
separated by a space as demonstrated below. The space serves as a delimiter be-
tween each argument passed to the script.

ScriptName argument1 argument2

An argument is a piece of data passed to a command or script when it executes.

A delimiter is a marker that identifies the boundaries of individual pieces of data

passed to a script or command.

Don’t be fooled if you see that someone else has used commas, tabs, equal signs, or

semicolons as delimiters within Windows shell scripts. While most programmers

use blank spaces to separate arguments, the Windows shell will allow any of these

characters to serve as delimiters.

DEFINITION

DEFINITION

TRICK

IN THE REAL WORLD

As you continue to create Windows shell scripts, you may find that you sometimes

need to create more than one script to tackle certain tasks. In these situations, you’ll

probably want to start one script and then have it trigger the execution of the next

script. In this scenario, you’ll probably need to have the first script pass arguments

to the second script in order for the second script to know what to do.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
91

Look at an example of how to write a Windows shell script that processes a pair of
arguments passed to it at execution time.

@ECHO off

ECHO %1

ECHO %2

This script should be easy to understand. It simply displays the arguments that
have been passed to it. Go ahead and create and save this script as Test.bat. Then
run it by typing its name followed by two arguments, as demonstrated below.

Test.bat C:\Temp C:\Scripts

Once executed, you should see the following results displayed in the Windows
command console:

C:\Temp

C:\Scripts

TABLE 4.1 WINDOWS SHELL SCRIPT PARAMETERS

Parameter Description

%* Lists all the arguments that have been passed to the script

%0 Stores the name of the script

%1 Stores the first argument passed to the script

%2 Stores the second argument passed to the script

%3 Stores the third argument passed to the script

%4 Stores the fourth argument passed to the script

%5 Stores the fifth argument passed to the script

%6 Stores the sixth argument passed to the script

%7 Stores the seventh argument passed to the script

%8 Stores the eighth argument passed to the script

%9 Stores the ninth argument passed to the script

A Windows shell script processes arguments by assigning them to parameters. The
Windows shell allows you to access up to eleven different script input parameters
at a time, as listed in Table 4.1.

92
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Handling Large Numbers of Arguments

Using the information just presented, you should be able to create Windows shell
scripts that can accept and process up to nine arguments at execution time. While
this will certainly accommodate most situations, at some time you may find a need to
create a script that can accept and process more than nine arguments at run time.

When you think of script parameters, think of them as being lined up in a row
with the first argument passed to the script lined up on the far left and the last
argument passed to the script lined up on the far right. At most, the Windows
shell allows you to access nine parameters at a time, as shown below.

%1 %2 %3 %4 %5 %6 %7 %8 %9

However, the Windows shell allows you to pass as many arguments as you want to
your scripts. For example, the following list defines a collection of 12 arguments
that you might want to pass to a script.

arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9 arg10 arg11 arg12

The Windows shell automatically associates each argument with its correspond-
ing parameter. For example, the first argument passed to the script would repre-
sent the script’s first parameter, as represented by %1.

While the Windows shell won’t let you directly access more than nine arguments
at a time, it does allow you to pass as many arguments as you need. To access any
arguments passed to the script beyond the ninth one, you must learn how to use
the SHIFT command. This command allows you to move to the left by one all param-
eters representing arguments passed to your script. For example, the following
command moves all of the parameters to the left by one.

SHIFT

The net effect of the previous command is that the value stored in %2 becomes %1
and the value stored in %3 becomes %2, and so on. As a result, the script’s ninth
parameter (e.g., %9) frees up and is then automatically assigned the value passed to
the script by the tenth argument. Therefore, by executing the SHIFT command re-
peatedly, you can create a script that can access every argument passed to it.

If you wish, you can specify the parameter position at which you begin shifting argu-

ments. For example, typing SHIFT /3 leaves the contents stored in %1 and %2 unal-

tered but shifts the values stored in the rest of the script’s input parameters. Thus the

values of the arguments stored in %3 – %9 would all be shifted to the left by one.

TRICK

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
93

Handling Arguments That Include Blank Spaces

Sometimes a single argument may consist of more than a single word. In other words,
it may include blank spaces. Unless you take special steps to mark the beginning and
end of the argument, the Windows shell will treat each word in the argument as a
separate argument, producing undesirable effects within your Windows shell scripts.

To prevent this from occurring, make sure you remember to enclose all multi-
word arguments within a pair of matching double quotation marks before pass-
ing it to a script. For example, suppose you had a script to which you wanted to
pass the following files as arguments:

C:\Temp\Rough Outline.txt

C:\Temp\Sample Report.doc

Since both of these files have file names that include blank spaces, you would
need to surround both file names with double quotes before passing them to your
script, as demonstrated below.

Test.bat "C:\Temp\Rough Outline.txt" "C:\Temp\Sample Report.doc"

The script, Test.bat, would then be able to reference these two file names at %1 and
%2, respectively.

Working with Variables

Now let’s turn our attention to understanding and working with variables. A vari-
able is a reference to a location in the computer’s memory where your scripts can
store and retrieve data. There are two primary types of variables that you will work
with in Windows shell scripts, environment variables, and script variables. An
environment variable is created and maintained by the operating system. Your
scripts can access and use the values stored in environment variables. The other
type of variable that you’ll use are script variables. A script variable is created dur-
ing the execution of a script and then deleted when the script stops running.

The Windows shell provides the SET command as your primary means for display-
ing, modifying, and deleting variables. The SET command supports several differ-
ent variations of syntax, as shown below.

SET [Variable=[Value]]

SET /A Expression

SET /P Variable=[MessagePrompt]

94
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

When used in its first form, the SET command displays, creates, modifies, and de-
letes variables. Variable specifies the name of the variable to be displayed, created,
modified, or deleted. Value specifies an optional data assignment.

The second form of the SET command defines numeric variables. /A designates that
the value stored in the variable is to be treated as a number and Expression specifies
the value assigned to the variable.

The final format of the SET command allows you to interactively prompt the user
to type input, which is then assigned to a variable. /P specifies that the SET com-
mand should prompt for user input. Variable defines the name of the variable to
which the user’s input is assigned, and MessagePrompt is an optional text string that
you can use to present the user with instructions on what you want him to enter.

Accessing Environment Variables

Windows operating systems collect and store information about the computer and
its users in a special database known as the Windows registry. The information
stored in the registry is collected from a number of sources. Some of the registry’s
information is made available to you in the form of environment variables. There
are two types of environment variables:

• User environment variables provide information specific to the individual users.

• System environment variables provide information specific to the computer
and its execution environment.

Viewing Environment Variables

On Windows XP, a number of environment variables can be accessed from the
System Properties dialog using the following procedure:

1. Click on Start, right-click on My Computer, and select Properties from the menu
that appears. The System Properties dialog appears.

2. Select the Advanced property sheet.

3. Click on the Environment Variables button located at the bottom on the dialog.
The Environment Variables dialog appears, as shown in Figure 4.6.

User variables associated with the currently logged-on user are displayed at the
top of the dialog. In this example, two user environment variables are shown, both
of which specify the location of different temporary folders.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
95

System environment variables are displayed at the bottom of the dialog. You’ll usu-
ally find a number of different system environment variables listed here, including

• COMSPEC. Specifies the location of the Windows shell (e.g., CMD.EXE).

• OS. Identifies the currently running Windows operating system.

• PATH. Specifies the default search path.

• PATHEXT. Lists file extensions that represent executable programs.

• Prompt. Specifies the default command prompt format.

• TEMP. Specifies the location of a folder where the system may store
temporary files.

• WINDIR. Identifies the folder where system files are located.

Modifying Environment Variables

While you can view and access environment variables from within your Windows
shell scripts, you cannot permanently change them. You can, however, make per-
manent changes to user and system environment variables from the Environment
Variables dialog provided that you have administrative rights for the computer on
which you’re working.

By clicking on the New, Edit, or Delete buttons associated with either the user or
system environment variables, you can create, change, or delete environment vari-
ables. For example, to create a new system variable, click on the New button located
at the bottom of the Environment Variables dialog. The New System Variable dialog will
appear, as shown in Figure 4.7. To create the new variable, type its name in the
Variable name field and its value in the Variable value field and click on OK.

FIGURE 4.6

On Windows XP,
both user and

system environment
variables can be

viewed and
modified from the

Environment

Variables dialog.

96
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

For any changes you make to user environment variables to take effect, you must log

off the computer and log back in again. For any changes you make to system vari-

ables to take effect, you must restart the computer.

Some environment variables cannot be viewed from the Environment Variables dia-
log. However, the Windows shell will let you view and reference them using the SET
command. For example, to view a list of all environment variables accessible by
your scripts, type SET at the Windows command prompt and hit the Enter key. You
should see output displayed similar to the following:

C:\>SET

ALLUSERSPROFILE=C:\Documents and Settings\All Users

APPDATA=C:\Documents and Settings\Jerry Ford\Application Data

CommonProgramFiles=C:\Program Files\Common Files

COMPUTERNAME=WRKSTN0001

ComSpec=C:\WINDOWS\system32\cmd.exe

HOMEDRIVE=C:

HOMEPATH=\Documents and Settings\Jerry Ford

LOGONSERVER=\\WRKSTN0001

NUMBER_OF_PROCESSORS=1

OS=Windows_NT

Path=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\COMMAND;C:\DOS;C:\WINDOWS\system3

2\WBEM

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 6 Model 6 Stepping 0, GenuineIntel

PROCESSOR_LEVEL=6

PROCESSOR_REVISION=0600

ProgramFiles=C:\Program Files

FIGURE 4.7

Defining a new
system environment

variable.

TRICK

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
97

PROMPT=pg

SESSIONNAME=Console

SystemDrive=C:

SystemRoot=C:\WINDOWS

TEMP=C:\DOCUME~1\JERRYF~1\LOCALS~1\Temp

TMP=C:\DOCUME~1\JERRYF~1\LOCALS~1\Temp

USERDOMAIN=WRKSTN0001

USERNAME=Jerry Ford

USERPROFILE=C:\Documents and Settings\Jerry Ford

windir=C:\WINDOWS

C:\>

While you cannot make permanent changes to environment variables from within

your Windows shell scripts, you can create variables that have the same name as

environment variables and modify their values. These variables will then tempo-

rarily override the values of the environment variables for your script.

Although you cannot see them using any of the previously mentioned procedures,
Windows 2000 and XP also provide access to a small collection of dynamically
created environment variables. These variables are listed in Table 4.2.

TRICK

TABLE 4.2 DYNAMIC ENVIRONMENT VARIABLES

Variable Description

CD Stores a string representing the current working directory

DATE Stores a string representing the current system date

Time Stores a string representing the current system time

RANDOM Retrieves a random number between 0 and 32,767

ERRORLEVEL Retrieves the exit code of the previously executed command

CMDEXTVERSION Stores a string identifying the Windows shell version number

CMDCMDLINE Stores a string showing the command that was used to start the
current Windows shell session

98
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating, Modifying, and Deleting Script Variables

While you are limited as to what you can do within a script with environment
variables, you have complete control over your script variables. For example, to
create a script variable called gamename and assign it a value of WonderDog, you would
use the SET command to define the variable, as shown below.

SET gamename=Wonderdog

Note that there are no blank spaces between either the variable name and the
equals sign or between the equals sign and the assigned value. If a blank space
were added before the equals sign, the Windows shell would interpret that to mean
that the blank space was part of the variable’s name. If a blank space were inserted
between the equals sign and the assigned value, the Windows shell would inter-
pret the blank space as part of the assigned text.

To change the value assigned to the variable, you would again use the SET com-
mand, as demonstrated below.

SET gamename=BuzzTheWonderDog

When used this way, the SET command simply replaces the value assigned to the
specified variable. You can also use the SET command to delete a variable by setting
the variable equal to nothing, as demonstrated below.

SET gamename=

Naming Variables

While the Windows shell is very flexible when it comes to working with variables,
there are still a few rules that you must follow to avoid errors. These rules are
outlined below.

• If you include quotation marks as part of the variable’s assigned value, the
Windows shell will treat the quotation marks as part of the value assignment.

• You may not include reserved characters in a variable’s value assignment un-
less you enclose them within double quotation marks.

• Blank spaces included before the equals sign are considered part of the
variable’s name.

• Blank spaces included after the equals sign are considered part of the
variable’s assigned value.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
99

In addition to these rules, I have some additional friendly advice that you should
keep in mind when working with variables.

• Make variable names as descriptive of their contents as possible.

• While there is no practical limit to the length of a variable name, I recom-
mend keeping them less than 20 characters long to help make them easy to
read and manage.

• Variable names are not case-sensitive. However, I recommend that you be con-
sistent in whatever naming convention you choose to adopt. In other words,
don’t mix things up.

Determining the Limits of Variable Access

By default, access to variables is global throughout a script, meaning that vari-
ables can be accessed from any location within the script. However, if you wish to
exercise strict control over variables in your scripts, you can localize accessibility
to variables by restricting the location within a script where they can be refer-
enced. To perform this trick you’ll need to learn how to work with the SETLOCAL and
ENDLOCAL commands.

You use the SETLOCAL and ENDLOCAL commands together to define a starting and end-
ing location within a script where a variable and its value can be referenced. For
example, consider the following script:

@ECHO off

SETLOCAL

 SET x=true

 ECHO x = %x%

ENDLOCAL

ECHO x = %x%

This script begins by using the SETLOCAL command to localize the value of a variable
called x. It then assigns a value of true to x and displays its value. The ENDLOCAL command
is then used to terminate the scope of the x variable, effectively deleting it. Therefore,
when the script attempts to reference it a second time, no value is displayed. The
following output shows what you will see if you create and run this script.

x = true

x =

100
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The SETLOCAL and ENDLOCAL commands can also be used to localize changes made to
an existing variable, with the result that any changes made to the variable within
the localized scope are discarded when the scope terminates. For example, con-
sider the following example.

@ECHO off

SET x=true

ECHO x = %x%

SETLOCAL

 SET x=false

 ECHO x = %x%

ENDLOCAL

ECHO = %x%

In this example, the script begins by defining a variable called x and assigning it a
value of true. It then displays this value. Next, the SETLOCAL and ENDLOCAL commands
set up a temporary localized scope in which the value of x is changed to false and
then displayed. However, as soon as the localized scope terminates, the previous
value assigned to x is restored. Thus when the value of x is displayed again, its
value is equal to true again, as shown below.

x = true

x = false

x = true

The SETLOCAL and ENDLOCAL commands are often used in combination with subrou-

tines and procedures, which are covered later in Chapter 7, “Creating Procedures

and Subroutines.”

Working with Mathematical Variables

As mentioned earlier, when the /A switch is used with the SET command, the Win-
dows shell knows that it needs to treat any data assigned to the defined variable as
numeric. By labeling a value as numeric, you enable the ability to manipulate it
using mathematical expressions. The Windows shell can manipulate numbers

TRICK

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
101

within the range of –2,147,483,648 to 2,147,483,647. Any attempt to work with a
number smaller or larger than this range will result in an error. However, I doubt
that this limitation will ever affect your scripts.

The following statement demonstrates how to assign a numeric value to a vari-
able.

SET /A x = 1

In this example, x has been set to equal 1. You can also use mathematical expres-
sions to assign a numeric value to a variable, as demonstrated below.

SET /A x = 1 + 2

In addition, you can use values stored in other numeric variables in building ex-
pressions, as demonstrated below.

SET /A x = 1

SET /A y = 2

SET /A z = x + y + 3

ECHO z

If you ran this example, you would see that the value of z is 6. In each of these
examples, the = (equals sign) is used to assign numeric values to variables. The
Windows shell also provides a number of other arithmetic operators, as listed in
Table 4.3, that you can use to assign values to numeric variables.

TABLE 4.3 ASSIGNMENT OPERATORS

Operator Purpose

+= Adds two values together and assigns the result

-= Subtracts one value from another and assigns the result

*= Multiplies two values and assigns the result

/= Divides one value into another and assigns the result

%= Assigns the remaining portion of a division operation (e.g., the modulus)

For example, the following statement sets the value of x equal to the current value
of x plus 1.

SET /A x += 1

102
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Likewise, the following example sets x equal to x plus 5.

SET /A x += 5

In addition to the assignment operators listed in Table 4.3, you may use any of the
arithmetic operators shown in Table 4.4 when manipulating the contents of nu-
meric variables.

TABLE 4.4 ARITHMETIC OPERATORS

Operator Purpose

+ Adds numeric values together

- Subtracts one value from another

* Multiples two values together

/ Divides one value into another

% Determines the quotient when dividing two numbers (also referred to
as the modulus)

For example, the following statements define a variable called x, assign it an ini-
tial value of 2 and then multiplies the result by 5 before subtracting 3.

SET /A x = 2

SET /A x = x * 5 - 3

The end result is that x is equal to 7.

I don’t know if you have noticed yet or not, but when you use the /A switch with the

SET command, you can add blank spaces before and after the arithmetic operator

and the Window shell automatically ignores them. This allows you to make your

scripts more readable.

The Windows shell follows a strict set of rules whenever it performs a mathemati-

cal operation. First, it resolves quotient values (i.e., the modulus). Then it performs

multiplication and division from left to right. Finally, it does any remaining addition

and subtraction, again working from left to right.

TRICK

TRAP

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
103

Variable String Manipulation

The Windows shell also provides you with tools for manipulating the contents of
variables containing text strings. The first programming technique is known as
string substitution and involves the search for and replacement of a portion of
text within a string. The second technique is to perform a substring operation. A
substring operation is one in which you extract a portion of text from a text string.

Replacing a Portion of a String

Using string substitution, you can replace all or part of one string with another
string. You might find substring operations useful in situations where you need
your script to edit arguments passed to the script or to edit input provided by the
user. For example, you might create a script that prompts the user to reply by
entering the letter Y in order to continue running. However, some users may in-
stead respond by typing in Yes instead. By performing a substring operation on the
input provided by the user, you could replace the Yes string with a Y string.

The syntax you must follow when performing string substitution operations is
outlined below.

%VariableName:ReplacementString=OriginalString%

%VariableName is the name of a variable to which you want to assign the result of the
substring operation. It is immediately followed by the colon character. ReplacementString
is a placeholder representing the string to be substituted (e.g., the Y string in the
previous example) and OriginalString is a placeholder representing the string in which
the replacement is to occur (e.g., the Yes string in the previous example).

Below is an example of string substitution in action. In this example, a variable
called x is set equal to a small text phrase. Then, using string substitution, a sec-
ond variable called z is set equal to the value of x, but only after a substring opera-
tion has been completed. In the substring operation, the word blue is substituted
for the word gray.

@ECHO off

SET x=The sky above was quite gray

SET z=%x:gray=blue%

ECHO %z%

104
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

If you save and run this script, you’ll see the output shown below.

The sky above was quite blue

You may also use string substitution to delete portions of text from a text string. To

accomplish this trick, leave the replacement string blank. For example, to remove

the word gray from the string in the previous example, you would set the value of z

as shown below.

SET z=%x:gray=%

Extracting a Portion of a String

Another string manipulation technique supported by the Windows shell is substring
operations, in which a portion of a text string is extracted from the string. You
simply specify the starting location of the first character in the string to be ex-
tracted and, optionally, the number of characters to be extracted from that point
on. What you do with the substring once you have extracted it is up to you. You
might assign it as the value of a new variable or reassign it back to the original
variable, thus replacing the original string with the substring.

The syntax you must follow when performing a substring operation is outlined below.

%VariableName:~StartPosition,Length%

First you specify the variable name. Then you add the colon and the tilde character (~)
exactly as shown above. Next the StartPosition placeholder is used to specify the posi-
tion of the first character in the substring. Length is optional. If Length is omitted, the
substring will consist of all characters starting at StartPosition all the way to the end of
the string. When Length is specified, the substring will consist of all the characters
beginning at StartPosition plus the number of specified characters to the right of the
starting position. To see how substring operations work, look at the following example:

@ECHO off

SET x=The sky above was quite gray

SET z=%x:~0,7%

ECHO %z%

In this example, the second SET statement extracts a substring from a text string
stored in the x variable. It then assigns the substring text to a variable called z.

TRICK

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
105

The substring operation begins at character position zero (e.g., the first letter of the
first word of the text string) and consists of 7 characters. If you were to run this script,
you would see the that the substring that is extracted and assigned to z is The sky.

Back to “The Story of Buzz the Wonder Dog”

The purpose behind “The Story of Buzz the Wonder Dog” is to provide reinforce-
ment of your understanding of how to create and reference variables within Win-
dows shell scripts. Using a Mad lib-style format, you will write a script that prompts
the reader for input that the script will then use to help tell the story. The trick,
however, is that readers won’t know in advance how their input will be used within
the story. As you will see when you run the completed script, this can lead to some
surprising and unusual twists and turns.

Designing the Game

“The Story of Buzz the Wonder Dog” will be completed in five steps, as outlined below.

1. Initialize the scripting environment

2. Display the welcome screen

3. Notify the reader that their help is required

4. Prompt for reader input

5. Display the story

In the sections that follow, I’ll explain just what you need to do to complete the
script development of each of these steps.

Configuring the Windows Command Console

As with previous Windows shell script projects, this one begins by disabling the dis-
play of statements within the scripts at execution time, as shown below. In addition,
the foreground text color is modified to display as yellow. Next, the screen is cleared
and the title of the story is posted in the Windows command console’s title bar.

@ECHO off

COLOR EC

CLS

TITLE = THE STORY OF BUZZ THE WONDER DOG

106
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Building the Welcome Screen

The initial screen welcomes the reader to the story. It consists of a series of ECHO
statements as shown below.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO W E L C O M E T O T H E

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO S T O R Y O F B U Z Z T H E W O N D E R D O G !

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

The last statement in this section uses the PAUSE command to ensure that the reader
has the chance to read and ponder the story that is about to be told.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
107

Providing the Reader with Instructions

The second screen that readers will see informs them that their participation is
required in order to tell the story and explains that all they need to do is provide
answers to a few simple questions.

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Your help is needed to tell this story. All that you have to do is

ECHO.

ECHO answer a few simple questions.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

This section, like all sections that follow, begins by clearing the screen before dis-
playing any text and ends by executing the PAUSE command.

108
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Collecting Key Story Elements from the Reader

To tell the story, the script needs to collect information from the reader that will
then be assigned to the following script variables:

• player. The name of the person reading the story (a.k.a. the name of Buzz’s fic-
tional owner)

• clothes. The piece of clothing that Buzz grabs onto when saving his owner for
the first time.

• vehicle. The type of motor vehicle that almost runs over Buzz’s owner at the
beginning of the story.

• bodypart. The part of his owner’s body that Buzz grabs onto when saving his
owner for the second time.

• animal. The type of animal that almost runs over Buzz’s owner at the end of
the story.

These pieces of information are collected and assigned to variables using the SET
command with the /P switch, as shown below.

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

SET /p player=1. What is your name?

ECHO.

SET /p clothes=2. Name of piece of clothing:

ECHO.

SET /p vehicle=3. Name a type of 4-wheel motor vehicle:

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
109

ECHO.

SET /p bodypart=4. Name a part of the human body:

ECHO.

SET /p animal=5. What is your favorite animal?

ECHO.

ECHO.

ECHO These look like really good answers. Now, let's get on with the story.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

Using Variable Substitution to Write the Story

From this point on, the script consists of statements that display a portion of the
story, clear the screen, and pause the display. Rather than break out each screen
the reader will see in this section, I’ll provide you with the rest of the story (shown
below) and let you determine how to format the display of these screens.

Once upon a time, there lived a very special little dog called Buzz.

Buzz's best friend was his owner, %player%. Buzz and %player% went everywhere

together. Sunday was their favorite day to spend together because on

that day they would play in the water down by Old Man's Grove.

On one particularly hot summer Sunday, Buzz and %player% were walking down

the side of an old dirt road on their way to Old Man's Grove when

suddenly Buzz stopped and spun around, grabbing %player%'s %clothes%,

dragging %player% off the road down into the ditch. A split second later,

110
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

a big red %vehicle% came tearing by out of control, running right over the

stretch of the road where Buzz and %player% had been walking.

"Good boy," said %player%. "You really saved me that time Buzz. But what

about the man in that %vehicle%? If he doesn't slow down quickly, he'll never

make the turn at Old Man's Grove!" %player% stared as the %vehicle% barreled

down the road. When %player% looked back to see Buzz, the four-legged friend

was gone.

Moments later, as the %vehicle% was about to crash into the grove, Buzz

leaped off of the top of a large bolder and onto the top of the

%vehicle%. He then squeezed his way through an opening in the back of the

%vehicle% and found that the driver was unconscious.

Thinking quickly, Buzz pulled the driver out of the way and took over

at the wheel, quickly applying the brakes and stopping the %vehicle%

just inches before it reached the edge of the grove. The quick-

thinking Buzz saw that the man was not breathing and began pulling

him out of the %vehicle%.

By the time %player% arrived a few minutes later, the man had

revived and was sitting upright on the ground, petting Buzz as the

dog licked his face. "This here your dog?" the driver asked. "Yes sir,"

said %player% with a great big smile. "Well, it looks like I owe you a lot.

Your dog just saved my life. Had he not given me CPR, I think I'd have

been a goner for sure!" said the driver.

"Wow!" said %player%, running over to hug his four-legged friend. Just then

Buzz unexpectedly leaped up, grabbing %player% by the %bodypart%, tossing %player%

clear of the dirt path that %player% had been running on. Moments later, a

big white %animal% came scurrying down that very path, and Buzz the Wonder

Dog ran off after it. "I hope that %animal% will be OK" said the driver.

"Don't worry" said %player%, "Buzz will save him......"

The End

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
111

I suggest that you attempt to complete the development of this story before I show
you how I finished it in the next section. However, if you are not sure how to finish it
up or don’t have the time to do so right now, then by all means, please keep reading.

The Final Result

Now look at the completely assembled script. To help document the script and
make it easier to follow along, I added comments throughout that explain the
logical processes that are taking place.

@ECHO off

REM ***

REM

REM Script Name: WonderDog.bat

REM Author: Jerry Ford

REM Date: July 1, 2003

REM

REM Description: This Windows shell script tells the story of "Buzz the Wonder

REM Dog" using input provided by the reader.

REM

REM ***

REM Set the Windows command console to display yellow on black

COLOR 0E

REM Clear the display

CLS

REM Write the name of the story to the Windows command console's title bar

TITLE = THE STORY OF BUZZ THE WONDER DOG

REM Display the welcome screen

ECHO.

ECHO.

112
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO.

ECHO.

ECHO.

ECHO W E L C O M E T O T H E

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO S T O R Y O F B U Z Z T H E W O N D E R D O G !

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Let readers know that their help is required to write the story

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
113

ECHO.

ECHO.

ECHO.

ECHO Your help is needed to tell this story. All that you have to do is

ECHO.

ECHO answer a few simple questions.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Start collecting input from the reader

ECHO.

ECHO.

ECHO.

ECHO.

114
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO.

REM Collect the name of Buzz's owner.

SET /p player=1. What is your name?

ECHO.

REM Determine the piece of clothing that Buzz grabs onto when saving

REM his owner for the first time

SET /p clothes=2. Name of piece of clothing:

ECHO.

REM Determine what type of vehicle almost runs over Buzz and his owner

SET /p vehicle=3. Name a type of 4-wheel motor vehicle:

ECHO.

REM Determine the body part Buzz grabs onto when saving his owner for

REM the second time

SET /p bodypart=4. Name a part of the human body:

ECHO.

REM Determine what type of animal almost runs over Buzz's owner the

REM second time

SET /p animal=5. What is your favorite animal?

ECHO.

ECHO.

ECHO These look like really good answers. Now, let's get on with the story.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
115

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Pause until the reader presses a key

Pause

REM Clear the display

CLS

REM Tell the first part of the story

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Once upon a time there lived a very special little dog called Buzz.

ECHO.

ECHO Buzz's best friend was his owner, %player%. Buzz and %player% went everywhere

ECHO.

ECHO together. Sunday was their favorite day to spend together because on

ECHO.

ECHO that day they would play in the water down by Old Man's Grove.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

116
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO.

ECHO.

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Tell the second part of the story

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO On one particularly hot summer Sunday, Buzz and %player% were walking down

ECHO.

ECHO the side of an old dirt road on their way to Old Man's Grove when

ECHO.

ECHO suddenly Buzz stopped and spun around, grabbing %player%'s %clothes%,

ECHO.

ECHO dragging %player% off the road down into the ditch. A split second later

ECHO.

ECHO a big red %vehicle% came tearing by out of control, running right over the

ECHO.

ECHO stretch of road where Buzz and %player% had been walking.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
117

ECHO.

ECHO.

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Tell the third part of the story

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Good boy," said %player%. "You really saved me that time Buzz. But what

ECHO.

ECHO about the man in that %vehicle%? If he doesn't slow down fast he'll never

ECHO.

ECHO make the turn at Old Man's Grove!" %player% stared as the %vehicle%

ECHO.

ECHO barreled down the road. When he looked back to see Buzz, his four-legged

ECHO.

ECHO friend was gone.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

118
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Tell the fourth part of the story

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Moments later, as the %vehicle% was about to crash into the grove, Buzz

ECHO.

ECHO leaped off of the top of a large bolder onto the top of the

ECHO.

ECHO %vehicle%. He then squeezed his way through an opening in the back of the

ECHO.

ECHO %vehicle% and found that the driver was unconscious.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
119

ECHO.

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Tell the fifth part of the story

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Thinking quickly, Buzz pulled the driver out of the way and took over

ECHO.

ECHO at the wheel, quickly applying the brakes and stopping the %vehicle%

ECHO.

ECHO just inches before it reached the edge of the grove. The quick-

ECHO.

ECHO thinking Buzz saw that the man was not breathing and began pulling

ECHO.

ECHO him out of the %vehicle%.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

120
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Tell the sixth part of the story

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO By the time %player% arrived a few minutes later, the man had

ECHO.

ECHO revived and was sitting upright on the ground, petting Buzz as the

ECHO.

ECHO dog licked his face. "This here your dog?" the driver asked "Yes sir,"

ECHO.

ECHO said %player% with a great big smile. "Well, it looks like I owe you a lot.

ECHO.

ECHO Your dog just saved my life. Had he not given me CPR, I think I'd have

ECHO.

ECHO been a goner for sure!" said the driver.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 4

S
t o

rin
g

 a
n

d
 R

e
tr ie

v
i n

g
 In

fo
r m

a
ti o

n
 in

 V
a
r ia

b
l e

s
121

ECHO.

REM Pause until the reader presses a key

PAUSE

REM Clear the display

CLS

REM Tell the final part of the story

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Wow!" said %player%, running over to hug his four-legged friend. Just then

ECHO.

ECHO Buzz unexpectedly leaped up, grabbing %player% by the %bodypart%, tossing

ECHO.

ECHO %player% clear of the dirt path that %player% had been running on. Moments later, a

ECHO.

ECHO big white %animal% came scurrying down that very path, and Buzz the Wonder

ECHO.

ECHO Dog ran off after it. "I hope that %animal% will be OK" said the driver.

ECHO.

ECHO "Don't worry" said %player%, "Buzz will save him......"

ECHO.

ECHO.

ECHO The End

Now that the script is complete, run it a number of different times, making sure to
feed it different input each time. If any errors occur, go back and check your typing
to make sure that you did not mistype any of the script’s statements. Once you have
everything working properly, pass your game on to a friend, and see what they think.

122
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Summary

In this chapter, you learned how to write scripts that could accept and process input
passed to them at execution time. You also learned the ins and outs of working with
environment and script variables. This included how to create, modify, and delete
variables from within your Windows shell scripts, as well as how to access and per-
manently modify environment variables. In addition, you learned how to manipu-
late and extract portions of variables that contained text strings and how to perform
mathematical operations on variables containing numeric data.

E X E R C I S E S

1. Further expand on “The Story of Buzz the Wonder Dog” by adding a few more

paragraphs of story line.

2. Try removing the CLS statements from the story portion of the script. This will result

in a scrolling effect each time the reader presses a key to un-pause the story.

Hint: You will have to adjust the number of ECHO. statements to make the effect

look right.

3. Make the story’s outcome even more unpredictable by reviewing the story and

looking for keywords that you can replace with variables and then prompt the

reader to supply input for these new variables.

5

Y
ou’ve already seen examples of conditional logic presented in many of the
chapter projects presented earlier in this book. That’s because conditional
logic is such a core programming concept that it is all but impossible to write

a useful script of any complexity without using some form of conditional logic.

In Chapter 3, “Windows Shell Scripting Basics,” you learned how to perform condi-
tional logic using compound commands in which the execution of one command was
made dependent on the success or failure of another command. In this chapter, you
will learn how to use the IF statement to implement conditional logic that goes far
beyond the capabilities of simple compound commands. You’ll also learn how to cre-
ate multi-line IF statements that allow you to execute numerous commands based on
the results of a single conditional test. In addition, you’ll learn how to nest, or embed,
one IF statement within another to produce powerfully intricate logic.

Specifically, you will learn

• To work with each of the various forms of the IF statement

• How to determine whether variables have been defined

• How to determine whether errors have occurred when executing commands

• How to determine what version of the Windows shell is being used to run your scripts

• How to determine whether files or folders exist before you attempt to access them

Applying
Conditional Logic

C H A P T E R

124
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project Preview:
The Guess a Number Game

This chapter’s main programming project is called the Guess a Number game. It is
designed to give you further experience in working with conditional logic. To com-
plete the game, you will create a Windows shell script that prompts the player for
a number and then compares that number to a randomly generated number to see
if it is less than, equal to, or higher than the player’s chosen number. The game
will give the player hints that identify whether the player’s guess is high or low
and will keep a count of the number of guesses that the player ultimately makes
before correctly guessing the randomly selected mystery number.

Figure 5.1 shows the game’s opening screen, which greets the player, displays the
name of the game, and waits for the player to press a key before continuing.

FIGURE 5.1

The opening screen
for the Guess a
Number game.

Figure 5.2 shows the game prompting the player to make their first guess. As you
can see, the player types in a guess on the same line as the prompt and presses the
Enter key to submit it.

Figure 5.3 shows the kind of feedback that players receive when their guess is too
low. The game will continue to prompt the player to enter guesses until the player
correctly guesses the mystery number.

Likewise, Figure 5.4 shows the message that the game displays when the player’s
guess is too high.

When the player finally guesses the mystery number, the screen shown in Figure
5.5 is displayed, informing the player that the number has been guessed correctly.
In addition, the total number of guesses made by the player is also displayed.

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
125

FIGURE 5.2

The player is
prompted to enter

a guess.

FIGURE 5.3

Players are notified
when their guesses

are too low.

FIGURE 5.4

Players are notified
when their guesses

are too high.

FIGURE 5.5

When the game
ends, the player is

told how many
guesses it took to
finally guess the
mystery number.

126
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Applying Conditional Logic
to Control Script Execution

While you can always use compound commands to apply limited conditional logic
when developing Windows shell scripts, the IF statement provides a significantly
more flexible and powerful alternative that is capable of performing conditional
tests on a wide range of different situations. The IF statement comes in many dif-
ferent flavors, as outlined in Table 5.1.

TABLE 5.1 TYPES OF IF STATEMENTS

Type Function

IF Performs a true/false test to determine whether one or more
commands should be executed

IF...ELSE Executes either of two sets of commands based on the outcome
of a conditional test

IF DEFINED Determines whether a variable already exists

IF ERRORLEVEL Checks the exit code of the previously executed command

IF CMDEXTVERSION Retrieves a numeric value indicating the current version of the
Windows shell

IF EXIST Determines whether a file or folder exists

IF NOT Performs a conditional test and takes an action based on a
negative result

Working with the IF Statement

The IF command performs a conditional test and executes a command if the result
of the test proves to be true. People perform this same type of test all the time. For
example, when I go to lunch today I’ll probably decide whether or not I want to eat
steak based on the amount of cash I have in my wallet. If I have $10, then I’ll order
the steak. Otherwise, I won’t. The IF statement works in much the same way. Its
syntax is outlined below.

IF condition1 == condition2 command

Loosely translated, the above statement reads like this: “If the first specified condi-
tion equals the second specified condition, then the specified command will be
executed.” Otherwise it won’t be executed. Look at the following example:

IF %OS% == Windows_NT ECHO The script is running on a supported operating system

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
127

In this example, the value assigned to an environment variable called OS is com-
pared to a text string that consists of Windows_NT. If OS has a value of Windows_NT, then
the result of the test will be true and the ECHO command that follows the test will
execute automatically. Otherwise, the ECHO command will be skipped.

The %OS% variable identifies the type of operating system currently running. This

variable will be set equal to Windows_NT on any computer running a Windows NT,

2000, XP, or 2003 operating system.

Note that in the previous example blank spaces were included both before and
after the double equals sign. Although not required, adding blank spaces in this
manner helps make things easier to read. Now look at another example. In this
example, the statement is set up to compare the value stored in the first argument
passed to the script against a text string of PLAY. If the results of the test are true,
then the ECHO command that follows will be executed.

@ECHO off

IF %1% == Play ECHO Ready to begin play.....

Save this example as a script and run it by entering the name of the script followed
by a blank space and then the word Play. You should see the following output dis-
played:

Ready to begin play.....

Now, run the script again and either pass it an argument other than the word Play
or just don’t enter anything at all. As you’ll see, the following error will appear:

ECHO was unexpected at this time.

This error occurred because the value of %1% was not set and the Windows shell
ended up with a logical statement that looked like the one shown below. Since this
statement is syntactically incorrect, the error occurred.

IF == Play ECHO Ready to begin play.....

There may be times when you want your scripts to keep on running even when
they are started without any arguments. For example, you could perform a test to
see if an argument was supplied, and if it wasn’t, you could instead use a default
value that you hard coded into your script. To prevent the above error from appear-
ing, you should enclose both of the conditionals tested by the IF statement within
a pair of matching double quotation marks, as shown below.

IF "%1%" == "Play" ECHO Ready to begin play.....

TRICK

128
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Using double quotation marks in this manner does not affect the results of the test
when both conditions are equal. They still remain equal even with the addition of
the double quotation marks. However, in the case where the argument is missing,
formatting your IF statement in this manner prevents an error because the Win-
dows shell would interpret the command as shown below. Syntactically, this passes
the muster and allows the script to continue executing without an error.

IF "" == "Play" ECHO Ready to begin play.....

There are other times when you will want to enclose your variables within double
quotation marks. For example, there may be a time when you write a script that
prompts the user for input. However, you may have no way of knowing in advance
whether users will include one or more blank spaces in their response. To ensure
that the blank spaces are properly interpreted, you should enclose the variable
within double quotes. You may remember from Chapter 1, “Introducing Windows
Shell Scripting,” that when you created the Knock Knock joke game you had to
make the player responsible for enclosing his response inside double quotation
marks. Using this new technique, you can rewrite the script and unburden the
player from that responsibility.

In the previous example, you compared a variable’s value against a hard-coded
text string. However, you can just as easily compare the values stored in two vari-
ables, as demonstrated below.

SET hisname=Alexander

SET hername=Molly

IF %hisname% == %hername% ECHO We have a match!

When comparing text string values against one another, the Windows shell exam-
ines not only the text of both strings but also their case. Therefore, for example, it
would interpret X and x as not being equal. However, if you wish, you can override
this case-sensitivity requirement and perform a case-insensitive comparison by
using the /I switch, as demonstrated below.

SET hisname=CHRIS

SET hername=Chris

IF /I %hisname% == %hername% ECHO We have two people named Chris with us today.

In addition to determining whether two strings are equal, the IF statement pro-
vides the ability to perform a host of mathematical comparisons. For example,
the following statements demonstrate how to compare the values stored in two
numeric variables.

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
129

SET /A totalcount = 10

SET /A currentcount = 10

IF %totalcount% == %currentcount% ECHO Both values are the same

Providing for an Alternative Course of Action

By itself, the IF statement provides the ability to test two conditions and take an
action when the result of the test is true. But what if you want to take one action if
the result is true and a different action if the result of the comparison is false? The
solution to this dilemma is to append the ELSE keyword to the IF statement. This
version of the IF statement has the following syntax:

IF condition1 == condition2 (command1) ELSE (command2)

If both conditions are equal, then command1 is executed; otherwise, command2 is ex-
ecuted. You must place both commands inside parentheses for the Windows shell
to recognize the ELSE portion of the statement. The following statement demon-
strates one particularly good use of the IF...Else statement:

IF "%OS%" == "Windows_NT" (ECHO Script now executing) ELSE (GOTO :EOF)

In this example, the IF statement begins by checking to see if the script is executing on
a computer running Windows NT, 2000, XP, or 2003. If the result of the comparison is
true, then a message announces that the script will now begin executing. Otherwise, if
the comparison results in a value of false, the ELSE portion of the statement executes,
in which case a GOTO :EOF causes the script to terminate its own execution.

By including a check of the OS variables at the beginning of your Windows shell

scripts, you can prevent their accidental execution on unsupported operating sys-

tems such as Windows 95, 98, or Me. These operating systems lack a robust script-

ing environment, and while your scripts will try to run on them, they probably won’t

run for long before an error occurs.

Determining Whether a Variable Already Exists

Errors occur when your Windows shell scripts run into something unexpected.
One example of something unexpected would be a missing environment variable.
For example, suppose you created a script that accesses an environment variable
called ScriptFolder, which you had created some time ago to store the location of
the folder where you keep your Windows shell script files. If you were to run this

TRICK

130
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

script on any other computer; without first remembering to create a new instance
of the environment variable on the other computer, your script would probably
fail when it tried to reference a variable that was not defined. This is because the
Windows shell returns an empty value any time it is unable to locate a variable.

Depending on how you wrote your script, what it was designed to do, and at what
point in the script the variable reference occurred, the results could be unpredict-
able. As a result, your script may have done nothing, or it may have had the oppor-
tunity to complete a portion of its task, leaving you to manually figure out what
was and was not done and potentially having a mess to clean up.

However, you could avoid this problem by adding code to the beginning of your
script that would prevent it from running in the event that it could not find your
custom environment variable. This is accomplished using the IF DEFINED statement,
which has the following syntax:

IF DEFINED variable command

For example, the following statement demonstrates how to determine whether an
environment variable named ScriptFolder has been defined:

IF DEFINED ScriptFolder SET sourcefolder=%ScriptFolder%

In this example, a check is made to determine whether the ScriptFolder variable
has been defined. If it has been defined, then script variable is defined and set
equal to the value stored in ScriptFolder. Otherwise, the script variable is not de-
fined.

In certain cases you may be able to provide your scripts with default settings that
it can use in the event that they are unable to locate needed environment vari-
ables. For example, by adding the ELSE keyword to the previous example, you could
specify a default folder to be substituted when necessary.

IF DEFINED ScriptFolder (SET sourcefolder=%ScriptFolder%) ELSE (SET sourcefolder=C:\Scripts)

Keeping an Eye Out for Errors

You’ve probably already experienced more than one error as you have followed
along with this book and tried to duplicate the scripts that you have seen. Some-
times errors are your fault. For example, you might use the wrong syntax when
working with a command. This is referred to as a syntax error. You might also
create an error by trying to tell your scripts to do something they cannot do, such
as trying to multiply a number and a text string together. We call these logical
errors. Another category of errors is run-time errors, which occur when a script is
executing and runs into a problem that is not the result of a syntax or logical

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
131

problem. For example, a run-time error would occur if a script tried to delete a file
that did not exist. It might be that the application that creates this file every night
wasn’t run like it was supposed to be on a given night. Perhaps someone renamed
the file. There could be any number of reasons why a run-time error might occur.

You can prevent many syntax errors by double-checking your code before running
your scripts. You can prevent many logical errors by taking the time to properly design
your script before you begin working on it and by carefully testing it as you develop it.

Even the best programmers run into syntax and logical errors, so don’t be shocked when

they happen to you. To help you work your way through these types of situations, I’ll give

you some basic debugging tips in Chapter 8, “Debugging and Error Handling.”

One way to deal with run-time errors is to try to anticipate places within your
scripts where errors are likely to occur, and then test to see if they occurred. You
can do this using the IF ERRORLEVEL statement, which checks the exit code of the
previously issued command.

An exit code (or return code) is a numeric value returned by commands that indi-

cates whether they ran successfully or experienced an error.

TRAP

DEFINITION

IN THE REAL WORLD

Almost every Windows command and utility program provides information in the

form of a numeric exit code. This code is returned by the command to the resource

that invoked it (e.g., your Windows shell script). The value of the exit code indicates

whether the command thought that it ran correctly. Commands that process with-

out any errors will return an exit code of 0. Any value higher that 0 indicates some

type of error. Many Windows commands and utilities document their possible range

of exit codes and their meanings. You may be able to find information about the

possible range of exit codes for a given command or utility by checking the Win-

dows Help system or by searching www.microsoft.com. If you’re working with a

command or utility provided by a third-party software developer, you can consult

both the supplied documentation and the vendor’s Web site.

You can use either of two versions of the IF ERRORLEVEL statement when developing
your Windows shell scripts. The syntax for the first version of the IF ERRORLEVEL
statement is outlined below.

IF ERRORLEVEL exitcode command

132
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

exitcode is a placeholder representing a numeric value that specifies the minimum
error level that you are looking for. If the exit code returned by the previously
executed command is equal to or greater than the value specified by exitcode, then
the specified command is executed. Otherwise the command is not executed and
the script continues processing. For example, look at the following statements:

COPY c:\Script\TestScript.bat C:\Temp

IF ERRORLEVEL 1 ECHO Copy operation terminated. The specified file was not found.

The first statement attempts to copy a file to the C:\Temp folder. The second state-
ment checks to see if an error occurred when the first statement executed and
displays an error message if an error did occur.

The syntax for the second version of the IF ERRORLEVEL statement is outlined below.

IF ERRORLEVEL == exitcode

This time exitcode specifies a specific error code that must be exactly matched in
order to trigger the execution of the specified command. In other words, if you set
exitcode equal to 2, as demonstrated below, and an exitcode of 1 is returned, the
execution of the specified command is skipped.

IF "%ERRORLEVEL%" == "2" ECHO Fatal error occurred & GOTO :EOF

In the above example, the IF ERRORLEVEL statement checks to see if the previous
command returned an exit code of 2, and if it did, an error message is displayed
and the script’s execution terminates.

Checking the Windows Shell Version

Microsoft has continued to steadily improve and enhance its operating systems over
the years. This includes enhancements to the Windows shell. Windows shell scripting
was first introduced with Windows NT 4. It was later enhanced in Windows 2000 with
the addition of new command extensions. If you find that you need to work with
Windows NT 4, some functionality might be missing that you have come to expect
from Windows 2000, XP, or 2003. For example, Windows NT 4 does not support the SET
command’s /P switch that allows the command to prompt the user for input.

In addition to scanning your scripts and looking for statements that might not be
supported on earlier versions of Windows operating systems, you can use the IF
CMDEXTVERSION statement to check to see what version of the Windows shell is being
used. Windows NT 4 runs version 1. Windows 2000, XP, and 2003 all run version 2.
This means that while your scripts might run into trouble on Windows NT, they
will probably work just fine on these other Windows operating systems.

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
133

By using the IF CMDEXTVERSION statement to check the value of the CMDEXTVERSION vari-
able, you can enable your scripts to detect which version of the Windows shell is
being used to execute them and then to react accordingly. For example, if your
scripts make use of command extensions, you might halt script execution, or you
might use conditional logic to have your scripts skip certain steps.

The syntax you must follow to use the IF CMDEXTVERION statement is outlined below.

IF CMDEXTVERSION VersionNo Command

VersionNo is a placeholder that represents the Windows shell version number that
you want to test for, and Command is a Windows command that will be executed if the
value of CMDEXTVERSION is equal to or less than the value specified by VersionNo. For
example, the following script checks to see whether the script is being executed on
a computer running Windows NT, 2000, XP, or 2003, and if it isn’t, the script termi-
nates its own execution. Using this programming technique, you can prevent your
Windows shell scripts from trying to run on other Windows operating systems.

@ECHO off

IF CMDEXTVERSION 1 ECHO Unsupported operating system & GOTO :EOF

Looking for Files and Folders

A special form of the IF statement allows you to verify whether files or folders exist
before your scripts attempt to work with them. For example, if your script is de-
signed to copy or move a particular file from one location to another and that file

IN THE REAL WORLD

As mentioned in Chapter 2, “Interacting with the Windows Shell,” numerous com-

mands have been enhanced to support new command extensions. A list of these

commands includes ASSOC, CALL, CD, COLOR, DEL, ENDLOCAL, FOR, FTYPE, GOTO, IF, MD, POPD,

PROMPT, PUSHD, SET, SETLOCAL, SHIFT, and START. If you create Windows shell scripts that

take advantage of features provided by the new command extensions on these com-

mands and then try to run your scripts on a computer running a version of Windows

that does not support the command extensions, your scripts will run into errors. There-

fore, you must test your Windows shell scripts rigorously on all operating systems

you intend to support. If, for example, you have a script that needs to run on Windows

NT 4 that currently uses the SET command’s /P switch to interact with the user, you

will need to rewrite the script to remove the unsupported command switch. In this

example, you can instead use the Windows NT 4 Resource Kit’s CHOICE.EXE command

to interactively prompt the user for the information the script requires.

134
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

isn’t present when the script executes, an error will occur when the COPY or MOVE
command executes. Using the IF EXIST statement you can take steps to prevent
these types of errors.

Determining Whether a File Already Exists

The IF EXIST statement has the following syntax:

IF EXIST file command

file is a placeholder representing the name of the file to be searched for, and
command specifies a command that will execute if the specified file is found.

Look at a quick example of the IF EXIST statement in action. In this example,
shown below, an IF EXIST statement looks for a file called Games.txt in a folder
called C:\Scripts. If the file is found, then it is deleted. Otherwise, the DEL com-
mand is skipped.

IF EXIST C:\Scripts\Games.txt DEL C:\Scripts\Games.txt & ECHO File Deleted

In the next example, a Windows shell script begins by determining whether a file
called Games.txt exists within a folder called C:\Scripts. If the file exists, then the
script says so using an ECHO statement before using a SET statement to display a
prompt requesting permission to overwrite the file with a new file. If the user
types in a response of n, then the script leaves the existing file alone and termi-
nates its own execution. However, if the user responds by entering a y (or another
character other than n), then the script redirects the contents of an ECHO statement
using the > character. The effect of this statement is to replace the contents of the
file with the text supplied by the ECHO statement.

@ECHO off

IF EXIST C:\Scripts\Games.txt ECHO File exists. & SET /P reply=Replace? [y/n]

IF /I %reply% == n (

 ECHO The File was not replaced & GOTO :EOF

) ELSE (

 ECHO > C:\Scripts\Games.txt This report created at %TIME% on %DATE%

)

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
135

Determining Whether a Folder Currently Exists

It’s just as important to check for the existence of folders as it is for files. This way,
for instance, if a folder you’re looking for does not exist, your script can create it
and then continue running without experiencing an error.

Technically, the IF EXIST statement really only works with files, but you can use it to look
for a folder and it will provide you with results. However, these results can be misleading
in situations where the folder you specify does not exist but a file of the same name
exists in the location where you told the IF EXIST statement to look. However, by being a
little clever, you can avoid this potential problem. The trick is to look for the presence of
a file named . within the folder you’re looking for. As demonstrated below, Windows
automatically creates a . reference in every subfolder it creates.

C:\>cd Scripts

C:\Scripts>dir

 Volume in drive C is jlfhd01

 Volume Serial Number is 23F5-17D7

 Directory of C:\Scripts

07/11/2003 12:10p <DIR> .

07/11/2003 12:10p <DIR> ..

 0 File(s) 0 bytes

 2 Dir(s) 7,512,241,890 bytes free

C:\Scripts>

For example, the following Windows shell script demonstrates how to verify the
existence of a folder:

@ECHO off

IF EXIST C:\Scripts\. (

 ECHO C:\Scripts folder exists. Creating report.

) ELSE (

 ECHO C:\Scripts folder not found. Creating folder and report. & MKDIR C:\Scripts

)

136
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In this example, the script checks to see if the C:\Scripts folder exists by looking
for C:\Scripts\. It the folder exists, a message is displayed. However, if the folder
does not exist, the ELSE part of the IF EXIST statement is executed and, as a result,
the C:\Script folder is created using the MKDIR command.

Reversing the Logic of Conditional Tests

Sometimes it makes sense to test for the inverse of a particular condition. For ex-
ample, to me it makes more sense to check to see if the previous command did not
return an exit code of 0 rather than to see if it returned an exit code greater than
0. In the end, I suppose deciding whether inverting a conditional test makes more
sense depends on the way you think.

The Windows shell lets you append the NOT keyword to each of the supported forms
of the IF statement. In the sections that follow, I’ll show you examples of how to
use the NOT keyword to invert the conditional logic for each of the different types of
IF statements that you’ve seen in this chapter.

IF NOT

By adding the NOT keyword to the IF statement, you can test for the opposite of any
condition that you might want to check. The syntax for this form of the IF state-
ment is outlined below.

IF NOT condition1 == condition2 command

For example, you might want to use the IF NOT statement when working with vari-
ables. The following example demonstrates how to set up an IF NOT statement that
checks to see if a variable called Scripts has been set equal to C:\Scipts, and if it has
not, its value is changed.

IF NOT "%Scripts%" == "C:\Scripts" SET Scripts=C:\Scripts

I recommend that you use the IF NOT statement in every Windows shell script you
create (especially if you share them with other people) and that you set it up to
prevent the script’s accidental execution on unsupported Windows operating sys-
tems (e.g., Windows 95, 98, and Me). This can be easily accomplished by making
the statement a part of your standard Windows shell template as demonstrated
below.

@ECHO off

REM ***

REM

REM Script Name: Xxxxxxxx.bat

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
137

REM Author: Xxxx Xxxxx

REM Date: Xxxxx XX, XXXX

REM

REM Description: Xxx

REM

REM ***

REM Script Initialization Section

IF NOT "%OS%" == "Windows_NT" ECHO Unsupported operating system & GOTO :EOF

REM Main Processing Section

REM Subroutine and Procedure Section

This way, if someone attempts to run the scripts on an unsupported operating
system, you can supply an explanation of why the script cannot run and then
terminate the script’s execution.

IF NOT DEFINED

The NOT keyword seems especially suited to working with the IF DEFINED statement,
providing an easy means of checking to see if a variable does not exist. The syntax
for this form of the IF statement is outlined below.

IF NOT DEFINED variable command

For example, the following IF NOT DEFINED statement checks to make sure that an
environment variable called Scripts does not already exist before defining a script
variable of the same name. Using this technique, you can set up your Windows
shell scripts to look for environment variables that control their execution, but
still fall back and use hard-coded default values in the event that the environment
variables are not present.

IF NOT DEFINED %Scripts% SET Scripts=C:\Scripts

Refer to Chapter 4, “Storing and Retrieving Information in Variables,” for informa-
tion on how to manually define and assign values to environment variables.

138
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

IF NOT ERRORLEVEL

You may also invert the IF ERRORLEVEL statement with the NOT keyword by using the
following syntax:

IF NOT ERRORLEVEL exitcode command

For example, when executed the following script tries to copy a file named
TestScript.bat from the C:\Scripts folder to the C:\Temp folder. The script then
uses the IF NOT ERRORLEVEL statement to determine whether the copy operation suc-
ceeded. If an error occurred when copying the file, the script clears the screen,
displays an error message, and then terminates its own execution.

@ECHO off

COPY C:\Scripts\TestScript.bat C:\Temp

IF NOT %ERRORLEVEL% == 0 CLS & ECHO Fatal error occurred & GOTO :EOF

IF NOT CMDEXTVERSION

The IF NOT CMDEXTVERSION statement is used to validate that the version of the Win-
dows shell being used to process the script is not lower than a specified value. The
syntax for this form of the IF statement is outlined below.

IF NOT CMDEXTVERSION VersionNo Command

For example, the following Windows shell script terminates its own execution in
the event it discovers that it is not running on a Windows 2000, XP, or 2003 operat-
ing system:

@ECHO off

IF NOT CMDEXTVERSION 2 ECHO Unsupported operating system & GOTO :EOF

Likewise, the following script terminates the script’s execution if it has not been
started on a Windows NT, 2000, XP, or 2003 operating system.

@ECHO off

IF NOT CMDEXTVERSION 1 ECHO Unsupported operating system & GOTO :EOF

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
139

IF NOT EXIST

The final form of the IF statement that supports the NOT keyword is the IF NOT EXIST
statement, which has the following syntax:

IF NOT EXIST file command

Using this statement, you can determine whether a file or folder exists before try-
ing to work with it. For example, the following Windows shell script checks to see
if the C:\Scripts folder exists and then creates the folder if it doesn’t exist.

@ECHO off

IF NOT EXIST C:\Scripts\. (

 ECHO C:\Scripts folder not found. Creating folder and report. & MKDIR C:\Scripts

) ELSE (

 ECHO C:\Scripts folder exists. Creating report.

)

Building Multi-Line IF Statements

So far, in all the examples you’ve seen in this chapter, I have managed to accom-
plish everything I needed to do within single-line IF statements (unless, of course,
I used the ELSE keyword to provide an alternative execution path).

For example, the following statement checks the exit code of the previously executed
command and then, using compound commands, performs three different tasks:

IF NOT %ERRORLEVEL% == 0 CLS & ECHO Fatal error occurred & GOTO :EOF

While certainly effective, there is a limit to the usefulness of compound commands.
For one thing, bunching together too many commands on a single-line statement
can make scripts more difficult to read. Generally speaking, you’ll be better off
spreading a statement such as the one shown above across multiple lines. I think
you’ll find that it makes scripts easier to read and easier to write.

To break up complex IF statements into separate lines, use the following syntax:

if condition1 == condition2 command (

 …

 …

 …

)

140
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As you can see, using this form of the IF statement, you must enclose all of the
statements that you want the IF statement to execute inside a pair of matching
parentheses. For example, you could rewrite the previous compound command
example using a multi-line IF statement, as shown below.

IF NOT %ERRORLEVEL% == 0 (

 CLS

 ECHO Fatal error occurred

 GOTO :EOF

)

As you can see, even with this small example, the multi-line form of the IF state-
ment makes things a lot easier to read.

Creating Advanced Conditional
Logic Tests

It won’t take long before you find yourself wanting to create Windows shell scripts
that require the use of some pretty complicated logic. For example, you may want
to test a condition and then, based on the results of the test, perform one or more
additional tests. To facilitate this type of logical thinking, the Windows shell al-
lows you to embed IF statements inside one another to create nested IF statements.

To see how this works, look at the following example:

@ECHO off

SET /A MysteryNumber = %random%

REM Check to see if the correct number was guessed

IF NOT "%1" == "%MysteryNumber%" (

 ECHO A match did not occur!

 REM If the correct number was not guessed, check to make sure it is in bounds

 IF %1 LSS 0 ECHO Your guess is out of bounds! & GOTO :HELP

 IF %1 GTR 32767 ECHO Your guess is out of bounds! & GOTO :HELP

 REM The guess was in bounds, so check to see if it was low or high

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
141

 IF %1 LSS %MysteryNumber% GOTO :GuessAgain

 IF %1 GTR %MysteryNumber% GOTO :GuessAgain

)

In this example, the script set a variable called MysteryNumber equal to a randomly
selected number between 0 and 32,767. It then checks the value of an argument
passed to it to see if the value of the argument is equal to the value assigned to the
MysteryNumber variable. If the two values are equal, nothing happens. But if they are
not equal, the IF statements nested within the first IF statement begin to execute
in order to determine what the script should do next. If the nested IF statements
were moved from inside the first IF statement and placed outside of the state-
ment, as shown below, the script would still work. However, the previously embed-
ded IF statements would be needlessly executed in the event that the argument
passed to the script was equal to the randomly generated number.

@ECHO off

SET /A MysteryNumber = %random%

REM Check to see if the correct number was guessed

IF NOT "%1" == "%MysteryNumber%" (

 ECHO A match did not occur!

)

REM If the correct number was not guessed, check to make sure it is in bounds

IF %1 LSS 0 ECHO Your guess is out of bounds! & GOTO :HELP

IF %1 GTR 32767 ECHO Your guess is out of bounds! & GOTO :HELP

Rem The guess was in bounds, so check to see if it was low or high

IF %1 LSS %MysteryNumber% GOTO :GuessAgain

IF %1 GTR %MysteryNumber% GOTO :GuessAgain

Clearly, there is no point to executing the last four IF statements if the first IF
statement did not determine that a match had not occurred. Not only is this sec-
ond script less efficient, but it is also intuitively more difficult to read and under-
stand than the first script.

142
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Performing Different Kinds
of Comparisons

Up to this point in this chapter, you have seen the use of the == characters repeat-
edly as a means of comparing two conditions to determine whether they are equal.
The Windows shell supports a number of other comparison operators, which you
can use to perform even more complex comparisons. These comparison operators
are listed in Table 5.2.

TABLE 5.2 COMPARISON OPERATORS

Operator Description

== Determines whether two values are equal

EQU Determines whether two values are equal

LSS Determines whether one value is less than another

GTR Determines whether one value is greater than another

LEQ Determines whether one value is less than or equal to another

GEQ Determines whether one value is greater than or equal to another

NEQ Determines if one value is not equal to another

For example, you can compare the value of a variable as shown below.

IF NOT "%OS%" == "Windows_NT" GOTO :EOF

Alternatively, you could rewrite this same statement using the EQU operator, as
shown below.

 IF NOT "%OS%" EQU "Windows_NT" GOTO :EOF

The operators listed in Table 5.2 enable you to make numerous types of numeric
comparisons, as demonstrated by the following example:

SET /a Counter = 3

IF %Counter% LEQ 5 ECHO Terminating script execution.

In this example, the value of a variable is arbitrarily set equal to 3 to facilitate the
comparison operation that follows. The next statement checks to see if the value
of Counter is less than or equal to 5. Since this is the case, the statement displays a
message in the Windows command console.

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
143

Back to the Guess a Number Game

OK, now it’s time to take your knowledge of the IF statement and put it to the test
by creating the Guess a Number game. As with previous projects, I’ll begin by dis-
cussing the steps involved in designing the game. After that, I’ll step you through
the details of the specific steps, and then you can run and test the game and fix
any typos or other problems that you may run into.

Designing the Game

The Guess a Number game will be completed in five steps, each of which is out-
lined briefly below.

1. Set up the script’s execution environment, define variables used by the
script, and establish initial variable values

2. Display a welcome screen that greets the player

3. Prompt the player to make a guess, assign the number provided by the player
to a variable, and keep a running count of the number of guesses made

4. Interrogate each guess made by the player to determine if the guess is high, low,
or correct, and loop back to allow the player to make another guess if necessary

5. Display the results of the game, including the number of guesses it took for
the player to win the game

Configuring the Execution Environment

To begin, create a new script called GuessANumber.bat. Next, copy your script tem-
plate into the file and then add the following statements:

@ECHO off

COLOR 0E

CLS

SET RandomNo=%random%

SET /a NoGuesses = 0

TITLE = T H E G U E S S A N U M B E R G A M E - %RandomNo%

144
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The first three statements disable the display of script statements, set the color
scheme of the Windows command console to yellow on back, and clear the screen.
The next statement uses the environment variable random to retrieve a random num-
ber between 0 and 32,767 and assign its value to a variable called RandomNo. Next, a
numeric variable called NoGuesses is defined and assigned an initial value of 0. The
script will use this variable to keep track of the number of guesses made by the
player. The last statement shown above displays the name of the game in the Win-
dows command console’s title bar.

Notice that I also displayed the value of the randomly generated number in the Win-

dows command console’s title bar. I did this to make tracking this value easy while

I developed this script. This way, each time that I ran and tested the script, I could

easily tell what the mystery number was and determine if the script was performing

as expected. Of course, when you are done developing and testing the script, you’ll

want to remove its display.

Displaying the Welcome Screen

As with previous scripts in this book, the welcome screen consists of a collection
of ECHO statements that display the name of the game followed by the PAUSE state-
ment, which requires that the player press a key to continue the game.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO W E L C O M E T O T H E

ECHO.

ECHO.

ECHO.

ECHO.

ECHO GGGG U U EEE SSSS SSSS AA N N U U M M BBB EEE RRR

ECHO G G U U E S S A A NN N U U MM MM B B E R R

ECHO G U U E SSS SSS AAAA N N N U U M M M M B B E RRR

ECHO G GG U U EEE SSS SSS A A N N N U U M M M BBB EEE RR

TRICK

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
145

ECHO G G U U E S S A A N NN U U M M B B E R R

ECHO GGGG UU EEE SSSS SSSS A A N N UU M M BBB EEE R R

ECHO.

ECHO.

ECHO G A M E !!!

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

Collecting Player Input

The next section of the script begins by defining a label called :BEGINLOOP. Placing this
label here enables the script to rerun as many times as it takes for the player to cor-
rectly guess the game’s mystery number. Next, a CLS statement is executed to clear the
screen and prepare the display for the execution of the SET statements that follow.

The first SET statement displays the prompt “Please type your guess:” and then
waits for the player to type in a number. Each time the script returns to this loca-
tion and the player makes a new guess, the second SET statement increases the
value assigned to the NoGuesses variable by 1. The script will later display the value
stored in this variable to tell the player how many guesses it took to finally guess
the mystery number.

:BEGINLOOP

CLS

ECHO.

ECHO.

ECHO.

ECHO.

146
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

SET /p UserNumber=Please type your guess:

SET /a NoGuesses += 1

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

Determining Whether the Player’s Guess is High, Low, or Correct

The real brain-power of the script occurs in this next section. This is where you will
use conditional logic to evaluate the number supplied by the player to determine
whether his guess is high, low, or correct. To set up this logic, use two IF statements.
The first IF statement will test for input that is less than the mystery number. The
second IF statement will test for input that is greater than the mystery number.

If either of the IF statements result in a result of true (e.g., the player enters a
number that is less than or greater than the mystery number), then the player will
be informed that the guess was either high or low and will be given another chance
to guess again by jumping to the :BEGINLOOP label (after the player presses a key).

IF %UserNumber% LSS %RandomNo% (

 ECHO.

 ECHO Your guess was too low. Try again.

 ECHO.

 ECHO.

 PAUSE

 GOTO :BEGINLOOP

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
147

)

 IF %UserNumber% GTR %RandomNo% (

 ECHO.

 ECHO Your guess was too high. Try again.

 ECHO.

 ECHO.

 PAUSE

 GOTO :BEGINLOOP

)

The Guess a Number game assumes up front that the player will always enter a

number. However, people can be very unpredictable, especially when they interact

with computers. Many programming and scripting languages allow you to test input

to determine whether it is numeric, thus allowing you to accept or reject user input

based on its data type. Unfortunately, Windows shell script does not provide this

capability. You might think that since the script is set up to expect numeric input

that an error will occur if the player enters non-numeric input. However, because of

the manner in which the Windows shell works, it won’t produce an error. Instead,

any text input entered by the player will be evaluated as being greater than the

mystery number (or any number for that matter).

Displaying Game Results

Eventually, if the player does not close the Windows command console or stop the
execution of the Guess a Number script by pressing the CTRL+Z keys, the player
should guess the mystery number. When this happens, neither of the preceding IF
statements will evaluate to true, so the script will be permitted to continue on to
this final section.

The first statement in this section clears the screen in preparation for the display
of the final results. Next the yellow on black color scheme is changed to red on

TRAP

148
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

yellow. Then a collection of ECHO statements are used to congratulate the player on
winning the game and to display the mystery number and the total number of
guesses that it took to guess the number. These two pieces of data are presented by
embedding the variables that contain this information inside the ECHO statements
as shown below in bold.

CLS

COLOR E0

ECHO.

ECHO * * * * * * * * * * * *

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Congratulations! You guessed it.

ECHO.

ECHO The number was %UserNumber%

ECHO.

ECHO You guessed it in %NoGuesses% guesses

ECHO.

ECHO.

ECHO.

ECHO.

ECHO * * * * * * * * * * * *

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

GOTO :EOF

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
149

Although it is not required in this situation, I added the GOTO :EOF statement to the

end of the script to explicitly demonstrate my intention of ending the game at this

point. Had I left this statement out, the script would have ended anyway by virtue of

reaching the last line of code. However, any time a Windows shell script jumps

around a lot using the GOTO statement, things can get a little confusing, so being as

explicit as possible can help alleviate some confusion.

The Final Result

At this point you have seen all of the building blocks required to assemble the
Guess a Number game. For your convenience, I have listed the fully assembled
script below. In addition, to help make it easier to follow along, I have added the
script template and embedded comments throughout the script that describe what
is going on.

@ECHO off

REM ***

REM

REM Script Name: GuessANumber.bat

REM Author: Jerry Ford

REM Date: July 5, 2003

REM

REM Description: This Windows shell script game challenges the play to try to

REM guess a number between 0 & 32,767 in the fewest possible number of guesses

REM

REM ***

REM Set foreground and background colors to yellow on black

COLOR 0E

REM Clear the display

CLS

REM Get a random number between 1 and 32,767

TRICK

150
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

SET RandomNo=%random%

REM Define & initialize a variable to track the player's number of guesses

SET /a NoGuesses = 0

REM Write the name of the game in the Windows command console's title bar.

REM Also display the randomly selected number to the right of the game's name

TITLE = T H E G U E S S A N U M B E R G A M E - %RandomNo%

REM Display the game's welcome screen

ECHO.

ECHO.

ECHO.

ECHO.

ECHO W E L C O M E T O T H E

ECHO.

ECHO.

ECHO.

ECHO.

ECHO GGGG U U EEE SSSS SSSS AA N N U U M M BBB EEE RRR

ECHO G G U U E S S A A NN N U U MM MM B B E R R

ECHO G U U E SSS SSS AAAA N N N U U M M M M B B E RRR

ECHO G GG U U EEE SSS SSS A A N N N U U M M M BBB EEE RR

ECHO G G U U E S S A A N NN U U M M B B E R R

ECHO GGGG UU EEE SSSS SSSS A A N N UU M M BBB EEE R R

ECHO.

ECHO.

ECHO G A M E !!!

ECHO.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
151

ECHO.

REM Wait until the player presses a key to continue

PAUSE

REM This label provides a callable return point in the script

:BEGINLOOP

 REM Clear the display

 CLS

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 REM Prompt the player to type in a guess

 SET /p UserNumber=Please type your guess:

 REM Add one to the total number of guesses made by the player

 SET /a NoGuesses += 1

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 REM Steps to perform if the player's guess is too low

 IF %UserNumber% LSS %RandomNo% (

 ECHO.

152
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO Your guess was too low. Try again.

 ECHO.

 ECHO.

 REM Wait until the player presses a key to continue

 PAUSE

 REM Loop back so that the player can guess again

 GOTO :BEGINLOOP

)

 REM Steps to perform if the player's guess is too low

 IF %UserNumber% GTR %RandomNo% (

 ECHO.

 ECHO Your guess was too high. Try again.

 ECHO.

 ECHO.

 REM Wait until the player presses a key to continue

 PAUSE

 REM Loop back so that the player can guess again

 GOTO :BEGINLOOP

)

 REM Clear the display

 CLS

 REM Reverse the game's color scheme to black on yellow

C
h

a
p

te
r 5

A
p

p
l y

in
g

 C
o

n
d

it i o
n

a
l L

o
g

i c
153

 COLOR E0

 REM Congratulate the player for guessing the number & provide game statistics

 ECHO.

 ECHO * * * * * * * * * * * *

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 ECHO Congratulations! You guessed it.

 ECHO.

 ECHO The number was %UserNumber%

 ECHO.

 ECHO You guessed it in %NoGuesses% guesses

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 ECHO * * * * * * * * * * * *

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 ECHO.

 REM Terminate the script's execution

 GOTO :EOF

Once you have finished creating the entire script, give it a go and see how it works.
If you did not make any typos when keying it in, you should find that it works
exactly as advertised. When you test the script, try feeding it a range of different
data. For example, start by entering a number between 1 and 32,767. Once that
works, try supplying it with a negative number and with a number greater than
32,767. Once you are sure that the script is handling these numbers correctly, try
entering a few text characters as input and see what happens then.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

157

FIGURE 6.2

Add a Help screen to
provide players with

additional
instructions and to

create a more
professional-looking

game.

FIGURE 6.3

By creating an About
screen, you provide
a place to advertise
information about

yourself and
your game.

FIGURE 6.4

Each question tests
the player’s

knowledge of
Six Million Dollar

Man trivia.

Once the player has answered all of the questions, the game will grade his answers
and present a score card, as demonstrated in Figure 6.5.

Finally, the game creates a text report that provides detailed information about
the player’s quiz results, as demonstrated in Figure 6.6.

158
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating Loops

You’ve already seen how to create loops within Windows shell scripts using labels
and the GOTO command. This type of loop provides the ability to jump from one
point in a script to an earlier point in order to repeat the execution of previous
steps, yet this type of loop is generally considered somewhat clumsy. I’ll show you
a much better way to group statements together for frequent execution in Chapter 7,
“Creating Procedures and Subroutines.”

The Windows shell provides support for a second type of loop using the FOR com-
mand. Loops created with the FOR command are highly specialized. A number of
variations of the FOR loop can be established, each of which is designed to process a

FIGURE 6.5

Viewing the results
of the quiz.

FIGURE 6.6

Examining the
detailed score card

file created by
the game.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

159
different type of data. Specifically, you can create FOR loops that can iteratively
process any of the following types of resources:

• String contents

• Command output

• Collections of files

• Collections of folders

• Text file contents

In addition, you can set up loops that execute a specified number of times. For
example, you could set up a loop that executes exactly 10 times.

While varying slightly, all loops created by the FOR command are based on the
following syntax:

FOR /switch %%variable IN (collection) DO command

The /switch parameter is used to specify the types of data that the loop will process.
A list of the switches supported by the FOR command is provided in Table 6.1.

TABLE 6.1 SWITCHES SUPPORTED BY THE FOR COMMAND

Switch Description

/l Sets up the loop to process a range of values

/f Sets up the loop to process all elements stored within a string

/d Sets up the loop to process all files stored within a specified folder

/r Sets up the loop to process all subfolders stored within a specified
parent folder

The %%variable parameter is a special type of variable referred to as an iterator. The
iterator variable must be a single letter between A and Z. The FOR command auto-
matically increments the value assigned to the iterator each time the loop repeats
itself. The iterator variable is local in scope within the FOR loop, meaning that it
cannot be referenced before or after the loop as executed. Collection specifies one
of the following types of resources:

• A text string

• A list of files

• A list of folders

• A range

160
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Command specifies a command that will be executed each time the loop executes.

The FOR loops iterator is case-sensitive. This means that I and i are not considered

the same. Be careful and make sure that you are consistent when referencing the

FOR loops iterator variable so that you don’t accidentally mix up the case.

Each of the variations of the FOR command mentioned above are outlined in detail
in the sections that follow.

Looping Through String Contents

One of the uses of the FOR command is to set up a loop that can iterate through and
parse out the contents of a string. For example, you might want to develop a Win-
dows shell script that deletes a list of files passed to it as arguments. Since %* repre-
sents a list of all the arguments passed to the script, you can create a loop that
iterates its way through each argument. To set up this type of loop, use the follow-
ing syntax:

FOR /F ["options"] %%variable IN ("string") DO command

You can further refine the execution of this type of loop by specifying any of the
options listed in Table 6.2.

TRAP

TABLE 6.2 FOR COMMAND PARSING OPTIONS

Option Function

DELIMS=x Changes the characters used to delimit data from the default of a
blank space to the specified collection of characters

EOL=c Specifies an end-of-line character

SKIP=n Sets a specific number of lines to be skipped at the top of the file

TOKENS=a,b, a-c Sets the tokens to be used when processing data

A token represents a piece of data in a text string.
DEFINITION

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

161
This particular form of the FOR loop parses out the contents of the specified string
and assigns them to tokens. By specifying the TOKENS option when setting up the FOR
loop, you can specify which tokens you want your scripts to process.

You can work with tokens in two ways. The first way is to specify specific tokens in
the form of a,b, where a and b represent the first and second data elements in the
string. The second way is to specify a range of tokens in the form of a-c. Here, the
first three tokens in a string are specified.

Below are a couple of examples to help you better understand how to work with
this version of the FOR loop. In the first example, I’ve written a script that uses a FOR
loop to parse out and display the first five arguments passed to the script.

@ECHO off

FOR /F "DELIMS=, TOKENS=1-5" %%a IN ("%*") DO (

ECHO %%a

ECHO %%b

ECHO %%c

ECHO %%d

ECHO %%e

)

By specifying DELIMS=, I have set up the FOR loop to parse out arguments passed to
the script and separated by the , character. By specifying TOKENS=1-5, I have config-
ured the FOR loop so that it processes only the first five arguments passed to the
script, regardless of how many are actually passed. When executed, this script dis-
plays a list of the first five arguments passed to the script. However, you could
easily modify the functionality of this script by replacing the ECHO command with
a different command. For example, you could change each ECHO command to DEL in
order to delete a list of files passed to the script.

Before moving on to the next type of FOR loop, look at one more example. In this
example, shown below, a Windows shell script has been set up to process the con-
tents of a string variable. This variable has been assigned a value comprised of five
names, each of which is separated, or delineated, by a blank space.

162
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

@ECHO off

SET UserList=Alexander William Molly Mary Jerry

FOR /F "TOKENS=1-3" %%a IN ("%UserList%") DO (

 ECHO %%a

 ECHO %%b

 ECHO %%c

)

Since the default delineator for the FOR command is a blank space, I did not have to
specify the DELIMS option this time. In addition, since I only wanted to parse out the
first three names stored in the string, I set the TOKENS option equal to 1-3.

Looping Through Command Output

Another variation of the FOR loop enables your scripts to loop through all the out-
put produced by a command. This way, instead of just assuming that a command
worked successfully because it did not return a non-zero exit code, you can di-
rectly interrogate command results. By iterating through command output, not
only can you verify that the command did what you wanted it to, but you can also
use the command output as input for script processing.

To use this form of the FOR command, you must use the following syntax:

FOR /F ["options"] %%variable IN ('command') DO command

The options parameter represents different parsing capabilities for the FOR com-
mand, as listed in Table 6.2. Also, take note of the fact that the command whose
output is to be parsed must be enclosed inside both a pair of matching single
quotation marks as well as a pair of parentheses.

Now look at this form of the FOR statement in action. In this example, I’ve created a
Windows shell script that executes the SET command. When executed without any
additional arguments, the SET command displays a listing of environment vari-
ables, which can be somewhat hard to read, as demonstrated below.

C:\>set

ALLUSERSPROFILE=C:\Documents and Settings\All Users

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

163
APPDATA=C:\Documents and Settings\Jerry Ford\Application Data

CLIENTNAME=Console

CommonProgramFiles=C:\Program Files\Common Files

COMPUTERNAME=WRKSTN0001

ComSpec=C:\WINDOWS\system32\cmd.exe

HOMEDRIVE=C:

HOMEPATH=\Documents and Settings\Jerry Ford

LOGONSERVER=\\WRKSTN0001

NUMBER_OF_PROCESSORS=1

OS=Windows_NT

Path=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\COMMAND;C:\DOS;C:\WINDOWS\system3

2\WBEM

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 6 Model 6 Stepping 0, GenuineIntel

PROCESSOR_LEVEL=6

PROCESSOR_REVISION=0600

ProgramFiles=C:\Program Files

PROMPT=pg

SESSIONNAME=Console

SystemDrive=C:

SystemRoot=C:\WINDOWS

TEMP=C:\DOCUME~1\JERRYF~1\LOCALS~1\Temp

TEMPDIR=d:\Temp

TMP=C:\DOCUME~1\JERRYF~1\LOCALS~1\Temp

USERDOMAIN=WRKSTN0001

USERNAME=Jerry Ford

USERPROFILE=C:\Documents and Settings\Jerry Ford

winbootdir=C:\WINDOWS

windir=C:\WINDOWS

In the next script, below, I have reformatted the SET command’s output to help
make it easier to read. I accomplished this by specifying the = character as the
DELIMS parameter and specifying the TOKENS parameter as 1-2.

164
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

@ECHO off

FOR /F "DELIMS==, TOKENS=1-2" %%i IN ('SET') DO (

 ECHO Variable Name: %%i

 ECHO Variable Value: %%j

 ECHO.

)

When the script is executed, it issues the SET command and then iterates its way
through the command’s output, displaying the name of a variable on one line
followed by the variable’s value on the next line and then a blank line. The results
is a much cleaner listing, as demonstrated by the partial output shown below.

Variable Name: USERNAME

Variable Value: Jerry Ford

Variable Name: USERPROFILE

Variable Value: C:\Documents and Settings\Jerry For

Variable Name: winbootdir

Variable Value: C:\WINDOWS

Variable Name: windir

Variable Value: C:\WINDOWS

The nice thing about this form of the FOR loop is that it automatically hides the
output produced by the command. This way, I can use ECHO statements to choose
what output, if any, I want to display.

Processing Collections of Files

One of the many uses of the FOR command is to process all of the files located
within a given folder. For example, you may want to create a script that you run at
the end of each month that deletes all of the files in your C:\Temp folder in order

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

165
to help free up disk space. When used to process files in this manner, the FOR com-
mand has the following syntax:

FOR %%variable IN (collection) DO command

collection specifies the location of the folder where the files to be processed reside.

For example, you could use the FOR command to display all Microsoft Word files
located in a folder called C:\MyDocs using the following statement:

FOR %%i IN (C:\MyDocs*.doc) DO ECHO %%i

Notice that I used the * character to instruct the script to process all files with a
.doc file extension. The * character is an example of a wild card character. It is used
to create matches among files based on a pattern. In the example above, the pat-
tern was set up to match all files ending with the .doc file extension. I could have
just as easily looked for all files that begin with the letters Jan and that also end
with a .doc file extension by specifying Jan*.doc.

The Windows shell supports a second type of wild card character: the ? character.
Unlike the * character, the ? character limits the pattern match to a single charac-
ter. For example, Jan?.doc would limit matches to files whose file name begins with
Jan, and includes a single character between Jan and the .doc file extension, such
as Jan7.doc.

You can set up the FOR statement to process more than one file type at a time by
separating each file type with a blank space. For example, the following Windows
shell script demonstrates how to process all files that begin with either a .bat or
.cmd file extension and are located within the same folder as the script.

@ECHO off

:DisplayConsole

ECHO.

ECHO ---

ECHO.

ECHO Windows Shell Script Console

ECHO.

FOR %%I IN (*.bat *.cmd) DO (

 IF NOT %%I == ScriptConsole.bat ECHO %%I

166
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

)

ECHO.

ECHO ---

ECHO.

SET /P response= Enter script name and any required arguments:

START %response%

CLS

GOTO :DisplayConsole

When run, this script will display a screen similar to the one shown in Figure 6.7.
At the bottom of the display is a prompt created using the SET command. This
prompt allows you to enter the name of a Windows shell script. The script then
uses the START command to open a new Windows command console and run the
specified script.

FIGURE 6.7

Using the FOR
command to create
a menu made up of

file names.

Processing Collections of Folders

You can use the FOR command to iterate though a collection of folders just as easily
as processing a collection of files. The syntax to perform this task is outlined below.

FOR /D %%variable IN (collection) DO command

The terms directory and subdirectory are often used synonymously as terms that

refer to Windows folders. However, a subdirectory is actually a directory that is

subordinate to whatever parent directory is being referenced.

DEFINITION

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

167
The /D switch specifies that subfolders (or subdirectories) are to be processed. collec-
tion specifies the location of the parent folder in which the subfolders reside. For ex-
ample, the following script is designed to accept an argument that specifies the name
of a folder and then displays a list of all the subfolders located within that folder:

@ECHO off

SET /A count = 0

ECHO.

ECHO Folder listing for: %1

ECHO.

ECHO --

ECHO.

FOR /d %%i IN (%1*) DO (

 SET /A count += 1

 ECHO %%i

)

ECHO.

ECHO --

ECHO.

ECHO Total number of folders found is %1 is: %count%

ECHO.

PAUSE

Note that to display all of the subfolders, you must add an * character to the end of
the parent folder’s name. As written, the script expects the user to pass it a folder
name such as C:\Games. The script then appends * to the end of the argument to
create C:\Games*. When executed, this script will produce results similar to those
shown below.

Folder listing for: D:\Games

--

D:\Games\Dos

D:\Games\TextBased

168
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

D:\Games\Windows

--

Total number of folders found is D:\Games is: 3

Press any key to continue . . .

You may also use the FOR command to perform a recursive examination of all the
subfolders residing within a particular parent folder. To do so, use the following
syntax of the FOR command:

FOR /R [parentfolder] %%variable IN (.) DO command

When used within the context of displaying folders, the term recursive means to

iteratively step your way through the Windows file system tree, displaying or pro-

cessing each successive collection of subfolders.

The /R switch instructs the FOR command to recursively examine all folders resid-
ing underneath the specified parent (or top-level) folder. Also note that you must
enclose the period character within a matching pair of parentheses exactly as shown
above. For example, the following statement demonstrates how to display every
subfolder residing under the C:\Games folder:

FOR /R C:\Games %%i IN (.) DO ECHO %%i

When executed, the output displayed would resemble the following:

C:\Games\.

C:\Games\Dos\.

C:\Games\Dos\Old\.

C:\Games\Dos\Old\.

C:\Games\TextBased\.

C:\Games\TextBased\Batch\.

C:\Games\TextBased\Interactive\.

C:\Games\Windows\.

DEFINITION

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

169
Reading Text Files

Another good use of the FOR command is to read and process the contents of text
files. This allows you to create scripts that can process files created by other scripts
or even other applications such as space-, comma-, or tab-delimited text files cre-
ated by Microsoft Excel. The syntax for this type of FOR loop is outlined below.

FOR /F ["options"] %%variable IN (filenameset) DO command

For example, suppose you had the following information stored in a text file called
C:\Contact.txt:

===

Personal contact list

===

name Internet_Address Phone_No

Molly molly@zxyinc.com 550-8888

William william@abcd.net 550-9999

X-Man alexander#xyz.com 050-9876

Mike michael#ivworld.net 550-1234

Mark markland@ivworld.net 550-7744

Nick nick#anyplace.com 666-8912

In its current size, this file is small and easy to work with. But as the file grows
over time, it may become difficult to work with. By creating a Windows shell script,
you can easily read and process some or all of the data stored in this file.

The first six lines in the file consist of headers and two blank lines. Each of the
remaining lines in the file contains tab-delimited information about different
personal contacts, including their names, e-mail addresses, and phone numbers.

The following script demonstrates how to use a FOR loop to display the first names
of all the people listed in the file:

FOR /F %%i IN (contacts.txt) DO ECHO %%i

In the absence of a TOKENS parameter, the script will default to "TOKENS=1". As a re-
sult, this statement processes the file and displays only the information stored in

170
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

the first token of each line (e.g., the first word in each line). As a result, the state-
ment displays only the following output:

===

Personal

===

name

Molly

William

X-Man

Mike

Mark

Nick

If you want to process all of the information stored in the file, you could rewrite
the statement as shown below:

FOR /F "TOKENS=*" %%i IN (contacts.txt) DO ECHO %%i

As you can see, the TOKENS option has been added to the statement and set equal to
*, which means that all tokens should be processed. When executed, this state-
ment would display the following output in the Windows command console:

===

Personal contact list

===

name Internet_Address Phone_No

Molly molly@zxyinc.com 550-8888

William william@abcd.net 550-9999

X-Man alexander#xyz.com 050-9876

Mike michael#ivworld.net 550-1234

Mark markland@ivworld.net 550-7744

Nick nick#anyplace.com 666-8912

If you wish, you could reformat the previous statement so that it processes only
specific tokens. For example, to limit processing to the name and phone number
of each individual listed in the file, you would specify TOKENS=1,3. In addition, you

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

171
can skip the processing of the file’s headers by adding the SKIP option and setting
it equal to 6 (for the six lines of unwanted text) as demonstrated below.

FOR /F "TOKENS=1,3 SKIP=6" %%i IN (contacts.txt) DO (

ECHO Name: %%i

ECHO Phone: %%j

)

In this example, tokens 1 and 3 map out to arguments %%i and %%j. When executed,
this statement displays the output shown below.

Name: Molly

Phone: 550-8888

Name: William

Phone: 550-9999

Name: X-Man

Phone: 050-9876

Name: Mike

Phone: 550-1234

Name: Mark

Phone: 550-7744

Name: Nick

Phone: 666-8912

Be mindful of using the FOR command to process files that include blank spaces in

their file names. Unless you use the following syntax, you’ll end up with an error:

FOR /F ["options"] %%variable ('TYPE "filename"') command

Using this syntax, the filenameset parameter is replaced with the TYPE "filename"

parameter. TYPE is a required keyword and filename is the name of the file. Make

sure you include the single and double quotation marks as shown above. For ex-

ample, the following statement could be used to process all the data stored in a file

whose name is My Contacts.txt.

FOR /F "TOKENS=*" %%i IN ('TYPE "My Contacts.txt"') DO ECHO %%i

TRAP

172
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Iterating a Specified Number of Times

The final form of loop supported by the FOR command is one that iterates a prede-
termined number of times. In this form of the loop, you must provide the FOR com-
mand with a number indicating a starting point, an increment number, and a
final number that once reached terminates the loop’s execution. The syntax for
this form of the FOR loop is outlined below.

FOR /L %%variable IN (begin,increment,end) DO command

For example, the following statement uses this form of the FOR loop to count to 3.
The loop begins at 1, increments by 1 upon each iteration, and stops after the
third iteration.

FOR /L %%i IN (1,1,3) DO ECHO %%i

The output produced by this statement is shown below.

1

2

3

Now look at a somewhat more useful way to use this form of the FOR loop. In this
example, I will use the FOR loop to display the contents of an output screen. As you
can see, I was able to create the screen using only four statements (excluding the
@ECHO off statement).

@ECHO off

FOR /L %%i IN (1,1,11) DO ECHO.

ECHO Welcome to

FOR /L %%i IN (1,1,11) DO ECHO.

PAUSE

Figure 6.8 shows the screen displayed when this script is executed.

Now compare the number of statements that it took to display this output to
the number of statements you’ve used with previous methods in this book, as
shown below.

@ECHO off

ECHO.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

173
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Welcome to

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

FIGURE 6.8

Using the FOR loop to
pad the display

screen with
blank lines.

174
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Without the FOR loop, it took 24 statements to create the display. Not only does the
FOR loop do most of the work for you, but it also can be used to simplify your code
and make your scripts smaller and easier to manage.

The form of the FOR loop discussed here always checks the value of its begin and

end parameters before executing. If you accidentally assign a value to the end pa-

rameter that is greater than the begin parameter, your loop will never run. Your script

will skip right past it without saying a word, resulting in unexpected results and a

problem that may be difficult to track down and fix. So keep an eye on your start,

increment, and end values when working with this form of the FOR loop.

Back to the Six-Million-Dollar Quiz

The Six-Million-Dollar Quiz introduces you to a number of new tricks, including
the application of a text-based menu on the game’s welcome screen, as well as the
addition of Help and About screens. In addition, you’ll learn how to create a score
card report file that you’ll then save on the player’s hard drive.

Using Pseudo Code

As your Windows shell scripts grow more and more complicated, you’ll find your-
self spending more time designing them. One design technique I think you’ll find
particularly handy is pseudo code.

Pseudo code is a rough, English-like outline of the logic used in all or part of a script.

Using pseudo code, you can outline a high-level design for particularly compli-
cated sections of your script by simply writing a rough logical outline of the steps
involved. For example, one portion of the Six-Million-Dollar Quiz involves the dis-
play of a text-based menu on the game’s welcome screen. Since you have not worked
with text-based menus before, you’ll probably find it very helpful to outline its
operation using pseudo code, as demonstrated below.

• Display a Welcome menu and set it up to display Play, Exit, Help, and About options.

• Prompt the player to enter an option.

• If the player enters an invalid option, clear the screen and redisplay the
Welcome menu.

TRAP

DEFINITION

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

175
• If the player presses Enter without entering an option, clear the screen and

redisplay the Welcome menu.

• If the player enters Exit, terminate the quiz’s execution.

• If the player enters Help, clear the screen and display the Help screen. When the
player is done reading the Help screen, clear it and redisplay the Welcome menu.

• If the player enters About, clear the screen and display the About screen.
When the player is done reading the About screen, clear it and redisplay the
Welcome menu.

• If the player enters Play, clear the screen and begin the game.

With this pseudo outline describing the operation of the script’s text-based menu
system, you can now work to turn this descriptive outline into code. For example,
the first two statements listed above are the English equivalent to the following
statements:

ECHO [Play] [Exit] [Help] [About]

SET /p reply= Option:

As you will soon see, the rest of the steps outlined in the previous pseudo code
example can also be translated directly into code.

Designing the Game

OK. Now take a few moments to outline the steps involved in the development of
the Six-Million-Dollar Quiz. As you can see from the list that I have outlined below,
I plan to complete the development of the game in 10 steps.

1. Set up the execution environment

2. Display the welcome screen and main menu

3. Process menu selections

4. Set up the Help screen

5. Set up the About screen

6. Control game play

7. Start the score card report

8. Grade quiz results

9. Append quiz statistics

10. Display game results for player review

176
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

I’ll explain in detail the work involved in completing each of these steps in the
sections that follow. When you get to step 3, you can refer back to the pseudo code
example shown earlier and see how the pseudo code outline was used to guide the
development of the code in that part of the script.

Configuring the Script’s Execution Environment

The script begins by disabling the display of statements in the Windows command
console. It then sets the console’s color scheme to yellow on black. The screen is
then cleared, and the name of the game is displayed on the console’s title bar.
Finally, two variables are defined that are used throughout the script. The first
variable is used to keep count of the number of correctly answered quiz questions
and the second variable is used to keep track of the number of incorrectly an-
swered questions. Both variables are assigned an initial value of 0.

@ECHO off

COLOR 0E

CLS

TITLE = THE S I X M I L L I O N D O L L A R Q U I Z

SET /A Right = 0

SET /A Wrong = 0

Creating a Welcome Screen and Main Menu

The Six-Million-Dollar Quiz’s welcome screen looks similar to many of the other
welcome screens that you have seen in this book. However, there are several key
differences. First, the screen is preceded by a label called :StartGame. This label was
placed here to allow the script to redisplay the main menu after the player has
visited either the Help or About menus.

:StartGame

ECHO.

ECHO.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

177
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO S I X M I L L I O N D O L L A R Q U I Z

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO [Play] [Exit] [Help] [About]

ECHO.

SET /p reply= Option:

Another thing that makes this welcome screen different is the display of a text-
based menu at the bottom of the screen. In order to make the menu work, the
PAUSE statement that you have seen used here in the past has been replaced by a SET
statement that prompts the player to choose one of the listed menu options.

Processing Menu Selections

After designing the Welcome menu, the next step is to set up a process for validating
player input and then directing the script along the right logical path. The basic
logic that must be followed has already been outlined earlier using pseudo code.

178
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

IF /I "%reply%" == "" CLS & GOTO :StartGame

IF /I %reply% == Play CLS & GOTO :Play

IF /I %reply% == Exit CLS & GOTO :EOF

IF /I %reply% == Help CLS & GOTO :Help

IF /I %reply% == About CLS & GOTO :About

CLS & GOTO :StartGame

As you can see, this section of the script consists of a series of IF statements that
determine what to do based on the input typed in by the player. Each possible
course of action is implemented using the GOTO command, which switches script
execution flow to the specified label.

Creating the Help Screen

Now it’s time to set up the game’s Help screen. As you can see below, it begins with
the :HELP label. This statement is required to allow the use of the GOTO statement to
jump to this location in the script when the player enters Help on the welcome screen.

:HELP

ECHO.

ECHO.

ECHO.

ECHO HELP INSTRUCTIONS

ECHO.

ECHO In this game, you will be presented with a series of questions

ECHO designed to test your knowledge of The Six Million Dollar Man TV series.

ECHO Some questions are "fill in the blank," some are True/False, and some are

ECHO Yes/No. Your score will be presented after you have answered all the

ECHO questions.

ECHO.

ECHO.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

179
ECHO ---

ECHO.

ECHO.

ECHO 1. Type Play and press Enter to begin the game.

ECHO.

ECHO 2. Type Exit and press Enter to stop playing the game.

ECHO.

ECHO 3. Type About and press Enter to learn more about the game and its author.

ECHO.

ECHO.

ECHO.

PAUSE

CLS

GOTO :StartGame

In addition to displaying information designed to help the player understand how
to complete the quiz, this section ends with a GOTO: StartGame statement that causes
the script to dismiss the Help screen and redisplay the welcome screen after the
user presses a key.

Creating the About Screen

The About screen is set up exactly the same way as the Help screen and ends with the
same GOTO :StartGame statement. The main reason for including this type of screen
is to give the player the opportunity to learn more about the quiz. For example,
this screen currently displays the name of the script and its author. It also displays
copyright information. However, with only a little modification, this screen could
also provide an e-mail address or information about a Web site.

:About

ECHO.

ECHO.

ECHO.

ECHO.

ECHO About The Six-Million-Dollar Quiz

180
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO Written by

ECHO.

ECHO Jerry Lee Ford, Jr.

ECHO.

ECHO. ------------------------

ECHO.

ECHO Copyright 2003

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

CLS

GOTO :StartGame

Managing Game Play

The next section of the script presents the player with 10 questions. Each question
is presented one at a time. As soon as the player answers the first question, the
screen is cleared and the next question is displayed. The code required to present
the first question and collect the player’s response is show below.

:Play

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

181
ECHO.

ECHO.

SET /p quest1= 1. What was the Six-Million-Dollar Man's first name?

CLS

As you can see, the answer given by the player is stored in a variable called quest1.
The code required to display and collect the rest of the quiz’s questions is the same
as that shown above. Rather than reproduce the same set of statements repeat-
edly, I’ve listed all of the quiz’s questions and their associated answers below.

• What was the Six-Million-Dollar Man’s first name? Steve

• Did he have 1 or 2 bionic arms? 1

• Did he have a bionic eye or ear? Eye

• What was his real last name? Majors

• What was the first name of the Six-Million-Dollar Man’s real wife? Farrah

• What was the last name of the actress who played the bionic woman? Wagner

• Did the bionic woman have a bionic eye or bionic ear? Ear

• T/F: The bionic woman cost more than the Six-Million-Dollar Man. F

• T/F: The Six-Million-Dollar Man was known as Heath on the “Big Valley.” T

• Yes/No: Did the Six-Million-Dollar Man ever marry the bionic woman? Yes

Beginning the Score Card Report

Next, let’s begin creating the quiz’s score card report. The script is set up to store
the report in the C:\Temp folder on the computer’s hard drive. Therefore, the first
thing you’ll want to do is to make sure that this folder exists. If it does not exist,
you’ll want to create it as done by the first three statements below.

IF NOT EXIST C:\TEMP\. (

 MKDIR C:\Scripts

)

ECHO. > C:\TEMP\Quiz.txt

ECHO The Six-Million-Dollar-Man Quiz Score Card Report >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

182
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The last four statements shown above start the creation of a new score card report.
The first statement creates the new report using the > redirection character. This
redirection character will either create the report if it does not already exist or
overwrite it if it already exists. The remaining three statements append the name
of the quiz and two blank lines to the report file.

Grading Player Results

Next, the script begins to analyze the player’s answers to each of the quiz’s 10
questions to see which ones the player got right and which ones he got wrong.
Because there is no way of knowing the case in which the player will choose to
enter answers, the IF statement includes the /I switch, which results in a case-
insensitive comparison. The player’s answer is then compared to the correct an-
swer. If the player got the answer right, a series of ECHO statements is redirected to
the report file stating so. Otherwise, the ELSE portion of the conditional test ex-
ecutes, redirecting a different set of ECHO statements to the report file. Finally, de-
pending on whether or not the player answered correctly, the value of either the
right or wrong variable is increased by one.

IF /I %quest1% == Steve (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 1. What was the Six-Million-Dollar Man's first name? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Steve - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 1. What was the Six-Million-Dollar Man's first name? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest1% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A wrong += 1

)

As you might expect, the code required to grade the remaining nine questions is essen-
tially the same as that shown above, so, for the sake of space, I have decided not to list it
here. However, you will find it in the fully assembled script at the end of this chapter.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

183
Recording Quiz Results

Next, the script appends a few more blank lines to the score card report, followed
by a few lines of information that includes the number of correct and incorrect
answers provided by the player, as shown below.

ECHO. >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO -- >>

C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO Score Card: >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO.>> C:\TEMP\Quiz.txt

ECHO Total number of questions on the quiz = 10 >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO Total number of correctly answered questions = %right% >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO Total number of incorrectly answered questions = %wrong% >> C:\TEMP\Quiz.txt

Displaying Game Results

The final section of the script is shown below. As you can see, it displays the same
summary information that the previous section appended to the score card re-
port. In addition, it displays a message informing the player of the existence and
location of the score card report.

CLS

ECHO.

ECHO.

ECHO.

ECHO Six-Million-Dollar-Man Score Card

ECHO.

ECHO.

ECHO ---

184
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO Total number of questions on the quiz = 10

ECHO.

ECHO Total number of correctly answered questions = %right%

ECHO.

ECHO Total number of incorrectly answered questions = %wrong%

ECHO.

ECHO ---

ECHO.

ECHO.

ECHO A detailed score card report can be found at C:\TEMP\Quiz.txt

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

GOTO :EOF

Finally, even though its not necessary at this point in the script, the GOTO :EOF state-
ment executes, forcing the termination of the script.

The Final Result

Now you have all the information you need to finish the Six-Million-Dollar Quiz. I
recommend that you try to finish it yourself before looking at the fully assembled
code that I have provided below. As with previous chapter projects, I have added
the script template to the Six-Million-Dollar Quiz and embedded comments
throughout to help explain what is going on each step of the way.

@ECHO off

REM ***

REM

REM Script Name: SixMillion.bat

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

185
REM Author: Jerry Ford

REM Date: July 12, 2003

REM

REM Description: This Windows shell script game tests the player's knowledge of

REM the 1970's Six-Million-Dollar Man TV show.

REM

REM ***

REM Script Initialization Section

REM Set the color scheme to yellow on black

COLOR 0E

REM Clear the display

CLS

REM Display the name of the game in the Windows command console's title bar

TITLE = THE S I X M I L L I O N D O L L A R Q U I Z

REM Define and initialize variables that will be used to track the total number

REM of right and wrong answers

SET /A Right = 0

SET /A Wrong = 0

REM Main Processing Section

REM Create a return point

:StartGame

REM Display the initial Welcome screen

ECHO.

ECHO.

186
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO S I X M I L L I O N D O L L A R Q U I Z

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO [Play] [Exit] [Help] [About]

ECHO.

REM Collect the player's response

SET /p reply= Option:

REM Determine what the player wants to do

IF /I "%reply%" == "" CLS & GOTO :StartGame

IF /I %reply% == Play CLS & GOTO :Play

IF /I %reply% == Exit CLS & GOTO :EOF

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

187
IF /I %reply% == Help CLS & GOTO :Help

IF /I %reply% == About CLS & GOTO :About

REM An incorrect response was provided, so redisplay the Welcome screen

CLS & GOTO :StartGame

REM Set up the Help screen

:HELP

ECHO.

ECHO.

ECHO.

ECHO HELP INSTRUCTIONS

ECHO.

ECHO In this game you will be presented with a series of questions

ECHO designed to test your knowledge of the Six-Million-Dollar Man TV series.

ECHO Some questions are "fill in the blank," some are True/False, and some are

ECHO Yes/No. Your score will be presented after you have answered all the

ECHO questions.

ECHO.

ECHO.

ECHO ---

ECHO.

ECHO.

ECHO 1. Type Play and press Enter to begin the game.

ECHO.

ECHO 2. Type Exit and press Enter to stop playing the game.

ECHO.

ECHO 3. Type About and press Enter to learn more about the game and its author.

ECHO.

ECHO.

188
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

REM Pause to give the player time to read the screen

PAUSE

REM Clear the display

CLS

REM Return to the Welcome screen

GOTO :StartGame

REM Set up the About screen

:About

ECHO.

ECHO.

ECHO.

ECHO.

ECHO About The Six-Million-Dollar Quiz

ECHO.

ECHO Written by

ECHO.

ECHO Jerry Lee Ford, Jr.

ECHO.

ECHO. ------------------------

ECHO.

ECHO Copyright 2003

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

189
ECHO.

ECHO.

ECHO.

ECHO.

REM Pause to give the player time to read the screen

PAUSE

REM Clear the display

CLS

REM Return to the Welcome screen

GOTO :StartGame

REM Begin the play of the game

:Play

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest1= 1. What was the Six-Million-Dollar Man's first name?

REM Clear the display

CLS

ECHO.

ECHO.

ECHO.

ECHO.

190
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

REM Ask a question

SET /p quest2= 2. Did he have 1 or 2 bionic arms?

REM Clear the display

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest3= 3. Did he have a bionic eye or bionic ear?

REM Clear the display

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest4= 4. What was his real last name?

REM Clear the display

CLS

ECHO.

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

191
ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest5= 5. What was the first name of the Six-Million-Dollar Man's real wife?

REM Clear the display

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest6= 6. What was the last name of the actress who played the bionic woman?

REM Clear the display

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest7= 7. Did the bionic woman have a bionic eye or bionic ear?

REM Clear the display

192
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest8= 8. T/F: The bionic woman cost more than the Six-Million-Dollar Man.

REM Clear the display

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

SET /p quest9= 9. T/F: The Six-Million-Dollar Man was known as Heath on the "Big Valley."

REM Clear the display

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Ask a question

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

193
SET /p quest10= 10. Yes/No: Did the Six-Million-Dollar Man ever marry the Bionic woman?

REM Clear the display

CLS

REM If the C:\TEMP folder does not exist, then create it

IF NOT EXIST C:\TEMP\. (

 MKDIR C:\Scripts

)

REM Create the Quiz.txt file if it does not exist. Overwrite it if it does exist

ECHO. > C:\TEMP\Quiz.txt

REM Begin appending game results to the report

ECHO The Six-Million-Dollar-Man Quiz Score Card Report >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

REM Determine whether the right or wrong answer was given and append the

REM the appropriate text for each of the ten questions

IF /I %quest1% == Steve (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 1. What was the Six-Million-Dollar Man's first name? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Steve - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 1. What was the Six-Million-Dollar Man's first name? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest1% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

194
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 SET /A wrong += 1

)

IF /I %quest2% == 1 (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 2. Did he have 1 or 2 bionic arms? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: 1 - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 2. Did he have 1 or 2 bionic arms? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest2% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A wrong += 1

)

IF /I %quest3% == Eye (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 3. Did he have a bionic eye or bionic ear? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Eye - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 3. Did he have a bionic eye or bionic ear? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest3% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

195
 SET /A wrong += 1

)

IF /I %quest4% == Majors (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 4. What was his real last name? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Majors - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 4. What was his real last name? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest4% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A wrong += 1

)

IF /I %quest5% == Farrah (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 5. What was the first name of the Six-Million-Dollar Man's real wife? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Farrah - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 5. What was the first name of the Six-Million-Dollar Man's real wife? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest5% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

196
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 SET /A wrong += 1

)

IF /I %quest6% == Wagner (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 6. What was the last name of the actress who played the bionic woman? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Wagner - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 6. What was the last name of the actress who played the bionic woman? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest6% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A wrong += 1

)

IF /I %quest7% == Ear (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 7. Did the bionic woman have a bionic eye or bionic ear? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Ear - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 7. Did the bionic woman have a bionic eye or bionic ear? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest7% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A wrong += 1

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

197
)

IF /I %quest8% == F (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 8. True/False: The bionic woman cost more than the Six-Million-Dollar Man. >>

C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: False - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 8. True/False: The bionic woman cost more than the Six-Million-Dollar Man. >>

C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest8% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A wrong += 1

)

IF /I %quest9% == T (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 9. True/False: The Six-Million-Dollar Man was known as Heath on the "Big Valley." >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: True - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 9. True/False: The Six-Million-Dollar Man was known as Heath on the "Big Valley." >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest9% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

198
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 SET /A wrong += 1

)

IF /I %quest10% == Yes (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 10. Yes/No: Did the Six-Million-Dollar Man ever marry the Bionic woman? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: Yes - Correct! >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A right += 1

) ELSE (

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO 10. Yes/No: Did the Six-Million-Dollar Man ever marry the Bionic woman? >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 ECHO Your answer was: %quest10% - Incorrect. >> C:\TEMP\Quiz.txt

 ECHO. >> C:\TEMP\Quiz.txt

 SET /A wrong += 1

)

REM Append a few blanks lines and then append score card data

ECHO. >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO -- >>

C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO Score Card: >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO.>> C:\TEMP\Quiz.txt

ECHO Total number of questions on the quiz = 10 >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

ECHO Total number of correctly answered questions = %right% >> C:\TEMP\Quiz.txt

ECHO. >> C:\TEMP\Quiz.txt

C
h

a
p

te
r 6

C
r e

a
tin

g
 L

o
o

p
s
 to

 P
r o

c
e
s
s
 C

o
l le

c
ti o

n
s
 o

f D
a
t a

199
ECHO Total number of incorrectly answered questions = %wrong% >> C:\TEMP\Quiz.txt

REM Clear the display

CLS

REM Display score card data in the Windows command console and inform the player

REM about the availability of the Games.txt file

ECHO.

ECHO.

ECHO.

ECHO Six-Million-Dollar-Man Score Card

ECHO.

ECHO.

ECHO ---

ECHO.

ECHO Total number of questions on the quiz = 10

ECHO.

ECHO Total number of correctly answered questions = %right%

ECHO.

ECHO Total number of incorrectly answered questions = %wrong%

ECHO.

ECHO ---

ECHO.

ECHO.

ECHO A detailed score card report can be found at C:\TEMP\Quiz.txt

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Terminate the script's execution

GOTO :EOF

200
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Summary

In this chapter, you learned how to use the FOR statement in numerous different
ways in order to iterate through collections of files and folders as well as to process
the results returned by commands. You then created the Six-Million-Dollar Quiz
where you learned, among other things, how to implement and control a text-
based menu system and how to create a report file.

E X E R C I S E S

1. Modify the Six-Million-Dollar Quiz so that it displays the correct answers to any

question missed by the player.

2. Modify the Six-Million-Dollar Quiz so that the Score Card Report is not auto-

matically generated. Instead, display a prompt at the end of the game that asks

players whether they would like the report to be generated.

3. Each script statement that writes or appends data to the Quiz.txt file has the name

and location of the report file hard coded on it. Make the script easier to maintain

and modify by defining a variable that specifies the location where the file should

be stored and then replace each hard-coded reference with this variable.

4. Add logic to the end of the Six-Million-Dollar Quiz that grades the score the

player earned on the quiz. For example, assign A+ if all questions were answered

correctly, a B+ if only one question was missed, and so on.

7

T
he focus of this chapter is to teach you how to improve the overall organization
and design of your Windows shell scripts by introducing you to subroutines
and procedures. Specific emphasis will be placed on procedures as an orga-

nizational tool for enhancing script design. This chapter will also cover two other impor-
tant topics: the localization of variables and the creation of reusable modules of code.

Specifically, you will learn

• How to use the GOTO command to create subroutines

• How to use the CALL command to set up procedures

• How to create internal and external procedures

• How to localize variables using procedures

• How to set up procedures that process arguments

Creating
Procedures and

Subroutines

C H A P T E R

202
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project Preview:
The Rock, Paper, Scissors Game

This chapter’s main project is called the Rock, Paper, Scissors game. This game is
based on the childhood game where two people knock their own hands together
in unison three times, and then use one hand to make the shape of a rock, a piece
of paper, or a pair of scissors. The game will begin, as shown in Figure 7.1, by dis-
playing a welcome screen. This welcome screen has a dual purpose in that it also
displays the rules of the game, just in case the player is not familiar with them.

FIGURE 7.1

The Rock, Paper,
Scissors game’s

menu displays the
rules of the game.

FIGURE 7.2

The player must
enter “Rock,”

“Paper,” or
“Scissors.”

As Figure 7.2 shows, the player is prompted to type in one of the three game objects.

The game then makes its own random selection and compares its selection to that
of the player, displaying the results as shown in Figure 7.3.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

203

The game will allow players to enter their selections using upper, lower, or mixed
case. However, only the words Rock, Paper, or Scissors are valid entries. If the player
makes a typo when entering their selection, the error message shown in Figure 7.4
will be displayed.

FIGURE 7.3

After each game,
the script displays
both the player’s

and the computer’s
selection and

determines the
results of the game.

FIGURE 7.4

The game will
accept only Rock,

Paper, or Scissors as
valid entries.

FIGURE 7.5

The game allows
players to play
repeatedly and
keeps a running

record of the
players’ wins,

losses, and ties.

At the end of each game, players are asked whether they would like to play again.
Players may play as many games as they wish. When they finally decide to stop
playing, then the game screen shown in Figure 7.5 will appear, providing a sum-
mary of the number of games won, lost, or tied. In addition, the number of invalid
selections (or hands) is also displayed.

204
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Reorganizing Your
Windows Shell Scripts

As you have now seen many times, Windows shell scripts execute by default from
top to bottom. However, you can use the GOTO command along with a LABEL statement
to direct scripts to jump from one location to another and resume execution. You
have also seen on numerous occasions where I have used the GOTO command and a
LABEL statement to set up loops.

The Windows shell provides another use for GOTO command and LABEL statement:
creating subroutines. A subroutine is created whenever you use the GOTO com-
mand and the LABEL statement to switch processing control to a later section of
the script (as opposed to a loop, where processing control is passed back to an
earlier section of the script).

The Windows shell also allows you to define procedures using the CALL command
and the LABEL statement. Using procedures, you switch processing control from
one portion of the script to another section and then back again when the proce-
dure finishes executing.

Understanding Labels

Even though you have seen them used many times, I have not yet formally defined
labels. Labels are markers that you place inside your Windows shell scripts. Labels
are used to establish loops, subroutines, and procedures. The syntax for the LABEL
statement is shown below.

:LABEL

As you can see, a label consists of the colon character followed by the label’s name.
Label names are not case-sensitive, and you may use any combination of letters
and numbers as well as the underscore character when specifying labels.

Defining Subroutines

When you set up a subroutine and then execute it, your script skips the execution
of any statements that occur after the GOTO command and before the specified LABEL
statement, as depicted in Figure 7.6.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

205

As you can see in Figure 7.6, a GOTO command executes and calls a subroutine named
:ProcessFiles. The arrow shows how the script execution skips over all statements
between the GOTO command and the :ProcessFiles label.

Subroutines have complete access to any arguments that may have been passed to
the script. In addition, any changes made to variables within a subroutine affect
the entire script.

The Windows shell provides a built-in function name :EOF (end of file), which you

have seen used throughout this book. Windows shell scripts automatically termi-

nate execution at the end of the script file. Therefore, when you use the GOTO com-

mand to execute the :EOF subroutine, you are really just telling your script to act as

if it has just reached the end of the script file.

FIGURE 7.6

Subroutines are
created using the
GOTO command and
a LABEL statement.

TRICK

206
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Look at a working example of a script that contains three subroutines, as shown below.

@ECHO off

COLOR 0E

TITLE = Subroutine Demo

CLS

FOR /L %%i IN (1,1,4) DO ECHO.

ECHO This script maintains the C:\Temp folder.

FOR /L %%i IN (1,1,16) DO ECHO.

ECHO Options: [Delete] [Rename] [Exit]

ECHO.

SET /P reply=What do you want to do to its contents?

IF /I %reply%==Delete (

 GOTO :DeleteFiles

)

IF /I %reply%==Rename (

 GOTO :RenameFiles

)

IF /I %reply%==Exit (

 GOTO :Exit

)

GOTO :EOF

:DeleteFiles

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

207
 ECHO Deleting all files stored in C:\TEMP

 DEL C:\TEMP*.*

GOTO :EOF

:RenameFiles

 ECHO Renaming all files stored in C:\Temp

 REN C:\Temp*.* *.bak

GOTO :EOF

:Exit

 ECHO Terminating script execution

GOTO :EOF

Be careful when using wild card characters to identify multiple files. They make it

easy to accidentally delete files that you want to keep.

This script is designed to maintain the C:\Temp folder. It can perform three differ-
ent sets of actions, each of which is organized into its own function. The first func-
tion is called :DeleteFiles, and its job is to delete all the files stored in the folder.
The second subroutine is called :RenameFiles, and its job is to rename all files found
in the folder using a .bak file extension. The third subroutine is called :Exit. It’s job
is to terminate the script without performing any other action in the event that
the user either ran the script by accident or changed their mind about deleting or
renaming the files stored in the C:\Temp folder.

When keying in the previous example, make sure that you include at least one blank

space at the end of the text specified as the SET command’s message prompt. Other-

wise the message prompt and the user’s input will run together.

When executed, the script displays a menu that prompts the user to specify an
action. The script then analyzes the user’s reply and executes the appropriate sub-
routine. Since each subroutine ended with a GOTO :EOF statement, each subroutine
terminates the script’s execution when it executes. Therefore the GOTO :EOF state-
ment not only performs script termination but is also used to define the end of
each subroutine.

TRAP

TRAP

208
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Improving Script Organization
with Procedures

As I have already stated, the CALL command can be used along with the LABEL state-
ment to set up procedures. Unlike subroutines, which switch processing control to
another part of the script and then terminate at the end of the file, procedures
execute and then return processing control back to the statement that follows the
CALL command that executed the procedure in the first place.

The Windows shell supports two different types of procedures, as outlined below.

• Internal. A procedure that is defined within the script that when called,
executes and then returns control back to the statement that follows the
CALL command.

• External. A call to another script. The calling script then waits for the
called script to execute and terminate at which time the calling script begins
executing again.

Setting Up Internal Procedures

Internal procedures are similar to subroutines. However, unlike subroutines they re-
turn processing control after they have finished executing, as depicted in Figure 7.7.

Like subroutines, internal procedures start with a LABEL and terminate with the
GOTO :EOF statement. Procedures are called and executed by the CALL command,
which has the following syntax:

CALL :ProcedureName

As you can see, the CALL statements begin with the CALL command followed by a
space, then a colon, and finally the name of the procedure. The format that must
be followed when creating a procedure is outlined below.

:ProcedureName

 …

 …

 …

GOTO :EOF

The beginning of the procedure is marked by a LABEL called :ProcedureName. The end
of the procedure is marked by the GOTO :EOF statement. Everything in between makes
up the procedure itself.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

209

Don’t forget to end all your procedures with the GOTO :EOF statement. Otherwise,

the Windows shell will treat any statements that follow a procedure as part of that

procedure, producing unpredictable results.

Unlike subroutines, which have complete access to all the arguments passed to the
script, procedures are expected to accept and process their own arguments. To
pass arguments to a script, you simply add the arguments, separated by spaces, to
the end of the CALL statement, as outlined below.

CALL :ProcedureName arg1 arg2 arg3 ……

Procedures can then access these procedure arguments as %1, %2, %3, and so on in
the same manner that scripts access script arguments. Since procedures have their
own unique set of arguments, they are not permitted to have direct access to script
arguments. This is true even if a procedure does not process any procedure-level
arguments of its own. However, you can always pass script-level arguments to

FIGURE 7.7

Internal procedures
are created using
the CALL command

and a LABEL
statement.

TRAP

210
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

procedures if need be. For example, to call a procedure named :ProcessFiles and
pass it all of the script arguments, you would use the following statement:

CALL :ProcessFiles %*

OK, now look at how to use procedures as an organizational tool for script develop-
ment. In this example, the Unpredictable.bat script that was covered in Chapter 2,
“Interacting with the Windows Shell,” has been redesigned using procedures.

@ECHO off

REM ***

REM

REM Script Name: Unpredictable2.bat

REM Author: Jerry Ford

REM Date: July 20, 2003

REM

REM Description: This Windows shell script randomly adjusts the Windows shell

REM working environment

REM

REM ***

REM Script Initialization Section

CLS

REM Main Processing Section

CALL :GetRandomVariable

If %TestVariable% GTR 22000 (

 CALL :FirstConfiguration

 GOTO :EOF

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

211
)

If %TestVariable% GTR 11000 (

 CALL :SecondConfiguration

 GOTO :EOF

)

If %TestVariable% GTR 0 (

 CALL :ThirdConfiguration

 GOTO :EOF

)

REM Procedure Section

:GetRandomVariable

 SET TestVariable=%random%

GOTO :EOF

:FirstConfiguration

 CLS

 TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

 COLOR 02

 ECHO Greetings %username%. Code well and Prosper.

 ECHO.

 PROMPT

GOTO :EOF

:SecondConfiguration

 CLS

 TITLE Demo - Manipulating the Windows console environment - %TestVariable%

 COLOR 0E

 ECHO Hello. It is good to be working with you today!

212
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO.

 PROMPT dg

GOTO :EOF

:ThirdConfiguration

 CLS

 TITLE Windows Shell Scripting Example. - %TestVariable%

 COLOR E0

 ECHO Boo! Did I scare you?

 ECHO.

 PROMPT $p

GOTO :EOF

As you can see, the script’s Procedure Section consists of a procedure call and three
conditional IF statements which also make procedure calls as appropriate. When
reorganized in this manner, the Main Processing Section assumes the job of manag-
ing the script’s overall execution flow. However, the actual work is performed by a
collection of four procedures located in the script’s Procedure Section.

Procedures streamline a script’s organization and help to create modular code. By
modular, I mean that collections of related statements are grouped together. Group-
ing statements in this manner facilitates your ability to create reusable code. In
addition, it makes script maintenance easier by isolating functionality and pro-
viding scripts with a predictable structure.

Creating External Procedures

An external procedure is another Windows shell script whose execution you call,
or initiate, from within another Windows shell script via the CALL command. But
instead of specifying a procedure name, you specify a script name using the fol-
lowing syntax:

CALL ScriptName

Like internal procedures, you may pass arguments to external procedures. When
the called script terminates its execution, the calling script resumes its own execu-
tion beginning with the statement following the CALL statement. Figure 7.8 depicts
the way that external procedures work.

You may make as many calls to external scripts as you wish. Each external script is
executed within the same execution environment as the calling script. Therefore,

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

213

changes made by the called script to script variables originally defined by the call-
ing script will be in effect once the calling script resumes its own execution.

To demonstrate the operation of external procedures, I redesigned the Unpredictable2.bat
script as shown below. This time I extracted the statements that had made up the
script’s last three internal procedures and pasted them into three external scripts,
which will be called and executed as external procedures. I named the scripts
FirstConfig.bat, SecondConfig.bat, and ThirdConfig.bat.

@ECHO off

REM ***

REM

FIGURE 7.8

An external
procedure allows a

script to execute
another script and
wait on the called

script to finish
executing before
resuming its own

execution.

214
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

REM Script Name: Unpredictable3.bat

REM Author: Jerry Ford

REM Date: July 20, 2003

REM

REM Description: This Windows shell script randomly adjusts the Windows shell

REM working environment

REM

REM ***

REM Script Initialization Section

CLS

REM Main Processing Section

CALL :GetRandomVariable

If %TestVariable% GTR 22000 (

 CALL FirstConfig.bat

 ECHO Configuration now set.

 GOTO :EOF

)

If %TestVariable% GTR 11000 (

 CALL SecondConfig.bat

 ECHO Configuration now set.

 GOTO :EOF

)

If %TestVariable% GTR 0 (

 CALL ThirdConfig.bat

 ECHO Configuration now set.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

215
 GOTO :EOF

)

REM Procedure Section

:GetRandomVariable

 SET TestVariable=%random%

GOTO :EOF

The following statements show the contents of the new FirstConfig.bat script.

CLS

TITLE UCP - The Unpredictable Command Prompt - %TestVariable%

COLOR 02

ECHO Greetings %username%. Code well and Prosper.

ECHO.

PROMPT

The contents of the new SecondConfig.bat script are listed below.

CLS

TITLE Demo - Manipulating the Windows console environment - %TestVariable%

COLOR 0E

ECHO Hello. It is good to be working with you today!

ECHO.

PROMPT dg

The contents of the new ThirdConfig.bat script are listed below.

CLS

TITLE Windows Shell Scripting Example. - %TestVariable%

COLOR E0

ECHO Boo! Did I scare you?

ECHO.

PROMPT $p

When executed, the new Unpredictable3.bat script calls each of its external proce-
dures in sequence, producing the same results as the previous version of the script.

216
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

External scripts and the calling script are running within the same instance of the

Windows shell. This means that the called script has access to any script variables

already defined by the calling script. This also means that any changes made to the

script variables by the called script will also be in effect when the calling script

begins executing again. So, unless you intend that the calling and called scripts

share script variables in this manner, be sure that you use different sets of variables

within each script.

One advantage of this redesigned process is that it helps to further isolate the
subroutines for debugging purposes. In other words, if I find later that I need to
modify the statements stored in just one of the procedures, I can do so without
affecting the statements stored in the main script or in the other external proce-
dures. As a result, the effects of a typo are minimized and isolated to just the one
procedure instead of an entire script.

As you begin writing more and more Windows shell scripts, eventually you may find

that you begin to rewrite certain common procedures over an over again. For ex-

ample, you might develop four or five scripts, all of which need to access the con-

tents of a network drive. Using the NET USE command, you can develop an internal

procedure that establishes a remote network connection to the network drive. How-

ever, rather than duplicate this procedure in each script that needs it, you can save

it as a separate script and then call that script as a procedure from any script that

needs it. This way, you won’t have to keep reinventing the wheel.

Using Procedures to Localize Variable Access

Back in Chapter 4, “Storing and Retrieving Information in Variables,” you were
introduced to the idea of limiting or localizing access to script variables using the
SETLOCAL and ENDLOCAL commands. By combining the use of these commands with
procedures, you can lock down the variable access to specific locations within your
scripts. This is an especially useful programming technique when you are develop-
ing complex and lengthy scripts that perform a lot of variable manipulation. As
these types of scripts grow, it can become difficult to keep track of variables, thus
opening up the possibility that one part of your script may accidentally alter a
variable without you realizing it. By localizing variable access, you can exercise
strict control over all your script’s variables.

TRAP

TRICK

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

217
To localize variable access within procedures, make sure that the first statement
in each procedure is the SETLOCAL statement and that the last statement is the ENDLOCAL
statement, as demonstrated below.

:DemoProcedure

 SETLOCAL

 …

 …

 …

 ENDLOCAL

GOTO :EOF

Using this format, any variables defined within the procedure are isolated from
the rest of the script and are discarded when the procedure terminates.

When localizing variables within procedures, take extra care to make sure you re-

member to execute the ENDLOCAL command. Otherwise, your procedure variables

will become script variables with potentially damaging effects. One thing you should

specifically guard against is the use of GOTO commands within procedures, because

that could transfer processing control to a different part of the script without first

finishing the procedure. In this case, you can turn the GOTO command into a com-

pound command in order to retain variable localization as demonstrated below.

ENDLOCAL & GOTO :ProcedureName

Tunneling Data Out of Your Procedures

While there are advantages to localizing variables within procedures via the SETLOCAL
and ENDLOCAL commands, it also has one disadvantage. It makes it difficult for your
internal procedures to return any results back to the script, which can greatly
limit the usefulness of procedures. For example, the following procedure demon-
strates this limitation:

:DemoProcedure

 SETLOCAL

 SET /A ret = 5

 ENDLOCAL

GOTO :EOF

TRAP

218
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In this procedure, the value of a variable named ret is set equal to 5. However, this
variable and its value are not accessible to the rest of the script.

Using a programming technique called variable tunneling, you can get around this
limitation. Variable tunneling works like this: First you create a variable containing
whatever information you wish to pass back to the rest of the script, and then you
turn the ENDLOCAL command into a compound command using the following syntax:

ENDLOCAL & SET ret=%ret%

The result will be a statement that ends the scope of procedure variables while
tunneling out, or making accessible, the ret variable, as demonstrated in the fol-
lowing example:

:DemoProcedure

 SETLOCAL

 SET /A RET = 5

 ENDLOCAL & SET ret=%ret%

GOTO :EOF

Back to the Rock, Paper, Scissors Game

In the Rock, Paper, Scissors game, the player chooses from one of three available
selections. The player’s selection is then compared to the computer’s randomly
generated selection, and the results of the comparison are displayed. The criteria
used to determine game results are very simple and are outlined in Table 7.1.

Using a Flowchart as a Script Development Tool

As you will see, the Rock, Paper, Scissors game provides an excellent chance to
demonstrate the benefits of organizing your Windows shell scripts using proce-
dures. As a preliminary step in designing this game, let’s look at a new type of
development tool, called flowcharting, which I think you will find vary useful.

A flowchart is a graphic outline that provides a high-level overview of the compo-

nents of a script and shows their relationship to one another.
DEFINITION

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

219

Programmers often begin the development of complex projects by starting with
a flowchart design. Flowcharts provide a visual tool for the outline of high-level
logic. In addition, they provide the added benefit of serving as an excellent docu-
mentation tool.

Figure 7.9 shows the flowchart I developed for this Rock, Paper, Scissors project. As
you can see, the flowchart’s design is not very complex. I used rectangles to iden-
tify discrete modules of code such as procedures. I used a diamond shape to repre-
sent major decision points, and I used a circle to identify the logical end of the
script. Then, to help show the game’s overall flow, I drew arrows showing the logi-
cal flow of the game from beginning to end.

Roughly translated, the flowchart reads like this: First the script’s Initialization
Section processes. Then the script’s main menu is displayed and the game starts.
Next, the game collects the player’s selection and compares it to the computer
selection. A check is made to ensure that an invalid selection was not made, and
the results of the game are displayed. At this point, the player will be prompted to
decide whether to play again. If the player decides to play again, the game restarts.
Otherwise, game statistics are displayed and the game ends.

TABLE 7.1 ROCK, PAPER, SCISSORS RULES

Player 1 Picks Player 2 Picks Results

Rock Rock Tie

Paper Paper Tie

Scissors Scissors Tie

Rock Scissors Rock breaks Scissors: Player 1 wins

Scissors Rock Rock breaks Scissors: Player 2 wins

Paper Rock Paper covers Rock: Player 1 wins

Rock Paper Paper covers Rock: Player 2 wins

Scissors Paper Scissors cut paper: Player 1 wins

Paper Scissors Scissors cut paper: Player 2 wins

220
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FIGURE 7.9

Using a flowchart to
help create a

preliminary design
for your Windows

shell script.

IN THE REAL WORLD

The larger and more complex the project, the more beneficial flowcharting becomes.

Programmers use flowcharts to break down projects into discrete tasks. This makes

it easier to focus on the development of each individual component of the script by

knowing how it relates to other components. Flowcharting also helps programmers

who work on teams to break down projects into different parts, each of which may

be worked on by a different programmer.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

221
Translating Flowchart Design into Script
Requirements

Using the flowchart as a basis for outlining the steps involved in developing the
Rock, Paper, Scissors game, I have decided to tackle this project in nine steps, as
outlined below.

1. Set up the Initialization Section

2. Set up the Main Processing Section

3. Develop the :Displaymenu procedure

4. Develop the :CollectChoice procedure

5. Develop the :GetComputerChoice procedure

6. Develop the :CompareChoices procedure

7. Develop the :CheckForInvalid procedure

8. Develop the :DisplayResults procedure

9. Develop the :DisplayStats procedure

Creating the Initialization Section

The script’s Initialization Section, shown below, displays the name of the game in
the Windows command console’s title bar and sets the color scheme to yellow on
black. In addition, four variables that are used throughout the script are defined
and assigned initial default values. These variables will be used to track game re-
sults and provide the player with information at the end of the game regarding
the number of wins, losses, ties, and invalid selections.

TITLE = R o c k, P a p e r, S c i s s o r s

COLOR 0E

SET /a NoWins = 0

SET /a NoLosses = 0

SET /a NoTies = 0

SET /a NoInvalid = 0

222
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating the Main Processing Section

The Main Processing Section, shown below, looks a little different than the Main
Processing Section of other scripts that you have seen in this book. This Main Pro-
cessing Section is designed to control the game’s overall execution by making calls
to the appropriate procedures. In addition to procedure calls, the Main Processing
Section includes a label called :StartAgain and an IF...Else statment. By placing the
label at the beginning of the Main Processing Section, the IF...Else statement is able
to initiate a replay of the game if the player elects to play another round. Otherwise,
the :DisplayStatus procedure is called and the script terminates its execution.

CALL :DisplayMenu

:StartAgain

CALL :CollectChoice

CALL :GetComputerChoice

CALL :CompareChoices

CALL :CheckForInvalid

CALL :DisplayResults

IF /I "%response:~,1%" EQU "y" (

 GOTO :StartAgain

) ELSE (

 CALL :DisplayStats

 GOTO :EOF

)

GOTO :EOF

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

223
Developing the :DisplayMenu Procedure

The game’s welcome screen is displayed whenever the :DisplayMenu procedure is
called. As you can see, this procedure clears the display and then uses FOR and ECHO
commands to display the welcome screen.

:DisplayMenu

 CLS

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO W E L C O M E TO

 ECHO.

 ECHO R O C K, P A P E R, S C I S S O R S !

 ECHO.

 ECHO.

 ECHO.

 ECHO Rules:

 ECHO.

 ECHO 1. Guess the same thing as the computer to tie.

 ECHO.

 ECHO 2. Paper covers rock and wins.

 ECHO.

 ECHO 3. Rock breaks scissors and wins.

 ECHO.

 ECHO 4. Scissors cut paper and wins.

 FOR /L %%i IN (1,1,5) DO ECHO.

 PAUSE

GOTO :EOF

224
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Like all procedures, this one ends with the GOTO :EOF statement, which returns the
processing control of the script back to the statement immediately following the
statement that called this procedure.

Developing the :CollectChoice Procedure

The :CollectChoice procedure, shown below, defines several variables and then dis-
plays a screen that prompts the player to type his selection.

:CollectChoice

 SET answer="No Answer"

 SET response=N

 SET results=None

 CLS

 FOR /L %%i IN (1,1,8) DO ECHO.

 SET /p answer= Type either rock, paper or scissors:

GOTO :EOF

Developing the :GetComputerChoice Procedure

The :GetComputerChoice procedure, shown below, obtains a random number between
0 and 32,767 by referencing the random environment variable. If the value of the
random number is greater than 22,000, the computer is assigned a selection of
rock. If the value of the random number is less than 22,000 and greater than 11,000,
the computer is assigned a selection of scissors. Finally, if the value of the random
number is less than 11,000, the computer is assigned a selection of paper.

:GetComputerChoice

 SET GetRandomNumber=%random%

 If %GetRandomNumber% GTR 22000 (

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

225
 SET CardImage=rock

 GOTO :Continue

)

 If %GetRandomNumber% GTR 11000 (

 SET CardImage=scissors

 GOTO :Continue

)

 SET CardImage=paper

 :Continue

GOTO :EOF

Note the inclusion of the :Continue label in this procedure. I added this label to
allow the procedure to skip the execution of any remaining statements as soon as
the first conditional test proves true. For example, if the randomly generated num-
ber is over 22,000, then there is no reason for the procedure to process the other
statements outside of those located in its first conditional test.

Developing the :CompareChoices Procedure

The :CompareChoices procedure, shown below, runs through a series of IF statements
to determine if the selection entered by the player is equal to rock, paper, or scissors.
If the player did enter one of these selections, then a set of three embedded IF
statements is executed to determine whether the player won, lost, or tied.

:CompareChoices

 IF /I %answer% == rock (

 IF %CardImage% == rock (

 SET results="You Tie"

 SET /a NoTies = NoTies + 1

)

 IF %CardImage% == scissors (

226
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 SET results="You Win"

 SET /a NoWins = NoWins + 1

)

 IF %CardImage% == paper (

 SET results="You Lose"

 SET /a NoLosses = NoLosses + 1

)

)

 IF /I %answer% == scissors (

 IF %CardImage% == rock (

 SET results="You Lose"

 SET /a NoLosses = NoLosses + 1

)

 IF %CardImage% == scissors (

 SET results="You Tie"

 SET /a NoTies = NoTies + 1

)

 IF %CardImage% == paper (

 SET results="You Win"

 SET /a NoWins = NoWins + 1

)

)

 IF /I %answer% == paper (

 IF %CardImage% == rock (

 SET results="You Win"

 SET /a NoWins = NoWins + 1

)

 IF %CardImage% == scissors (

 SET results="You Lose"

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

227
 SET /a NoLosses = NoLosses + 1

)

 IF %CardImage% == paper (

 SET results="You Tie"

 SET /a NoTies = NoTies + 1

)

)

GOTO :EOF

The value assigned to the variable called results is a string describing the results of
the game. In addition, the values assigned to the NoWins, NoLosses, and NoTies vari-
ables are incremented as appropriate.

Developing the :CheckForInvalid Procedure

The :CheckForInvalid procedure, shown below, checks the value of the results vari-
able to make sure that its value was set by the previous procedure. If a value was
not set by the previous procedure, then the player did not enter a valid selection,
and the variable’s default setting will still be set equal to None. If this is the case,
the screen is cleared and an error message is displayed.

:CheckForInvalid

 IF %results%==None (

 CLS

 SET /a NoInvalid = NoInvalid + 1

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO Sorry. Your answer was not recognized.

 ECHO.

228
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO Use all lower case when you enter your choice.

 FOR /L %%i IN (1,1,4) DO ECHO.

 PAUSE

)

GOTO :EOF

The game continues after the player reads the error message and presses a key.

Developing the :DisplayResults Procedure

At the end of each game, the :DisplayResults procedure, shown below, is executed. Its
job is to display the selections made by the player and the computer and to decide
who, if anyone, won. This procedure is also responsible for prompting the player to
play another game. It assigns the player’s reply to a variable called response. When
the procedure returns processing control back to the Main Processing Section, this
section interrogates the variable’s value to determine whether to restart the game.

:DisplayResults

 CLS

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO G A M E R E S U L T S

 ECHO.

 ECHO -------------------------------------

 ECHO.

 ECHO You picked: %answer%

 ECHO.

 ECHO The computer picked: %CardImage%

 ECHO.

 ECHO -------------------------------------

 ECHO.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

229
 ECHO Results: %Results%

 FOR /L %%i IN (1,1,9) DO ECHO.

 SET /p response=Play another round (y/n)?

GOTO :EOF

Developing the :DisplayStats Procedure

The :DisplayStats procedure, show below, is called just before the game terminates
its execution. This procedure’s job is to display the win, loss, and tie statistics that
the game has collected so that players can see how well they faired against the
computer. In addition, the number of invalid games (or hands) is displayed.

:DisplayStats

 CLS

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO G A M E S T A T I S T I C S

 ECHO.

 ECHO -------------------------------------

 ECHO.

 ECHO Category Results

 ECHO -------------------- -------

 ECHO.

 ECHO No of Ties %NoTies%

 ECHO.

 ECHO No of Wins %NoWins%

 ECHO.

 ECHO No of Losses %NoLosses%

 ECHO.

 ECHO No of Invalid Hands %NoInvalid%

230
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO.

 ECHO -------------------------------------

 FOR /L %%i IN (1,1,4) DO ECHO.

GOTO :EOF

OK, now you are ready to complete the development of the Rock, Paper, Scissors
game. Why don’t you try to do so before examining the fully assembled script that
I have listed in the next section.

The Final Result

The fully assembled Rock, Paper, Scissors game is shown below. As with previous
projects, I have added the shell template and made liberal use of comments to
help explain what is going on throughout the script.

@ECHO off

REM ***

REM

REM Script Name: RockPaperScissors.bat

REM Author: Jerry Ford

REM Date: July 19, 2003

REM

REM Description: This is a Windows shell script implementation of the popular

REM child's game called "Rock, Paper, Scissors."

REM

REM ***

REM ****** Script Initialization Section ******

REM Display the name of the game in the Windows command console's title bar

TITLE = R o c k, P a p e r, S c i s s o r s

REM Set the color scheme to yellow on black

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

231
COLOR 0E

REM Define globally used variables

SET /a NoWins = 0

SET /a NoLosses = 0

SET /a NoTies = 0

SET /a NoInvalid = 0

REM ****** Main Processing Section ******

REM Call the procedure that displays the main menu

CALL :DisplayMenu

REM This label provides a callable marker for restarting the game

:StartAgain

REM Call the procedure that collect the player's choice

CALL :CollectChoice

REM Call the procedure that randomly determines the computer's choice

CALL :GetComputerChoice

REM Call the procedure that determine if the player won, lost or tied

CALL :CompareChoices

REM Call the procedure that checks for an invalid choice

CALL :CheckForInvalid

REM Call the procedure that displays the results of the game

CALL :DisplayResults

REM Analyze the player's response and either start a new game or display

232
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

REM game statistics (assume an N if response is anything but a Y or y)

IF /I "%response:~,1%" EQU "y" (

 GOTO :StartAgain

) ELSE (

 CALL :DisplayStats

 GOTO :EOF

)

REM Terminate the script's execution

GOTO :EOF

REM ****** Procedure Section ******

REM This procedure displays the game's main menu

:DisplayMenu

 REM Clear the display

 CLS

 REM Add three blank lines to the display

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO W E L C O M E TO

 ECHO.

 ECHO R O C K, P A P E R, S C I S S O R S !

 ECHO.

 ECHO.

 ECHO.

 ECHO Rules:

 ECHO.

 ECHO 1. Guess the same thing as the computer to tie.

 ECHO.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

233
 ECHO 2. Paper covers rock and wins.

 ECHO.

 ECHO 3. Rock breaks scissors and wins.

 ECHO.

 ECHO 4. Scissors cut paper and wins.

 REM Add five blank lines to the display

 FOR /L %%i IN (1,1,5) DO ECHO.

 REM Make the player press a key to continue

 PAUSE

GOTO :EOF

REM This collects the player's choice

:CollectChoice

 REM Define variables needed to store and analyze the player's response

 SET answer="No Answer"

 SET response=N

 SET results=None

 REM Clear the display

 CLS

 REM Add eight blank lines to the display

 FOR /L %%i IN (1,1,8) DO ECHO.

 REM Ask the player to make their choice

 SET /p answer= Type either rock, paper, or scissors:

GOTO :EOF

234
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

REM This procedure randomly determines the computer's choice

:GetComputerChoice

 REM Get a random number

 SET GetRandomNumber=%random%

 REM If the random number is greater than 22,000, the computer picked rock

 If %GetRandomNumber% GTR 22000 (

 SET CardImage=rock

 GOTO :Continue

)

 REM If the random number is greater than 11,000, the computer picked scissors

 If %GetRandomNumber% GTR 11000 (

 SET CardImage=scissors

 GOTO :Continue

)

 REM Otherwise, assign paper as the computer's choice

 SET CardImage=paper

 REM This label is used to skip unnecessary conditional tests in this procedure

 :Continue

GOTO :EOF

REM This procedure determines if the player won, lost, or tied

:CompareChoices

 REM Compare choices when the player selected rock

 IF /I %answer% == rock (

 IF %CardImage% == rock (

 SET results="You Tie"

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

235
 SET /a NoTies = NoTies + 1

)

 IF %CardImage% == scissors (

 SET results="You Win"

 SET /a NoWins = NoWins + 1

)

 IF %CardImage% == paper (

 SET results="You Lose"

 SET /a NoLosses = NoLosses + 1

)

)

 REM Compare choices when the player selected scissors

 IF /I %answer% == scissors (

 IF %CardImage% == rock (

 SET results="You Lose"

 SET /a NoLosses = NoLosses + 1

)

 IF %CardImage% == scissors (

 SET results="You Tie"

 SET /a NoTies = NoTies + 1

)

 IF %CardImage% == paper (

 SET results="You Win"

 SET /a NoWins = NoWins + 1

)

)

 REM Compare choices when the player selected paper

 IF /I %answer% == paper (

 IF %CardImage% == rock (

 SET results="You Win"

 SET /a NoWins = NoWins + 1

236
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

)

 IF %CardImage% == scissors (

 SET results="You Lose"

 SET /a NoLosses = NoLosses + 1

)

 IF %CardImage% == paper (

 SET results="You Tie"

 SET /a NoTies = NoTies + 1

)

)

GOTO :EOF

REM This procedure checks for an invalid choice

:CheckForInvalid

IF %results%==None (

 REM Clear the display

 CLS

 REM Keep a count of the total number of invalid player choices

 SET /a NoInvalid = NoInvalid + 1

 REM Add three blank lines to the display

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO Sorry. Your answer was not recognized.

 ECHO.

 ECHO Use all lower case when you enter your choice.

 REM Add four blank lines to the display

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

237
 FOR /L %%i IN (1,1,4) DO ECHO.

 REM Make the player press a key to continue

 PAUSE

)

GOTO :EOF

REM This procedure displays the results of the game

:DisplayResults

 REM Clear the display

 CLS

 REM Add three blank lines to the display

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO G A M E R E S U L T S

 ECHO.

 ECHO -------------------------------------

 ECHO.

 ECHO You picked: %answer%

 ECHO.

 ECHO The computer picked: %CardImage%

 ECHO.

 ECHO -------------------------------------

 ECHO.

 ECHO Results: %Results%

238
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 REM Add nine blank lines to the display

 FOR /L %%i IN (1,1,9) DO ECHO.

 REM Ask the player whether he would like to play another game

 SET /p response=Play another round (y/n)?

GOTO :EOF

REM This procedure displays game statistics

:DisplayStats

 REM Clear the display

 CLS

 REM Add three blank lines to the display

 FOR /L %%i IN (1,1,3) DO ECHO.

 ECHO G A M E S T A T I S T I C S

 ECHO.

 ECHO -------------------------------------

 ECHO.

 ECHO Category Results

 ECHO -------------------- -------

 ECHO.

 ECHO No of Ties %NoTies%

 ECHO.

 ECHO No of Wins %NoWins%

 ECHO.

 ECHO No of Losses %NoLosses%

 ECHO.

 ECHO No of Invalid Hands %NoInvalid%

 ECHO.

C
h

a
p

te
r 7

C
r e

a
ti n

g
 P

ro
c
e
d

u
re

s
 a

n
d

 S
u

b
ro

u
ti n

e
s

239
 ECHO -------------------------------------

 REM Add four blank lines to the display

 FOR /L %%i IN (1,1,4) DO ECHO.

GOTO :EOF

Now that you have completed the Rock, Paper, Scissors game, I think you’ll agree
with me that using procedures to organize your scripts is definitely the way to go.
Not only do procedures make things more manageable by grouping together related
collections of statements, but they also facilitate the development of reusable code
by allowing the same procedure to be called repeatedly as many times as necessary.

Summary

In this chapter, you learned how to reorganize your Windows shell scripts using
subroutines and procedures. This included learning how to create both internal
and external procedures as well as how to localize variables within procedures
and how to tunnel out data from procedures. You were also introduced to flow-
charting as a tool for assisting your development of Windows script files. Finally,
you learned how to create the Rock, Paper, Scissors game and to organize the en-
tire game using procedures.

E X E R C I S E S

1. Modify the Rock, Paper, Scissors game’s welcome screen so that it includes a

menu with access to Help, About, Exit, and Play menu selections.

2. Display an additional line of text at the bottom of the Game Results screen

that explains the results of the game. For example, if the player picked Rock
and the computer picked Scissors, the message should read something like

“Rock crushes scissors!”

3. Track and display additional statistical information at the end of the Rock, Pa-

per, Scissors game. For example, track how long the player played. (Hint: Per-

form substring operations against the output produced by the TIME, convert

everything to seconds, and then subtract the start time from the finish time.)

Also, provide the player with some percentages including the percentage of

games won, lost, and tied.

4. Create your own unique version of the Rock, Paper, Scissors game using whatever

objects you wish. In addition, expand the number of objects supported by the game.

This page intentionally left blank

8

The focus of this final chapter is to help you deal with errors that are bound to occur as
you develop your scripts. To begin, I’ll discuss the different types of errors that you will
experience, and then I will give you advice on how to deal with them. You’ll learn how
to display intermediary results during script execution and how to create an optional
debug execution mode.

In addition to all this, you’ll learn how to report on errors that your scripts are unable to
avoid. This reporting will include the creation of error reports and the generation of
custom error messages. I’ll also show you how to set up scripts that, when executed
as procedures, will return an exit code to their calling script.

Specifically, you will learn

• How to display intermediate results during script execution

• How to create scripts that include an optional script debug mode

• How to create error reports when problems occur within scripts

• How to pass exit code data back to calling scripts from scripts executed as
external procedures

Debugging and
Error Handling

C H A P T E R

242
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Project Preview: The Tic-Tac-Toe Game

The Tic-Tac-Toe game is a computerized implementation of the classic children’s
game in which two players go head to head in a game of strategy and wits in an
effort to line up three squares in a row (horizontally, vertically, or diagonally).

The Tic-Tac-Toe game begins by displaying its welcome screen, which includes a
menu of options at the bottom of the screen, as shown in Figure 8.1.

When the players are ready to begin the game, the Tic-Tac-Toe game board is dis-
played along with the rules of the game. Player X, always the first player to go, is
then prompted to make an initial move, as shown in Figure 8.2.

FIGURE 8.1

The Tic-Tac-Toe
game’s welcome
menu presents
players with a

variety of options.

FIGURE 8.2

The Tic-Tac-Toe
game board and

rules are displayed
throughout
the game.

As the game progresses, the Tic-Tac-Toe game board is updated continually to re-
flect each player’s moves, as demonstrated in Figure 8.3.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
243

The game validates each player’s move to ensure that it is within the range of
coordinates supported by the game (i.e., A1–A3, B1–B3, and C1–C3) and that play-
ers do not attempt to select squares that have already been selected. When players
do make errors, the screen shown in Figure 8.4 is displayed, and the player who
made the error is then given another chance to make their next move.

FIGURE 8.3

Player moves are
immediately posted
on the Tic-Tac-Toe

game board.

FIGURE 8.4

Invalid selections or
attempts to select

an already selected
square on the board

are caught by
the script.

The game tracks all game activity and automatically determines when a player
wins or when the game ends in a tie, as demonstrated in Figure 8.5.

FIGURE 8.5

The game
automatically

determines when
players win or tie.

244
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Like all good computer games, the Tic-Tac-Toe game provides players with access to
additional help, as shown in Figure 8.6.

FIGURE 8.6

Additional help can
be accessed from

the game’s
Welcome menu.

FIGURE 8.7

The About screen
gives the

programmer a
chance to take

credit for his work.

In addition, the Tic-Tac-Toe game provides access to an About screen where players
can find more information about the game and its author, as shown in Figure 8.7.

I think you will agree that the Tic-Tac-Toe game represents a very good example of
how complicated and graphical text-based computer games can be.

Understanding Windows
Shell Script Errors

No matter how good a programmer becomes, one thing will always remain true—
errors will happen. Errors can be especially frustrating to programmers who are
just getting started. One of the goals of this chapter is to help prepare you for
dealing with errors when they occur. Another goal is to arm you with advice and
tips for avoiding errors in the first place. However, the reality is that some errors
simply cannot be avoided; often the best you can hope to do is to set up your scripts
to terminate as gracefully as possible, perhaps by logging the error or displaying a
user-friendly error message.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
245

Syntax Errors

Windows shell script errors occur at a number of different times and for a number
of different reasons. One type of error that you are sure to encounter is a syntax
error. These types of errors happen when you mistype statements within your Win-
dows shell scripts. For example, you might mistype the spelling of a command or
leave off the closing parenthesis in a multi-line IF statement.

Syntax errors are errors that occur when programmers fail to follow the syntax rules

that govern the formatting of commands.

Syntax errors are usually caught by the Windows shell when your script first begins
to run and will prevent your script from executing. The Windows shell displays an
error message indicating the cause of the first syntax error that it finds within the
script. Using the information provided by the error message and a little detective
work, you can eliminate most syntax errors during script development and testing.

Run-Time Errors

Another category of error that you will run into is execution, or run-time, errors.
Run-time errors occur only when the statements that generate them execute. There-
fore, unless you are careful to test the execution of every statement within your
script, run-time errors can sneak through. For example, you might have a script that
contains a procedure that is not always used. If this procedure contains a statement
that would generate a run-time error, you would not know it until some time later.

An execution error, or run-time error, is one that happens as a result of the script

attempting to perform an illegal action. A good example is when a GOTO or CALL

command attempts to reference a label that has not been defined within the Win-

dows shell script.

The good news is that in most cases you can avoid run-time errors by carefully
designing and then testing your scripts during development. Unfortunately, you
may not be able to entirely prevent run-time errors from occurring. For example,
users can be unpredictable. You can never be completely assured that they will
supply your scripts with data that make sense, resulting in run-time errors. Other
causes of run-time errors include environment problems. For example, if your script
is designed to create a report but the user’s hard disk has become full, your script
will fail with an error.

DEFINITION

DEFINITION

246
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Logical Errors

Another category of errors that every programmer runs into from time to time is
logical errors. Logical errors occur when you tell a script to do one thing when you
really meant for it to do something else. As a result, the script does exactly what
you told it to do but the output that you expected is wrong.

A logical error is one that occurs as a result of a mistake made by the programmer,

such as telling a script to add two numbers that should have been subtracted.

Logical errors usually make their presence known in the form of unexpected out-
put. In other words, the script seems to run without any problems, but the end
result isn’t what you intended. Since logical errors do not announce themselves in
the form of error messages, they can be the most difficult type of errors to track
down and fix. As a result, most logical errors are fixed only by reviewing all or part
of your script line-by-line to figure out where you went wrong. However, I will
show you a few tricks in this chapter that will help you track down logical errors.

Fortunately, most logical errors can be prevented by taking the time to plan the
design of your scripts properly. For example, a good design might start with a
flowchart and a pseudo code outline of the logic involved in critical procedures.
But even with the best preliminary designs, logical errors sometimes still manage
to creep into scripts. However, by developing your scripts in a modular fashion
using subroutines and procedures, and by carefully testing, you can usually catch
any logical errors during script development.

Examining Windows Shell Script
Error Messages

The Windows shell automatically generates error messages for both syntax and run-
time errors. By default all errors messages are displayed in the Windows command
console. However, using I/O redirection, as discussed in Chapter 3, “Windows Shell
Scripting Basics,” you have the option of redirecting errors messages elsewhere.

Common Syntax Errors

Unfortunately, error messages produced by the Windows shell often leave much to
be desired. Unlike other scripting languages, which display an error code and de-
scription as well as information regarding the line number of the statement that
generated the error, the information provided by the Windows shell is extremely

DEFINITION

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
247

meager and is limited to a cryptic message that often provides very little helpful
information. For example, consider the following Windows shell script.

@ECHO OFF

SET /A X = 5

SET /A Y = 10

IF X GTR Y

 ECHO X is greater than Y

) ELSE (

 ECHO Y is greater than X

)

PAUSE

There is an error in this script. If you were to save and run the script, the error
message you would see is shown below.

The syntax of the command is incorrect.

As you can see, the Windows shell has told you that it found an error but has not
provided you with any other useful information. If you look closely, you’ll see that
the error is a missing left parenthesis at the end of the fourth line in the script.
Now look at another example of a common Windows shell script error.

@ECHO OFF

SET WindowsFiles=%indir%

ECHO %WindowsFiles%

PAUSE

In this example, the name of the windir environment variable has been misspelled.
The Windows shell automatically assigns an empty value to any undefined vari-
able. As a result, the script variable called WindowsFiles does not have any data asso-
ciated with it. At this point, the script is still running happily along. However,

248
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

when the script’s ECHO statement attempts to display the contents assigned to the
WindowsFiles variable, the following error message will be displayed:

ECHO is off.

Again, not much information was provided by this error, although it does suggest
that the error was generated by the execution of an ECHO statement. Of course, as
you can see, the real error exists in the SET statement. This error is easy enough to
track down in a small script like this one. However, as scripts grow in size and
complexity, finding these types of errors is not always easy.

The next script demonstrates another common Windows shell scripting error.

@ECHO OFF

SET /A X = 5

SET /A Y = 10

SET /A Z = 15

IF Z GTR Y (

 IF Y GTR X (

 IF X GTR 0 (

 ECHO All is well with the world!

)

 (

)

PAUSE

When executed, the following error message will be displayed. While cryptic, some
useful information is provided this time. Specifically, you know that somewhere
within the script the Windows shell found something other than the) character
that it was expecting.

) was unexpected at this time.

Since the (and) characters are commonly used to create multi-line IF statements,
you might begin by examining the syntax of any recently added IF statement within
the script. If you do, you will find that the closing) character associated with the
second IF statement was accidentally inverted to a (character.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
249

Start script development by defining the contents of the Initialization Section. Even

though it will not do anything at this point, run the script to make sure that no syntax

errors are generated. Then start creating the rest of the script by adding a few lines to

the Main Processing Section and rerunning the script again to look for errors. From

this point, as you begin to define subroutines and procedures, write and test them one

at a time rather than trying to create them all at once. This way, when an error occurs,

you will likely find it in the most recently added collection of statements.

A Typical Run-Time Error

Now look at an example of a run-time error. In this example, a small Windows
shell script has been written that is supposed to copy all files with a .log file exten-
sion found in the computer’s C:\Temp folder to a network drive. Access to this
drive is supposed to be provided by a mapped drive letter called Z. A script like this
one could be run at the end of each working day as a quick way to store copies of
log files on a company’s network server.

@ECHO off

COPY C:\TEMP*.log Z:\LogFiles

Now suppose that something happened one day to the company’s network. Maybe
the network went down or the computer where the shared network drive resides
might have crashed. If you tried to run this script before the network problem was
resolved, the following error could occur.

The system cannot find the drive specified.

In this example, there is nothing wrong with the script. Instead, an uncontrol-
lable environmental problem has inhibited its execution as run-time.

A Typical Logical Error

Next, look at an example of a common logical error. In this example, shown below,
I created a script that attempts to multiply the values stored in two numeric vari-
ables. However, only one of the variables has been defined. Syntactically, there is
nothing wrong with the script, and it will not experience a run-time error because
of the lenient manner in which the Windows shell handles variables.

TRICK

250
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

@ECHO off

SET /A X = 5

SET Y=C:\Temp

SET Z = X * Y

ECHO Z = %Z%

PAUSE

Logically, however, the script falls short and generates the output shown below. To
fix this type of error, you must track down the location within your script where
the other variable should have been defined and add it.

Z =

Press any key to continue . . .

Examining Different Ways
of Dealing with Errors

There are a number of different ways that you can attempt to cope with errors in
your Windows shell scripts. To begin with, you could

• Educate your users so that they’ll know what to do in the event that your
scripts run into an error.

• Develop a script trace capability that assists you in tracking down and fixing errors.

• Try to anticipate commands that are most likely to result in errors and at-
tempt to programmatically fix or work around problems.

• Record errors that occur in error log files for later review.

• Report errors by displaying them as soon as they occur.

I’ll discuss each of these options in detail in the sections that follow.

Educating Your Users

Even the best and most experienced programmers run into errors. That’s just part
of the reality of modern-day programming and script development. One way you

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
251

can deal with errors that you did not anticipate or cannot prevent is to educate the
people with whom you share your scripts.

By educate, I mean that you should provide them with detailed instructions as to
what to do should problems occur. For example, you might

• Ask users to document any error messages that are displayed.

• Ask users to document exactly what steps they had taken that led up to the
errors (e.g., what input they had given the script, how and when the script
was started, etc.).

• Ask users to report immediately any problems that occur.

By supplying you with this type of information, users might enable you to repro-
duce and identify the error, so you can try to prevent the error from happening
again in the future. Just remember this: Unless you provide them with some in-
struction, most users will have no idea what to do when a script error occurs. By
providing them with instructions up front, you not only minimize any inconve-
nience and facilitate problem resolution but also encourage user feedback and
support, which can be critical in a professional setting.

Tracing Logic Flow within Scripts

Sometimes errors can be difficult to track down, especially if the script is fully
written and you have not looked at it in a while. Unfortunately, unlike some ad-
vanced programming languages, Windows shell scripting does not provide any
sort of built-in debugging or tracing mechanism that allows you to track the op-
eration of your scripts as they execute.

One way to deal with this is to remove the @ECHO off statement from the beginning of
your script. This will allow you to observe the execution of each command as it ex-
ecutes. However, this option can flood the Windows command console’s display,
and it may soon become difficult to follow. Fortunately, other options are available.

One very basic way of implementing tracing within your Windows shell scripts is
to embed ECHO statements throughout your scripts. For example, to track script
execution, you could place an ECHO statement at the beginning and ending of the
script’s Initialization and Main Processing Sections as well as in procedures in
order to identify which portion of the script is currently executing. These ECHO
statements could be as simple as those shown below.

ECHO Procedure :DisplayResults not executing

ECHO Procedure :DisplayResults finished executing

252
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

By dispersing ECHO statements throughout your scripts in this manner, you can
trace the execution of each component of your scripts during testing. In addition
to tracing script execution, you’ll also want to keep track of your variables to make
sure they are being assigned data properly. Again, you can do this by using the ECHO
statement to display variable values, as demonstrated below.

ECHO Variable: TotalCount = %TotalCount%

By adding ECHO statements after any statement that sets or modifies variables, you
can track their values during the execution of your scripts. Once you have your
scripts fully tested and working as you want them to work, you can either delete
these extra ECHO statements or, better yet, comment them out using the REM state-
ment, as demonstrated below.

REM ECHO Variable: TotalCount = %TotalCount%

By commenting out these statements, you can keep them around should you need
to use them again later to debug the script again. I have an even better suggestion
that you can use to make this tracing and debugging technique even more useful.
It involves a little more work up front, but if you are working on a critical script, it
is probably worth the extra effort.

You’ll still need to embed statements throughout your scripts that display infor-
mation about which sections are currently executing and what the current values
assigned to variables are. What changes is the manner in which you enable and
disable debugging statements. Instead of writing a debugging statement as

ECHO Variable: TotalCount = %TotalCount%

you would write it as

%trace% Variable: TotalCount = %TotalCount%

Notice that a variable called trace has been substituted for the ECHO or REM com-
mands. When written in this manner, you provide the ability to toggle statements
between ECHO and REM mode by placing a statement similar to the following at the
beginning of your script:

IF /I "%1"=="Debug" (SET trace=ECHO) ELSE (SET trace=REM)

As you can see, this statement sets the value of trace equal to ECHO when the script
is passed an argument of Debug. Otherwise, it sets the value of trace to REM. The net
effect is that if you run the script by simply entering its name at the command
prompt and pressing Enter, the value of trace is set equal to REM and all of the extra
statements that you embedded in your script are turned into comments. This would
be the default execution mode for the script.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
253

Using this example, all it takes to enable debugging is to use the following syntax
to pass the word Debug as the first argument to the script when you run it:

ScriptName Debug

The tracing and debugging technique presented in this chapter works because the

Windows shell always substitutes variable values before executing statements.

Now look at an example of this debugging technique in action. The following script
is called TestScript.bat. As you can see, it is rather small and includes a number of
debugging statements, the first of which enables or disables tracing mode based
on whether the word Debug is passed to it as a script argument.

@ECHO off

IF /I "%1"=="Debug" (SET trace=ECHO) ELSE (SET trace=REM)

%trace% TestScript.bat executing in trace mode.

%trace% Beginning copy operations.

COPY *.bak C:\TEMP > C:\Temp\ScriptLog.log 2>&1

IF ERRORLEVEL 1 (

 %trace% No backup files were found.

)

COPY *.rpt C:\TEMP > C:\Temp\ScriptLog.log 2>&1

IF ERRORLEVEL 1 (

 %trace% No report files were found.

)

%trace% All copy operations now complete.

GOTO :EOF

TRICK

254
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

When executed in non-debug mode, this script will execute without displaying
any text in the Windows command console. However, when executed in debug
mode, output similar to the following will be displayed:

c:\scripts>TestScript.bat debug

TestScript.bat executing in trace mode.

Beginning copy operations.

No backup files were found.

No report files were found.

All copy operations now complete.

c:\scripts>

If you find that data is passing by too quickly on the Windows command console’s

screen when you’re testing scripts in debug mode, you can always slow things down

a bit by adding a few well placed PAUSE commands to your script.

As you can see, this is a very good debugging technique, but it does take extra
effort on your part to implement it. Its usefulness will depend on a number of
factors, including the complexity and importance of the script with which you are
working. A small script consisting of a few lines probably won’t justify the extra
work, whereas a script that you are writing for your employer might very well
require the extra effort.

Command Error Checking

Another important debugging technique is to try to anticipate which commands
in your scripts are most likely to result in errors and to develop processes that try
to deal with errors should they arise. Some options available to you for handling
errors include

• Displaying instructions to the user for contacting you to report the error.

• Rewording cryptic error messages so that users can understand them.

• Attempting to take a corrective action such as giving users another try.

• Logging error messages for later review.

To implement error checking, you must become familiar with the IF ERRORLEVEL
statement. This statement enables you to test the value of the previously executed

TRICK

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
255

command’s exit code to determine if it executed successfully or if it completed
with an error. The exit code 0 indicates that the previous command was success-
ful. Anything higher generally means an error occurred.

The following is an example of how to use the IF ERRORLEVEL statement to determine
if a file copy operation was successful. If the operation fails, an error code of 1 will
be returned as the exit code of the COPY command, and the script will display an
error message. However, the script will continue to run and try to perform a sec-
ond copy operation.

@ECHO off

CLS

ECHO.

ECHO Beginning copy operations.

ECHO.

PAUSE

COPY *.bak C:\TEMP > C:\Temp\ScriptLog.log 2>&1

IF ERRORLEVEL 1 (

 ECHO.

 ECHO No backup files were found.

 ECHO.

)

COPY *.rpt C:\TEMP > C:\Temp\ScriptLog.log 2>&1

IF ERRORLEVEL 1 (

 ECHO No report files were found.

)

ECHO.

ECHO All copy operations now complete.

256
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ECHO.

PAUSE

GOTO :EOF

In this example, the script was set up to report on errors while continuing to ex-
ecute. Another way that this script could have been written would have been to
stop its execution at the first occurrence of an error. Alternatively, additional logic
could have been added to retry the copy operation.

The Windows shell supports different variations of the IF ERRORLEVEL statement. To
learn more about how this statement works, refer to Chapter 5, “Applying Condi-
tional Logic.”

Logging Error Messages

One way to handle errors is to write them to a log or report file for later review and
analysis. This way, by reviewing the log file, you can observe problems that occur
over time, including those that the user may not have bothered to report. For ex-
ample, the following statements demonstrate how to create and append statements
to an error log file called ScriptLog.log.

@ECHO off

COPY *.bak C:\TEMP

IF ERRORLEVEL 1 (

 IF EXIST C:\TEMP\ScriptLog.log (

 ECHO %date% %time% - Backup files copied to C:\TEMP >> C:\Temp\ScriptLog.log

) ELSE (

 ECHO %date% %time% - Backup files copied to C:\TEMP > C:\Temp\ScriptLog.log

)

)

GOTO :EOF

This script begins by attempting to copy any files found in the current working
directory to the computer’s C:\TEMP folder. It then checks to see if an error oc-
curred. If an error did occur, the IF EXIST statement checks to see if the ScriptLog.log

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
257

file already exists. If it does not exist, it is created and written to. Otherwise, the
data produced by the script is appended to the end of the log file. Note that each
log entry includes both a date and time stamp.

Figure 8.8 shows how this error log might look over time.

Using the logic in this example, you could easily adapt any of your scripts to record
similar entries to the log file, making it a shared error log. For more detailed infor-
mation on how to generate report and log files, refer to Chapter 3, “Windows Shell
Scripting Basics.”

Displaying Error Messages

Another way to handle errors is to display them. Better yet, you could suppress cryp-
tic Windows shell error messages and display useful English-like error messages that
users can understand. The easiest way to display error information is as text in the
Windows command console using the ECHO command. Another option is to take ad-
vantage of the NET SEND command to display error messages in graphical pop-up dia-
logs. Both of these options are explored further in the sections that follow.

Creating User-Friendly Error Messages

As you have seen many times already in this book, the ECHO command provides an
easy way to display text within the Windows command console. When used in con-
junction with the IF ERRORLEVEL statement as shown below, it provides an effective
option for displaying error messages that are easily understood by the average user.

@ECHO off

COPY *.bak C:\TEMP > C:\Temp\ScriptLog.log 2>&1

IF ERRORLEVEL 1 (

 ECHO No backup files were found!

FIGURE 8.8

Examining your
script’s error log file.

258
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

)

GOTO :EOF

Note that in the previous example both the standard and error output produced by

the COPY command were redirected to an error log file named ScriptLog.log by

appending 2>&1 to the end of the COPY statement.

Displaying Errors Using Graphical Pop-Up Dialogs

Depending on the amount of data already displayed in the Windows command
console, it may be difficult for errors to stand out. Therefore, users may miss them
entirely. In addition, Windows shell scripts run by the Windows scheduler service
may not be visible when they run, making it impossible for the user to see error
messages. A solution to both of these issues is to use the Windows NET SEND com-
mand to display the error message in a graphical pop-up dialog. This way, as long
as someone is logged on to the computer when the script is executed, the error
message will be seen.

For example, consider the following example, which was adapted from the previ-
ous script. Instead of using the ECHO command, this new script uses the NET SEND
command to display the message. The first argument passed to the NET SEND com-
mand is %computername%, which is an environment variable that contains the name
of the local computer. By passing the command this variable, the script tells it to
display the message on the local computer (as opposed to sending it to another
computer). The rest of the data passed to the NET SEND command makes up the text
of the error message.

@ECHO off

COPY *.bak C:\TEMP > C:\Temp\ScriptLog.log 2>&1

IF ERRORLEVEL 1 (

 NET SEND %computername% No backup files were found!

)

GOTO :EOF

TRICK

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
259

The NetSend.bat script depends on the built-in Messenger service being enabled

and running. This service enables Windows operating systems to send and receive

network messages. If you are working from a computer on your company’s network,

you may find that your system administrator has disabled this service, in which case

the NET SEND command and this script will not be able to work.

Figure 8.9 shows the graphical pop-up dialog that is displayed when this script
executes and experiences an error.

TRAP

FIGURE 8.9

Using the NET SEND
command to display

script output in a
graphical pop-up

dialog.

Creating Scripts That Return
a Custom Exit Code

If you plan on developing scripts that take advantage of external procedures as a
means of creating reusable code that can be shared by multiple Windows shell
scripts, then you’ll appreciate this next topic. As you know, one of the advantages
of using procedures is that you can use them to isolate access to procedure vari-
ables. However, this also limits the ability of procedures to share variable access
with the rest of the script.

Variable tunneling provides a way to pass data back to calling statements or scripts.
Another way to return data back from an external procedure is to set it up to pass
back an exit code. The calling script can then interrogate this exit code and ascer-
tain what it represents. To accomplish this trick you’ll need to use the EXIT com-
mand. This command terminates the execution of the external procedure (or script)
and, alternatively, sends back a customized exit code.

The syntax of the EXIT command is outlined below.

EXIT [/B] [ExitCode]

The /B switch is optional. When used, it passes back to the calling script a numeric
value specified by the ExitCode placeholder. To see how this works, look at the fol-
lowing pair of scripts.

260
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The first script will be called as an external procedure. When executed, it attempts
to copy all files with a .bak file extension from the current working directory to
C:\Temp. Any output or errors are redirected to C:\Temp\ScriptLog.log. If an error oc-
curs when performing the copy operation, the script’s :EXIT procedure is executed.
This procedure issues the EXIT command and passes back an exit code of 4 to the
calling or parent script.

@ECHO off

COPY *.bak C:\TEMP > C:\Temp\ScriptLog.log 2>&1

IF ERRORLEVEL 1 GOTO :EXIT

GOTO :EOF

:EXIT

 EXIT /B 4

The following statements make up the calling, or parent, script. As you can see, it
calls the external procedures (e.g., TestScript.bat), waits for it to finish executing,
and then checks the exit code returned by the external procedure to see if it is
equal to 4.

@ECHO off

CALL TestScript.bat

IF ERRORLEVEL 4 (

 ECHO No backup files were found

)

Other Things to Look Out For

Finally, the sections that follow will review some of the other issues and problems
that you might run into as you begin working more and more with the Windows
shell and Windows shell scripts. In addition, I’ll provide you with suggestions for
avoiding, fixing, or working around these issues and problems.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
261

Insufficient Authority

At some point you may find that your scripts fail because you do not have the
appropriate set of security permissions or rights to perform a given task. The main
thing to remember is that if you do not have the ability to perform a particular
task from the Windows desktop, then you won’t have the ability to perform it
from the Windows shell either.

The bottom line is that unless you have been assigned administrative-level access
to the computer, you run the risk of not being able to perform certain tasks. For
example, Windows provides key functionality by running internal programs and
utilities known as services. While you may be an administrator over your local
computer with complete control over your computer’s services, you may find that
if you create a script that starts and stops services and then take it to another
computer, it will not be allowed to do its job. This may be because you lack the
appropriate level of security permissions on that computer.

Security issues often arise when you are developing scripts on corporate networks
and are subject to the security restrictions imposed by system administrators. Per-
haps all you’ll need to do in this situation is ask for additional security privileges.
Security issues also arise when you attempt to run scripts on a computer other
than the one where you develop and test your scripts. Again, you’ll probably have
to seek out your system administrator’s assistance.

In addition to the above security concerns, you may find that your scripts begin
failing when other people begin running them. This may happen if they do not
have the same level of security access that you do.

Dealing with Scripts That Are Difficult
to Read and Understand

As you write your scripts, take care to make sure you always document them using
plenty of comments and a script template such as the one presented in this book.
Use indentation as a technique for making your code easier to read and under-
stand, and add plenty of blank spaces in between groups of statements to help
visually organize things.

In addition to following these tips, make sure that you focus on keeping things as
simple as possible. For example, use SET /A X +=1 instead of SET /A X = X + 1. It is shorter
and just as easy to understand. Finally, consider adding checks to your scripts that
prevent them from being inappropriately executed. For example, I recommend al-
ways including the following check as part of your script template.

IF NOT "%os%" == "Windows_NT" GOTO :EOF

262
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Working with Windows Commands

Windows commands are not case-sensitive, so you won’t get into trouble if you
mix up their case when you include them in your Windows shell scripts. However,
mixing case in this manner can make your scripts difficult to read. So be consis-
tent in whatever case you decide to use. However, you need to remember that while
mixing case will not cause script errors, you still need to closely follow the syntax
rules specified for each individual command. For example, keep an eye on the
order of command switches. While most Windows commands allow you to list
command switches in any order you wish, others will not. Also, make sure that
you run any command that you plan to use manually from the command prompt
first to ensure that you understand how it works before adding it to your script.

Managing Arguments and Variables

The Windows shell imposes many rules upon the use of arguments and variables,
which you need to watch out for. Below is a brief overview of some of these rules.

• Arguments and variables that contain spaces must be enclosed within
double quotes.

• Blank spaces included just before or after the equal sign in SET statements
result in the inclusion of blank spaces in variable names and values
(except when assigning data to numeric variables).

• Arguments or variables that may contain spaces should be enclosed inside
double quotation marks.

• Use the SET command’s /A switch to explicitly define any values that you wish
to treat as numeric.

• Make sure you apply the order of precedence implemented by the Windows
shell when setting up mathematical expressions.

• By default, the Windows shell returns an empty value when a referenced vari-
able does not exist. Therefore, you also need to make sure that you use the IF
DEFINED or IF NOT DEFINED statements in any situation where there is a chance
that a critical variable might not already be defined.

Whenever possible, reference your environment variables to avoid having to hard

code data into your scripts. This will make your scripts easier to support. It also

makes them more portable. For example, Microsoft has changed the location of the

Windows system root folders. On Windows NT and 2000 it’s C:\Winnt but on Win-

dows XP it is C:\Windows. If you ever need to access this folder, you can reference

the environment variable %systemroot% to find it without having to be concerned

with what operating system your script is running on.

TRICK

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
263

Handling Files and Folders

File and folder administration can be tricky. You never know when someone will come
along and rename or delete them. Likewise, a file that you expect to be automatically
created by another application or script may not have been created. Perhaps the appli-
cation was not run or perhaps it experienced an error. In any event, you can guard
against these types of situations by using the IF EXIST statement to verify in advance
that a file or folder exists before attempting to access, create, modify, or delete it.

Also, when working with files and folders, be sure to enclose any file names or
folder names that contain blank spaces inside a matching pair of double quota-
tion marks. Otherwise errors will occur. Also beware that you don’t append data
to files that you wish to overwrite and don’t overwrite files to which you wish to
append data. When keying in statements, you must therefore be careful to make
sure that you use the > character only once when you begin to write to a file and
ensure that all remaining write operations are performed using the >> characters
to append data instead of overwriting it.

Taking Precautions with Loops

A loop is a very powerful scripting tool. It enables you to execute a collection of
statements repeatedly and to process enormous amounts of data. However, loops
can also create problems when not constructed properly. To begin with, you must
always make sure that when you create a loop that you provide a way to break out
of it in order to avoid the creation of endless loops.

An endless loop is one that runs forever, preventing your script from ever finishing

or completing its task.

For example, you could accidentally create an endless loop by setting up a FOR com-
mand that is supposed to count from 1 to 5 using an increment of 1. However, by
accidentally typing in an increment of –1, an endless loop is created because no
matter how many times the Windows shell adds –1 to the value of the loop’s iterator,
it will never equal 5. So double-check any code that creates a loop and make sure
that it will eventually end.

If, despite your best efforts, an endless loop does occur, you can break out of it if it’s

a script that you started manually. Press CTRL+C and respond with a Y when prompted

to terminate the script. However, if the script was started in background mode using

the Windows Task Scheduler service, you’ll need to terminate it using the Windows

Task Manager.

TRICK

DEFINITION

264
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Also, remember that the FOR command’s iterator character is case-sensitive. There-
fore %%a and %%A are not the same variable.

Keeping Procedures Straight

Procedures are a powerful tool for organizing scripts and creating collections of
reusable code. However, they are not without their own set of issues. Don’t forget
that procedures do not have access to script arguments. If your procedures need to
access script arguments, pass the arguments to the procedure as procedure argu-
ments. Alternatively, you can store data in files and then set up your procedure to
read and access them that way.

When you use the SETLOCAL and ENDLOCAL commands in conjunction with procedures,
you can exercise strict control over procedure variables by localizing their access.
However, when you do this you also make it difficult for a procedure to return any
results back to its script. However, you do have different ways of enforcing strict
control over procedure variables without preventing your procedures from return-
ing any output. One option is to tunnel out a variable using variable tunneling.
And, if your procedure has a lot of data that it needs to return, you can always try
writing it to a file and then having the script open and read the file.

Back to the Tic-Tac-Toe Game

Now let’s begin work on the book’s last major chapter project, the Tic-Tac-Toe game.
This script will facilitate the execution of a computerized two-player, head-to-head
game. The computer will display the game board, collect player input, control player
turns, ensure that only valid selections are processed, and ultimately determine
who, if anyone, has won the game.

Given the game’s size and complexity, you are certain to run into some errors as
you develop this game. This will give you the opportunity to put to the test some of
the debugging and error resolution techniques that you have learned in this chap-
ter. Along the way, I’ll arm you with a few tricks to avoid problems, and I’ll point
out a few pitfalls that you’ll want to avoid.

Designing the Game

The overall construction of the Tic-Tac-Toe game consists of the development of
the following sections, which nicely correspond to the three sections that make
up this book’s standard shell template:

• The Initialization Section. This section will set up the script’s execution
environment.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
265

• The Main Processing Section. This section will control the display and pro-
cessing of the game’s main menu and will initiate and ultimately terminate
the game’s execution.

• The Procedure Section. This section will consist of a collection of 10 proce-
dures, each of which will be designed to perform a specific subset of the
game’s functionality.

Because this script will be rather long, you’ll want to focus on using procedures as the
primary means of organizing the script. Otherwise, given the complexity of this script,
you’ll run into trouble early on as the number of variables and tasks that you’ll need
to work with begin to pile up and all your code begins to become intertwined.

The tasks that need to be performed by these 10 procedures are outlined below.
This chapter will develop the procedures in the order suggested below. However,
that is not a requirement. You can work on the development of these procedures
in almost any order that makes sense to you, although a few of the procedures are
closely related and are best developed in sequence.

1. Initialize game board values

2. Display the welcome screen

3. Display the game board

4. Create a Help screen

5. Create an About screen

6. Create a game controlling procedure

7. Validate player input

8. Associate player choices with game board squares

9. Display game results

10. Check for wins, losses, or ties

Performing Script Initialization Tasks

To begin the Tic-Tac-Toe script, create a new script file, copy in the shell script
template, and then add the following statements to the Initialization Section:

@ECHO off

COLOR 0E

TITLE = T I C - T A C - T O E

CLS

266
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The first statement turns off the automatic display of script statements, and the next
three statements set the Windows command console’s color scheme to yellow on black,
post the name of the game in the console’s title bar, and clear the console’s display.

Constructing the Script’s Main Processing Section

The script’s Main Processing Section, shown below, begins with a label called :StartOver.
This label will be used later in the script to allow players to restart the game. Next, a
series of four variables are defined. Player is used when determining which player’s
turn it is. By default, Player X always goes first. Winner is used to determine when one
of the players has won the game. Initially, it is set equal to None. NoMoves is used to keep
count of the total number of moves made by both players. When the total number of
moves becomes equal to 9, and no player has managed to line up three Xs or Os, the
game board is full and the game is declared a tie.

:StartOver

SET Player=X

SET Winner=None

SET /A NoMoves = 0

CALL :InitializeBlanks

CALL :Welcome

IF /I "%reply%" == "" CLS & GOTO :StartOver

IF /I %reply% == Play CLS & CALL :Play

IF /I %reply% == Quit CLS & GOTO :EOF

IF /I %reply% == Help CLS & CALL :Help

IF /I %reply% == About CLS & CALL :About

GOTO :StartOver

GOTO :EOF

Next, the :InitializeBlanks procedure is called. This procedure sets variables located in
each square of the game board equal to a blank space. This way, when the game board

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
267

is initially displayed, it will look empty. Next, the :Welcome procedure is called. Its job is
to greet the players and prompt them to perform one of the following actions:

• Play. Type Play and press Enter to begin the game.

• Quit. Type Quit and press Enter to terminate the game.

• Help. Type Help and press Enter to view the game’s Help screen.

• About. Type About and press Enter to view the game’s About screen.

A series of IF statements follow next, each of which is designed to analyze the
input supplied by the players and determine the correct course of action.

Initializing Game Board Values

As previously stated, the :InitializeBlanks procedure, shown below, sets all of the
variables embedded in the game board equal to blank spaces.

:InitializeBlanks

 SET A1=

 SET A2=

 SET A3=

 SET B1=

 SET B2=

 SET B3=

 SET C1=

 SET C2=

 SET C3=

GOTO :EOF

Make sure that when you work on this procedure you remember to type a blank

space at the end of each SET statement. Without them, the game board, which is

displayed by the :DisplayBoard procedure, won’t display correctly.

TRAP

268
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Building the Welcome Screen

The game’s welcome screen, shown below, should look familiar to you by now. It uses
the FOR and ECHO commands to format and display a greeting message and to display a
menu of options. It then collects the player’s instruction using a SET statement.

:Welcome

 CLS

 FOR /L %%i IN (1,1,8) DO ECHO.

 ECHO W E L C O M E T O T I C - T A C - T O E

 ECHO.

 ECHO.

 ECHO Windows shell script style!

 FOR /L %%i IN (1,1,9) DO ECHO.

 ECHO Options: [Play] [Quit] [Help] [About]

 ECHO.

 SET /p reply=Enter selection:

GOTO :EOF

Displaying the Tic-Tac-Toe Game Board

The game needs to display its game board when it first starts and after each player
has made a move. This is accomplished by calling on the :DisplayBoard procedure
shown below.

:DisplayBoard

 CLS

 ECHO.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
269

 ECHO.

 ECHO T I C - T A C - T O E

 ECHO.

 ECHO.

 ECHO.

 ECHO 1 2 3

 ECHO. Rules:

 ECHO.

 ECHO ^| ^| 1. Player X always goes first.

 ECHO A %A1% ^| %A2% ^| %A3%

 ECHO _____^|_____^|_____ 2. To make a move enter the

 ECHO ^| ^| coordinates of the appropriate

 ECHO B %B1% ^| %B2% ^| %B3% square.

 ECHO _____^|_____^|_____

 ECHO ^| ^| 3. Remember to switch turns when

 ECHO C %C1% ^| %C2% ^| %C3% instructed by the game.

 ECHO ^| ^|

 ECHO.

 ECHO.

 ECHO.

 ECHO Player %player%'s turn:

 ECHO.

GOTO :EOF

The trick to making the :DisplayBoard procedure work is the embedding of vari-
ables within each square of the board. Of course, when embedded in this manner
it makes it difficult to line up the game board. Therefore, you will probably have to
test this procedure a few times and make small adjustments until you get it right.

Make things easy on yourself when working on this procedure by first copying the

procedure into its own script. Then hard code variables representing each location on

the board and assign these variables an X or an O. In addition, assign a hard-coded

value to the player variable. By temporarily turning the procedure into its own mini-

script, you can focus on getting it to look and work just the way you want it to (less the

temporarily hard-coded variables) before you copy it back into the Tic-Tac-Toe game.

TRICK

270
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

At this point, all you should have is your template and the first two sections. Next, I

recommend that you create the :Play, :Help, :About, :InitializeBlanks, and :Wel-

come procedures but that you leave them empty. Once you have done this, stop and

test the script to make sure it doesn’t have any syntax errors. In addition, by testing

each of the conditions that are tested for in the Main Processing Section, you can

verify the welcome screen’s menu operation.

Providing Help

The game’s :HELP procedure, shown below, is designed to provide the players with
access to additional instruction should they need it.

:HELP

 CLS

 FOR /L %%i IN (1,1,5) DO ECHO.

 ECHO HELP INSTRUCTIONS

 ECHO.

 ECHO.

 ECHO This is a text-based implementation of the TIC-TAC-TOE game. In this game

 ECHO the computer controls the action. Player X always goes first. The game

 ECHO tells each player when it is his turn. When prompted to take a turn players

 ECHO must type the coordinates of the square into which they wish to place their

 ECHO marker (i.e., the X or O character). For example, to place a marker in the

 ECHO upper left hand box, players would enter A1.

 ECHO.

 ECHO The game tracks the progress of each game and will automatically determine

 ECHO when a game has been won, lost, or tied.

 FOR /L %%i IN (1,1,6) DO ECHO.

 PAUSE

GOTO :EOF

TRICK

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
271

Taking Credit for Your Work

The game’s :About procedure, shown below, works in the exact same manner as the
:HELP procedure.

:About

 CLS

 FOR /L %%i IN (1,1,7) DO ECHO.

 ECHO About The TIC TAC TOE GAME

 ECHO.

 ECHO Written by

 ECHO.

 ECHO Jerry Lee Ford, Jr.

 ECHO.

 ECHO ------------------------

 ECHO.

 ECHO Copyright 2003

 FOR /L %%i IN (1,1,7) DO ECHO.

 PAUSE

GOTO :EOF

Now that you have filled in the statements that go in the :HELP and :About proce-

dures, I recommend that you stop and test your script to make sure that you have not

accidentally made any typos that result in syntax errors. If you did, it will be a lot

easier to track them down now, before you add any more complexity to the script.

Creating a Procedure to Control Game Activity

OK, now things start to get fun. The :Play procedure, which is outlined in this
section, is responsible for controlling game play. However, for the most part its

TRICK

272
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

success depends on the procedures that it calls. Because of its complexity, I will
break down this procedure into small pieces and cover each piece in sequence.

The :Play procedure begins, as shown below, with three IF statements that deter-
mine whether the game has been won. These three statements determine whether
Player X or Player O has won the game or if a tie has occurred. If the game has been
won or a tie has occurred, then the game is over and the :DisplayGameResults proce-
dure is called, after which the game’s Welcome menu is displayed by executing a
GOTO statement that switches processing control back to the :StartOver label.

:Play

 IF "%Winner%"=="X" (

 CALL :DisplayGameResults

 PAUSE

 GOTO :StartOver

)

 IF "%Winner%"=="O" (

 CALL :DisplayGameResults

 PAUSE

 GOTO :StartOver

)

 IF "%Winner%"=="Nobody" (

 CALL :DisplayGameResults

 PAUSE

 GOTO :StartOver

)

If the game has not yet been won or tied, then the :DisplayBoard procedure is called
and any already selected squares are shown as being filled in with their respective
Xs or Os. The current player (initially Player X) is then prompted to take a turn. The
data entered by the player is then validated by the :ValidateResponse procedure to
ensure that it’s a valid board game square and that the chosen square has not
already been taken.

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
273

 CALL :DisplayBoard

 SET /P response=Select a box:

 CALL :ValidateResponse

Next an If...Else statement is executed. If the player’s move was valid, the value of
NoMoves is incremented by 1, and the :FillInSquare procedure is called. Otherwise,
an error message is displayed and the player will be given another chance (because
the value of NoMoves is not incremented and the game will not switch player turns).

 IF %ValidMove%==True (

 SET /A NoMoves = NoMoves += 1

 CALL :FillInSquare

) ELSE (

 CLS

 FOR /L %%i IN (1,1,11) DO ECHO.

 ECHO Invalid move. Please try again!

 FOR /L %%i IN (1,1,11) DO ECHO.

 PAUSE

)

The next IF statement in the :Play procedure is charged with either declaring the
game a tie when all the squares on the game board have been filled and a winner
has not been declared at the beginning of the procedure or with calling the :SeeIfWon
procedure. The job of the :SeeIfWon procedure is to examine the game board and
see if either player has managed to line up three consecutive squares.

 IF %NoMoves% == 9 (

 SET Winner=Nobody

) ELSE (

274
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 CALL :SeeIfWon

)

The procedure’s final IF statement switches the value of the player variable from X
to O or from O to X at the end of each turn.

 IF %ValidMove%==True (

 IF "%player%"=="X" (

 SET Player=O

) ELSE (

 SET Player=X

)

)

Finally, the last statement in the procedure uses the GOTO command to restart the
procedure again, as shown below.

 GOTO :Play

GOTO :EOF

Because of its complexity and because its success depends on the procedures it

calls, I recommend that after keying in the statements that make up this procedure

that you stop working on the script and that you develop the rest of the procedures

as temporary, stand-alone scripts. You can then use hard-coded variables to inde-

pendently test each procedure and make sure they work as expected before copy-

ing them all back into the Tic-Tac-Toe game. At that point, your script will be fully

assembled. Following this approach, and assuming that you properly tested the op-

eration of each remaining procedure before copying it into the Tic-Tac-Toe script,

any errors that occur are likely to be found in the :Play procedure.

Making Sure Player Selections Are Valid

The :ValidateResponse procedure begins by setting the default value of the ValidMove
variable equal to true. This variable is used in the :Play procedure to determine
whether to increase the value of NoMoves and switch between players.

Because of its size, I’ll break down this procedure into several pieces and cover
each piece in sequence. For starters, the procedure checks to see if the current

TRICK

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
275

player pressed the Enter key without first selecting a move. If this is the case, the
value of ValidMove is set equal to false.

:ValidateResponse

 SET ValidMove=True

 IF /I "%response%" == "" (

 SET ValidMove=False

 GOTO :EOF

)

Next, the procedure examines the player’s move to see if it matches a valid board
entry, as shown below. If the player did not enter A1, A2, A3, B1, B2, B3, C1, C2 or C3 then
the value of ValidMove is set equal to false.

 IF /I NOT %response%==A1 (

 IF /I NOT %response%==A2 (

 IF /I NOT %response%==A3 (

 IF /I NOT %response%==B1 (

 IF /I NOT %response%==B2 (

 IF /I NOT %response%==B3 (

 IF /I NOT %response%==C1 (

 IF /I NOT %response%==C2 (

 IF /I NOT %response%==C3 (

 SET ValidMove=False

 GOTO :EOF

)

)

)

)

)

)

)

)

)

276
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The next collection of tests performed by the procedure checks to see whether the
square selected by the player has already been taken. The variable embedded within
an available square will either be set equal to a blank or will contain either an X or
and O if it has been taken previously.

IF /I %response%==A1 (

 IF NOT "%A1%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==A2 (

 IF NOT "%A2%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==A3 (

 IF NOT "%A3%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==B1 (

 IF NOT "%B1%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==B2 (

 IF NOT "%B2%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==B3 (

 IF NOT "%B3%"==" " (

 SET ValidMove=False

)

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
277

)

 IF /I %response%==C1 (

 IF NOT "%C1%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==C2 (

 IF NOT "%C2%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==C3 (

 IF NOT "%C3%"==" " (

 SET ValidMove=False

)

)

GOTO :EOF

Associating Player Moves with Game Board Squares

The :FillInSquare procedure, shown below, is straightforward. It sets the variable
stored in the selected square equal to the letter associated with the current player
(i.e., either X or O as specified by the player variable’s current value).

:FillInSquare

 IF /I %response%==A1 SET A1=%player%

 IF /I %response%==A2 SET A2=%player%

 IF /I %response%==A3 SET A3=%player%

 IF /I %response%==B1 SET B1=%player%

 IF /I %response%==B2 SET B2=%player%

 IF /I %response%==B3 SET B3=%player%

 IF /I %response%==C1 SET C1=%player%

 IF /I %response%==C2 SET C2=%player%

278
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 IF /I %response%==C3 SET C3=%player%

Goto :EOF

Displaying the Results of the Game

The :DisplayGameResults procedure, shown below, checks the value assigned to the
Winner variable to determine whether one of the players has won the game. Other-
wise, a tie is declared. The results of the game, as determined by the value of the
Winner variable, are then displayed in the messagetext variable, which is embedded
in the screen displayed by this procedure.

:DisplayGameResults

 CLS

 SET messagetext=Tie - No Winner

 IF "%Winner%"=="X" SET messagetext=Player X has won!!!

 IF "%Winner%"=="O" SET messagetext=Player O has won!!!

 FOR /L %%i IN (1,1,5) DO ECHO.

 ECHO ^| ^|

 ECHO %A1% ^| %A2% ^| %A3% E N D O F G A M E

 ECHO _____^|_____^|_____

 ECHO ^| ^|

 ECHO %B1% ^| %B2% ^| %B3% %messagetext%

 ECHO _____^|_____^|_____

 ECHO ^| ^|

 ECHO %C1% ^| %C2% ^| %C3%

 ECHO ^| ^|

 FOR /L %%i IN (1,1,9) DO ECHO.

GOTO :EOF

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
279

Determining When a Game Is Over

The script’s final procedure is the :SeeIfWon procedure, which is shown below. Each
time this procedure is called, it checks to see if the current player (either Player X
or Player O) has managed to string together three consecutive squares (vertically,
horizontally, or diagonally). It then sets the value assigned to the Winner variable to
either X or O if appropriate.

:SeeIfWon

 IF /I "%A1%"=="%player%" (

 IF /I "%A2%"=="%player%" (

 IF /I "%A3%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%B1%"=="%player%" (

 IF /I "%B2%"=="%player%" (

 IF /I "%B3%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%C1%"=="%player%" (

 IF /I "%C2%"=="%player%" (

 IF /I "%C3%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%A1%"=="%player%" (

 IF /I "%B2%"=="%player%" (

 IF /I "%C3%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%A3%"=="%player%" (

 IF /I "%B2%"=="%player%" (

 IF /I "%C1%"=="%player%" (SET Winner=%player%)

)

280
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

)

 IF /I "%A1%"=="%player%" (

 IF /I "%B1%"=="%player%" (

 IF /I "%C1%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%A2%"=="%player%" (

 IF /I "%B2%"=="%player%" (

 IF /I "%C2%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%A3%"=="%player%" (

 IF /I "%B3%"=="%player%" (

 IF /I "%C3%"=="%player%" (SET Winner=%player%)

)

)

GOTO :EOF

The Final Result

For your convenience, I have assembled the complete Tic-Tac-Toe game below. As
you will see, I have added the standard script template and made liberal use of
comments to make the script self-documenting.

@ECHO off

REM ***

REM

REM Script Name: TicTacToe.bat

REM Author: Jerry Ford

REM Date: July 22, 2003

REM

REM Description: This is a Windows shell script implementation of the popular

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
281

REM child's game called "Tic-Tac-Toe".

REM

REM ***

REM ****** Script Initialization Section ******

REM Set the color scheme to yellow on black

COLOR 0E

REM Display the name of the game in the Windows command console's title bar

TITLE = T I C - T A C - T O E

REM Clear the display

CLS

REM ****** Main Processing Section ******

REM This label is called whenever the game needs to be restarted

:StartOver

REM Global variables used throughout the script

SET Player=X

SET Winner=None

SET /A NoMoves = 0

SET /A NoMoves = 0

REM Reset all the squares on the game board to show blanks

CALL :InitializeBlanks

REM Display the Welcome screen and prompt the players for instructions

282
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

CALL :Welcome

REM Process the player's instruction

IF /I "%reply%" == "" CLS & GOTO :StartOver

IF /I %reply% == Play CLS & CALL :Play

IF /I %reply% == Quit CLS & GOTO :EOF

IF /I %reply% == Help CLS & CALL :Help

IF /I %reply% == About CLS & CALL :About

GOTO :StartOver

GOTO :EOF

REM ****** Main Processing Section ******

REM Reset all squares on the game board to blanks

:InitializeBlanks

 SET A1=

 SET A2=

 SET A3=

 SET B1=

 SET B2=

 SET B3=

 SET C1=

 SET C2=

 SET C3=

GOTO :EOF

REM Display the Welcome screen when called

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
283

:Welcome

 REM Clear the display

 CLS

 REM Add 8 blanks lines to the display

 FOR /L %%i IN (1,1,8) DO ECHO.

 ECHO W E L C O M E T O T I C - T A C - T O E

 ECHO.

 ECHO.

 ECHO Windows shell script style!

 REM Add 9 blanks lines to the display

 FOR /L %%i IN (1,1,9) DO ECHO.

 REM Display a menu of options

 ECHO Options: [Play] [Quit] [Help] [About]

 ECHO.

 REM Prompt the player to make a selection

 SET /p reply=Enter selection:

GOTO :EOF

REM Display the game board

:DisplayBoard

 REM Clear the display

 CLS

 ECHO.

284
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO.

 ECHO T I C - T A C - T O E

 ECHO.

 ECHO.

 ECHO.

 ECHO 1 2 3

 ECHO. Rules:

 ECHO.

 ECHO ^| ^| 1. Player X always goes first.

 ECHO A %A1% ^| %A2% ^| %A3%

 ECHO _____^|_____^|_____ 2. To make a move enter the

 ECHO ^| ^| coordinates of the appropriate

 ECHO B %B1% ^| %B2% ^| %B3% square.

 ECHO _____^|_____^|_____

 ECHO ^| ^| 3. Remember to switch turns when

 ECHO C %C1% ^| %C2% ^| %C3% instructed by the game.

 ECHO ^| ^|

 ECHO.

 ECHO.

 ECHO.

 ECHO Player %player%'s turn:

 ECHO.

GOTO :EOF

REM Display the help screen when called

:HELP

 REM Clear the display

 CLS

 REM Add 5 blank lines to the display

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
285

 FOR /L %%i IN (1,1,5) DO ECHO.

 ECHO HELP INSTRUCTIONS

 ECHO.

 ECHO.

 ECHO This is a text-based implementation of the TIC-TAC-TOE game. In this game

 ECHO the computer controls the action. Player X always goes first. The game

 ECHO tells each player when it is his turn. When prompted to take a turn players

 ECHO must type the coordinates of the square into which they wish to place their

 ECHO marker (the X or O character). For example, to place a marker in the

 ECHO upper left hand box, players would enter A1.

 ECHO.

 ECHO The game tracks the progress of each game and will automatically determine

 ECHO when a game has been won, lost, or tied.

 REM Add 6 blank lines to the display

 FOR /L %%i IN (1,1,6) DO ECHO.

 REM Make the player press a key to continue

 PAUSE

GOTO :EOF

:About

 REM Clear the display

 CLS

 REM Add 7 blank lines to the display

 FOR /L %%i IN (1,1,7) DO ECHO.

 ECHO About The TIC TAC TOE GAME

286
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO.

 ECHO Written by

 ECHO.

 ECHO Jerry Lee Ford, Jr.

 ECHO.

 ECHO ------------------------

 ECHO.

 ECHO Copyright 2003

 REM Add 7 blank lines to the display

 FOR /L %%i IN (1,1,7) DO ECHO.

 REM Make the player press a key to continue

 PAUSE

GOTO :EOF

REM This procedure controls the actual play of the game

:Play

 REM If player X has won then find out if a new game should be started

 IF "%Winner%"=="X" (

 CALL :DisplayGameResults

 REM Make the player press a key to continue

 PAUSE

 GOTO :StartOver

)

 REM If player O has won then find out if a new game should be started

 IF "%Winner%"=="O" (

 CALL :DisplayGameResults

 REM Make the player press a key to continue

 PAUSE

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
287

 GOTO :StartOver

)

 REM If the players tied find out if a new game should be started

 IF "%Winner%"=="Nobody" (

 CALL :DisplayGameResults

 REM Make the player press a key to continue

 PAUSE

 GOTO :StartOver

)

 REM display the game board

 CALL :DisplayBoard

 REM Collect current player's selection

 SET /P response=Select a box:

 REM Validate the specified selection

 CALL :ValidateResponse

 REM If the selection is valid

 IF %ValidMove%==True (

 REM Add 1 to the total number of valid selections made in the game

 SET /A NoMoves = NoMoves += 1

 REM Associate the player's selection with the right square

 CALL :FillInSquare

 REM If the player's selection is invalid

) ELSE (

 REM Clear the display

288
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 CLS

 REM Add 11 blank lines to the display

 FOR /L %%i IN (1,1,11) DO ECHO.

 ECHO Invalid move. Please try again!

 REM Add 11 blank lines to the display

 FOR /L %%i IN (1,1,11) DO ECHO.

 REM Make the player press a key to continue

 PAUSE

)

 REM If a total of 9 valid selections have been made the board is full

 IF %NoMoves% == 9 (

 SET Winner=Nobody

) ELSE (

 CALL :SeeIfWon

)

 REM Its now time to switch players

 IF %ValidMove%==True (

 IF "%player%"=="X" (

 SET Player=O

) ELSE (

 SET Player=X

)

)

 REM Loop back to the beginning and keep playing

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
289

 GOTO :Play

GOTO :EOF

REM Ensure that the selection supplied by the player is valid

:ValidateResponse

 REM By default assume a valid selection was made

 SET ValidMove=True

 REM Hitting enter without entering a selection is invalid

 IF /I "%response%" == "" (

 SET ValidMove=False

 GOTO :EOF

)

 REM Ensure that a valid square was specified (A1-A3, B1-B3 & C1 - C3)

 IF /I NOT %response%==A1 (

 IF /I NOT %response%==A2 (

 IF /I NOT %response%==A3 (

 IF /I NOT %response%==B1 (

 IF /I NOT %response%==B2 (

 IF /I NOT %response%==B3 (

 IF /I NOT %response%==C1 (

 IF /I NOT %response%==C2 (

 IF /I NOT %response%==C3 (

 SET ValidMove=False

 GOTO :EOF

)

)

)

)

290
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

)

)

)

)

)

 REM Previously selected squares are invalid

 IF /I %response%==A1 (

 IF NOT "%A1%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==A2 (

 IF NOT "%A2%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==A3 (

 IF NOT "%A3%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==B1 (

 IF NOT "%B1%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==B2 (

 IF NOT "%B2%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==B3 (

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
291

 IF NOT "%B3%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==C1 (

 IF NOT "%C1%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==C2 (

 IF NOT "%C2%"==" " (

 SET ValidMove=False

)

)

 IF /I %response%==C3 (

 IF NOT "%C3%"==" " (

 SET ValidMove=False

)

)

GOTO :EOF

REM Associate the player's selection with the appropriate square

:FillInSquare

 IF /I %response%==A1 SET A1=%player%

 IF /I %response%==A2 SET A2=%player%

 IF /I %response%==A3 SET A3=%player%

 IF /I %response%==B1 SET B1=%player%

 IF /I %response%==B2 SET B2=%player%

 IF /I %response%==B3 SET B3=%player%

 IF /I %response%==C1 SET C1=%player%

 IF /I %response%==C2 SET C2=%player%

292
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 IF /I %response%==C3 SET C3=%player%

Goto :EOF

REM Display the results of the game

:DisplayGameResults

 REM Clear the display

 CLS

 REM Set the default message to indicate a tie

 SET messagetext=Tie - No Winner

 REM If either player won set a variable containing a custom message

 IF "%Winner%"=="X" SET messagetext=Player X has won!!!

 IF "%Winner%"=="O" SET messagetext=Player O has won!!!

 REM Add 5 blank lines to the display

 FOR /L %%i IN (1,1,5) DO ECHO.

 REM Display the final board and display a message indicating game results

 ECHO ^| ^|

 ECHO %A1% ^| %A2% ^| %A3% E N D O F G A M E

 ECHO _____^|_____^|_____

 ECHO ^| ^|

 ECHO %B1% ^| %B2% ^| %B3% %messagetext%

 ECHO _____^|_____^|_____

 ECHO ^| ^|

 ECHO %C1% ^| %C2% ^| %C3%

 ECHO ^| ^|

 REM Add 9 blank lines to the display

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
293

 FOR /L %%i IN (1,1,9) DO ECHO.

GOTO :EOF

REM Check up, down, & diagonally to see if the player has won

:SeeIfWon

 REM Check across

 IF /I "%A1%"=="%player%" (

 IF /I "%A2%"=="%player%" (

 IF /I "%A3%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%B1%"=="%player%" (

 IF /I "%B2%"=="%player%" (

 IF /I "%B3%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%C1%"=="%player%" (

 IF /I "%C2%"=="%player%" (

 IF /I "%C3%"=="%player%" (SET Winner=%player%)

)

)

 REM Check diagonally

 IF /I "%A1%"=="%player%" (

 IF /I "%B2%"=="%player%" (

 IF /I "%C3%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%A3%"=="%player%" (

294
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 IF /I "%B2%"=="%player%" (

 IF /I "%C1%"=="%player%" (SET Winner=%player%)

)

)

 REM Check up and down

 IF /I "%A1%"=="%player%" (

 IF /I "%B1%"=="%player%" (

 IF /I "%C1%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%A2%"=="%player%" (

 IF /I "%B2%"=="%player%" (

 IF /I "%C2%"=="%player%" (SET Winner=%player%)

)

)

 IF /I "%A3%"=="%player%" (

 IF /I "%B3%"=="%player%" (

 IF /I "%C3%"=="%player%" (SET Winner=%player%)

)

)

GOTO :EOF

OK, now that you have the complete script, it’s time to kick its tires and see how it
handles. While you can certainly play the Tic-Tac-Toe game by yourself, it is de-
signed for two. So grab a friend and impress them with your new Windows shell
script game.

Summary

In this final chapter, I provided you with lots of different ways of dealing with
problems that are bound to arise as you begin developing your own shell scripts.
This information included a discussion of syntax, logic, and run-time errors. I then
provided you with instruction on how to trace logic flow and display intermediate

C
h

a
p

te
r 8

D
e
b

u
g

g
in

g
 a

n
d

 E
rr o

r H
a
n

d
lin

g
295

results within scripts. I also showed you how to write scripts that, when called as
external procedures, provide calling scripts a custom exit code that indicates
whether any problems occurred during the external procedure’s execution.

E X E R C I S E S

1. Modify the Tic-Tac-Toe game so that it visually identifies whose turn it is. For

example, use a yellow-on-black color scheme when it is Player X’s turn and a

green-on-black color scheme when it is Player O’s turn.

2. There is a lot of room for improvement in the Tic-Tac-Toe game’s lone error

message. Modify the game so that instead of simply reporting all player errors

as an invalid move, the game tells players exactly what they did wrong. For

example, differentiate between invalid sections and attempts to select a square

that has already been selected.

3. Modify the Tic-Tac-Toe game so that it tracks wins, losses, and ties over time,

and present this information to players at the final conclusion of the game.

This page intentionally left blank

A

I
n addition to serving as a great introductory computing language, Windows
shell scripting serves a very practical purpose: assisting the automated
administration of computer and network tasks. As such, this book would be

remiss if it did not provide you with some practical examples of Windows shell scripts
designed to do something other than play games. In this appendix, you will find a collec-
tion of seven scripts that demonstrate various tasks that can be automated using Win-
dows shell scripts. Some of the scripts have more practical value than others. However,
you can use them as a foundation for developing scripts that suit your specific needs.

Specifically, you will learn

• How to programmatically connect to network disk drives

• How to automate the creation of user and administrator accounts

• How to automate the Windows disk defrag process

• How to automate the execution of your Windows shell scripts

• How to create a network chat script

• How to execute and control third-party utilities and programs from within
Windows shell scripts

Windows Shell
Scripting

Administrative
Scripts

A P P E N D I X

298
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Working with Network Drives

If your computer is connected to a home network or if your desktop computer at
work is connected to a network, you are probably familiar with many of the advan-
tages of computer networks. These advantages include things like group e-mail
and instant messaging. They also include the sharing of resources such as disk
drives and printers.

Using the NET USE command, you can automate the establishment of connections
to network resources. For example, you can create a mapped-network drive con-
nection to shared network drives or folders using the following syntax:

NET USE DriveLetter: \\ServerName\ShareName

DriveLetter specifies an available drive letter on the local computer which will be
used to represent the network connection. ServerName specifies the name of the
computer where the shared network folder or drive resides, and ShareName is the
name assigned to the shared resource.

DriveLetter is an alphabetic representation of a disk drive. Windows computers use

letters of the alphabet to represent connections to local and network drives. As such, a

maximum of 26 network drive connections can be set up or mapped on your computer.

The \\ServerName\ShareName parameter defined previously is an example of the

application of the Universal Naming Convention, or UNC. The UNC establishes stan-

dards for identifying local and network resources. UNC names begin with two back

slashes followed by the name of a network device, another slash, and then the name

of the shared resource.

You can also use the NET USE command to break connections to network resources.
To disconnect a connection to a shared network drive, use the following syntax:

NET USE DriveLetter: /DELETE

DriveLetter represents the drive letter currently associated with the connection
and /DELETE is a switch that tells the NET USE command to terminate the computer’s
connection.

DEFINITION

DEFINITION

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
299

The following example provides a working demonstration of how to set up and
break network connections to shared network drives. In order to adapt and test
this example, you’ll need access to a local area network that has a shared network
folder or drive to which you are authorized to connect.

@ECHO off

REM ***

REM

REM Script Name: MapNtwkDrive.bat

REM Author: Jerry Ford

REM Date: August 1, 2003

REM

REM Description: This script demonstrates how to connect to and disconnect

REM from network drives.

REM

REM ***

REM Abort execution if run on a computer running Windows NT, 2000, XP, or 2003.

IF NOT "%os%" == "Windows_NT" (

 ECHO.

 ECHO.

 ECHO Unsupported Operating system

 ECHO.

 ECHO.

 GOTO :EOF

)

REM Define a variable that specifies the drive letter to be used.

SET DriveLetter=X:

REM Define a variable that specifies the location of the network drive.

300
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

SET NetworkDrive=\\SERV0001\C

REM Display the name of the script in the Windows command console's title bar.

TITLE = MapNtwkDrive.bat

REM Set the color scheme to yellow on black.

COLOR 0E

REM ****** Script Initialization Section ******

REM Call the procedure that displays an introduction message.

CALL :DisplayUserMsg

REM Call a procedure that creates the network drive connection.

CALL :EstablishConnection

REM Determine if an error occurred.

IF %ERRORLEVEL%==0 (

 REM If an error did not occur, then prompt the user to verify that the

 REM mapped drive connection was created.

 CALL :VerifyConnection

 REM Call the procedure that disconnects the network drive connection

 CALL :BreakConnection

)

GOTO :EOF

REM ****** Main Processing Section ******

REM Display an introductory message.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
301

:DisplayUserMsg

 CLS

 ECHO.

 ECHO.

 ECHO DEMO: Connecting to and disconnecting from network drives

 ECHO.

 ECHO.

 PAUSE

GOTO :EOF

REM Set up a connection to the specified network drive.

:EstablishConnection

 CLS

 ECHO.

 ECHO Issuing NET USE Command.

 ECHO.

 REM Use the NET USE command to connect to the specified network drive

 REM and set up a connection using the specified drive letter.

 NET USE %driveletter% %NetworkDrive%

 IF ERRORLEVEL 1 (

 ECHO.

 ECHO.

 ECHO Error occurred setting up network drive connection.

 ECHO.

302
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO.

 PAUSE

)

GOTO :EOF

REM Prompt the user to check to make sure the drive connection was

REM established.

:VerifyConnection

 ECHO.

 ECHO.

 ECHO Please verify that the new network drive connection has been established

 ECHO before you respond by pressing the a key.

 ECHO.

 ECHO.

 ECHO Instructions:

 ECHO ------------

 ECHO.

 ECHO Click on Start and then My Computer. You should not see a drive

 ECHO connection labeled X: listed in the Hard Drives section of the

 ECHO My Computer dialog.

 ECHO.

 ECHO.

 PAUSE

GOTO :EOF

REM Disconnect the connection to the network drive.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
303

:BreakConnection

 CLS

 REM Use the NET USE command to delete the connection as specified by its

 REM drive letter assignment.

 NET USE %driveletter% /DELETE

 IF ERRORLEVEL 1 (

 ECHO.

 ECHO.

 ECHO Error occurred when disconnecting the network drive connection.

 ECHO.

 ECHO.

) ELSE (

 ECHO.

 ECHO.

 ECHO The network drive connection has been disconnected.

 ECHO.

 ECHO.

)

GOTO :EOF

The script begins by verifying that it has been started on a computer running Win-
dows NT, XP, 2000, or 2003. It then defines a variable named DriveLetter and as-
signs it a value of X:. Next a variable named NetworkDrive is defined and assigned
the UNC address of a shared network folder. The script then posts a text message
in the Windows command console’s title bar and changes the console’s color
scheme to yellow on black.

This example assumes that the X: drive letter is not already in use on the computer

where the script will be executed. If X: is already used, change this drive letter

assignment to a different letter.

TRAP

304
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Next, a series of procedure calls is executed. The :DisplayUserMsg procedure displays
an informational message in the Windows command console and waits for the
user to press a key. The :EstablishConnection then uses the NET USE command to cre-
ate a network connection with the network folder specified by the NetworkDrive
variable. This procedure then uses an IF ERRORLEVEL statement to determine whether
the command was successful, and displays an error message if it was not. Next, the
:VerifyConnection procedure is executed. This procedure displays a message instruct-
ing the user to verify that the network connection has indeed been established
and waits for the user to press a key, as shown in Figure A.1.

FIGURE A.1

The user is
prompted to verify

that the new
network drive

mapping has been
established

successfully.

FIGURE A.2

The mapped
network drive

appears as an icon
with a network

cable connection
shown beneath it.

Figure A.2 demonstrates how the network drive would appear if the script were
run on a computer running Windows XP.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
305

Finally, the :BreakConnection procedure runs, this time using the NET USE command
to disconnect the network connection. Once the last procedure is executed, the
script terminates its own execution with the GOTO :EOF statement.

Account Administration

Windows offers a number of commands that support the command line adminis-
tration of user accounts. These commands include

• NET USER. Creates new user accounts.

• NET GROUP. Adds user accounts to global groups.

• NET LOCALGROUP. Adds user accounts to local groups.

• NET ACCOUNTS. Configures user account password policies.

These commands enable you to configure both local and domain user accounts
and groups.

In the next Windows shell script example, I will demonstrate how to automate the
creation and administration of user accounts. The name of the script will be
AdminCreator.bat. It will be designed to create a new user account whose name will
be passed to it as an argument, and the script will then add that user account to
the local administrators group. The syntax required to execute this script properly
is outline below.

AdminCreator UserName

Windows Resource Kits provide a command line utility called ADDUSERS.EXE that you

can also use to create new accounts. This command line utility is designed to facili-

tate the creation of accounts stored as a list in a comma-delimited text input file.

The script’s source code is listed below.

@ECHO off

REM ***

REM

REM Script Name: AdminCreator.bat

REM Author: Jerry Ford

REM Date: August 1, 2003

REM

TRICK

306
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

REM Description: This script demonstrates how to create a local user account

REM and how to add it to the local Administrators group.

REM

REM ***

REM ****** Script Initialization Section ******

REM Abort execution if run on a computer running Windows NT, 2000, XP, or 2003.

IF NOT "%os%" == "Windows_NT" (

 ECHO.

 ECHO.

 ECHO Unsupported Operating system

 ECHO.

 ECHO.

 GOTO :EOF

)

REM Abort if a username was not passed to the script as an argument.

IF "%1"=="" (

 ECHO.

 ECHO.

 ECHO Invalid number of arguments received.

 ECHO.

 ECHO Syntax:

 ECHO.

 ECHO AdminCreator UserName

 ECHO.

 ECHO.

 GOTO :EOF

)

REM Display the name of the script in the Windows command console's title bar.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
307

TITLE "AdminCreator.bat"

REM Set a variable equal to the argument passed to the script.

SET user=%1

REM Clear the display.

CLS

REM ****** Main Processing Section ******

CALL :GetConfirmation

PAUSE

IF /I "%reply%"=="Y" (

 CALL :CreateAccount

 CALL :AddToAdminGroup

) ELSE (

 CALL :ScriptExecutionAborted

)

GOTO :EOF

REM ****** Procedure Section ******

REM Prompt the user for confirmation before continuing.

:GetConfirmation

 ECHO.

 ECHO.

 ECHO Options: [Y/N]

308
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO.

 SET /P reply=You have instructed this script to create a new admin account for %user%. Continue?

GOTO :EOF

REM Create the new user account and check for an error.

:CreateAccount

 NET USER %user% * /ADD

 IF ERRORLEVEL 1 (

 CLS

 ECHO.

 ECHO.

 ECHO Error occurred creating new account for %user%.

 ECHO.

 ECHO.

 PAUSE

 GOTO :EOF

)

GOTO :EOF

REM Add the new account to the local Administrators group & check for an error.

:AddToAdminGroup

 NET LOCALGROUP Administrators /ADD %user%

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
309

 IF ERRORLEVEL 1 (

 CLS

 ECHO.

 ECHO.

 ECHO Error occurred adding %user% to the local Administrators group.

 ECHO.

 ECHO.

 PAUSE

 GOTO :EOF

)

GOTO :EOF

REM Display the following message if the user chose to abort script execution.

:ScriptExecutionAborted

 ECHO.

 ECHO.

 ECHO Script execution aborted. New account for %user% not created.

 ECHO.

 ECHO.

GOTO :EOF

The script begins by first validating that it is executing on a supported Windows
operating system. It then checks to make sure that an argument, representing a
new user account name, has been passed to the script. If the argument is missing,
an error message is displayed; otherwise, the script continues executing.

310
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Next, the script posts a message in the Windows command console’s title bar and
sets a variable named user equal to the argument passed to the script. The console’s
screen is then cleared and a series of procedures are executed before the script
terminates its own execution.

The first procedure called is :GetConfirmation. It uses the SET command to require that
the user respond with a y or Y to confirm that the script should continue executing.
Once confirmation is received, the :CreateAccount and :AddToAdminGroup procedures are
executed. If confirmation is not received, the :ScriptExecutionAborted runs instead.

The :CreateAccount procedure uses the NET USER command to create the new user
account as shown below.

NET USER %user% * /ADD

An IF ERRORLEVEL statement is then executed to verify that the command processed
successfully. If it did, the script keeps executing; otherwise, its execution is termi-
nated. The :AddToAdminGroup procedure uses the NET LOCALGROUP command, as shown
below, to add the new user account to the computer’s local administrators group.

NET LOCALGROUP Administrators /ADD %user%

Another IF ERRORLEVEL statement is then executed to verify that this command pro-
cessed successfully. If it did not, an error message is displayed. When executed, the
:ScriptExecutionAborted procedure displays a message indicating that the script’s
execution was aborted and that the new account was not established.

The following output shows the results the script would display if it were executed
and passed an account name of Alex0001.

C:\Scripts>admincreator Alex0001

Options: [Y/N]

You have instructed this script to create a new admin account for

Alex0001. Continue?

Options: [Y/N]

You have instructed this script to create a new admin account for

Alex0001. Continue? N

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
311

Press any key to continue . . .

Script execution aborted. New account for Alex0001 not created.

C:\Scripts>

Options: [Y/N]

You have instructed this script to create a new admin account for

Alex0001. Continue? Y

Press any key to continue . . .

Type a password for the user:

Retype the password to confirm:

The command completed successfully.

The command completed successfully.

C:\Scripts>

Figure A.3 shows that the new account was created and that it has been added to
the local administrators group.

FIGURE A.3

A new user account
is created and added

to the local
administrators group.

312
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Disk Defragmentation

In the next example, I will demonstrate how to execute the DEFRAG.EXE command
line utility to run a process that defragments the computer’s local hard disk drive.
This script will also generate a summary text report of its activities.

Over time, the organization of files stored on hard disk drives becomes fragmented.

This results in slow performance and extra wear and tear on the drive. When a drive

is defragmented, its files are reorganized and stored more efficiently.

@ECHO off

REM ***

REM

REM Script Name: Defrager.bat

REM Author: Jerry Ford

REM Date: July 31, 2003

REM

REM Description: This scripts demonstrates how to run the defrag utility from

REM within a Windows shell script.

REM

REM ***

REM ****** Script Initialization Section ******

REM Abort execution if OS is not Windows NT, 2000, XP, or 2003

IF NOT "%os%" == "Windows_NT" (

 ECHO.

 ECHO.

 ECHO Unsupported Operating system

 ECHO.

 ECHO.

 GOTO :EOF

DEFINITION

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
313

)

SET DefragRpt=C:\Temp\Defrag.txt

REM ****** Main Processing Section ******

CALL :DeleteExistingRpt

CALL :CreateNewDefragRpt

CALL :PerformDefrag

GOTO :EOF

REM ****** Procedure Section ******

:DeleteExistingRpt

 REM If a defrag.txt report exists, delete it.

 IF EXIST %DefragRpt% DEL %DefragRpt%

GOTO :EOF

:CreateNewDefragRpt

 REM Create a new defrag.txt report.

 ECHO. > %DefragRpt%

 ECHO DEFRAG.EXE Execution Report >> %DefragRpt%

 ECHO. >> %DefragRpt%

 ECHO %date% %time% Defragging C: >> %DefragRpt%

314
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO. >> %DefragRpt%

GOTO :EOF

:PerformDefrag

 REM The defrag command cleans up disk fragmentation.

 ECHO System is now being defragmented. Please wait...

 DEFRAG C: /F >> %DefragRpt%

 IF ERRORLEVEL 1 (

 ECHO %date% %time% Error: %ERRORLEVEL% occurred. >> %DefragRpt%

) ELSE (

 ECHO %date% %time% DEFRAG.EXE has completed its execution. >> %DefragRpt%

)

GOTO :EOF

The script is designed to run as a background process so that it can be executed by
the Windows scheduler service, which I will show you how to use a little later in
this appendix. Therefore it does not bother to post messages in the Windows com-
mand console’s title bar or alter its color scheme. Of course, you can run the script
manually if you wish.

The script begins by ensuring that it has not been started on an unsupported oper-
ating system. It then defines a variable called DefragRpt that specifies the location
where a report file will be written and makes a series of procedure calls before
terminating its execution. The first procedure called is the :DeleteExistingRpt pro-
cedure. This procedure uses an IF EXIST statement to determine if a report file has
been created previously on the computer and deletes it if it has. Next, the
:CreateNewDefragRpt procedure runs. Its job is to format the beginning portion of the
report file. Finally, the :PerformDefrag procedure executes. It issues the DEFRAG.EXE
command, specifying the drive to be defragmented using the /F switch. This switch
tells the command to run without first prompting for confirmation.

Output produced by the command is redirected to the script’s report file. When the
command finishes executing, an IF ERRORLEVEL statement is executed to determine

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
315

whether to write a success or failure message to the report file. Figure A.4 shows an
example report produced by the script.

FIGURE A.4

Examining the
report created by

the defrager script.

Scheduling Script Execution

One of the major benefits of Windows shell scripting is that it facilitates the auto-
mated execution of tasks. This enables you to use the Windows operating system’s
built-in Task Scheduler service to run the script anytime you wish. For example,
the Defrager.bat script developed earlier in this appendix is a good candidate to set
up as a scheduled task. The DEFRAG.EXE command used within that script takes a
while to run and consumes a lot of system resources, making your computer run
slow. By running this script as a scheduled task, you can defrag your hard disk
while you sleep or at any other time that suits you.

Windows provides two different ways to work with the Windows Scheduler ser-
vice. The first option is to use the Windows AT command. The AT command is a text-
based interface with which you can view, add, and delete scheduled tasks. The
second option is to use the Windows Task Scheduler Wizard, which walks you
through the steps required to set up new scheduled tasks manually. Both of these
options are discussed in detail in the sections that follow.

The AT Command

The Windows AT command allows you to set up the scheduled execution of your
Windows shell scripts. Using the AT command without any additional arguments,
you can display a listing of currently scheduled tasks as demonstrated below.

C:\>AT

Status ID Day Time Command Line

 0 Each S 5:00 AM Defrager.bat

 1 Tomorrow 11:00 AM DiskClean.bat

316
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Here, two scripts have been set up to execute as scheduled tasks. The first script is
called Defrager.bat and is set up to run every Saturday at 5 A.M. The second script is
named DiskClean.bat and is set up to run at 11 A.M. on the next day.

Only administrators can configure scheduled tasks on Windows NT, XP, 2000, and 2003.

The following command demonstrates how to use the AT command to set up the
scheduled execution of a new task for a script called TestScript.bat.

AT 22:00 /EVERY:M,T,W,Th,F,S,Su CMD /C TestScript.bat

In this example, the Windows shell script that will run as a scheduled task will be
executed every day of the week at 10 P.M. You can also use the AT command to delete
scheduled tasks by passing it the ID assigned to the task, as demonstrated below.

AT 1 /DELETE

Here I told the AT command to remove the DiskClean.bat script from the execution
schedule.

If you want to delete all of the currently scheduled tasks, you can save time by ex-

ecuting the AT command as follows:

AT /DELETE

Just be sure that this is what you really want to do.

The AT command can also be used to set up the execution of scripts on other net-
work computers. To accomplish this, you must use the UNC format of the target
computer’s computer name, as demonstrated below.

AT \\ServerName 22:00 /EVERY:M,T,W,Th,F,S,Su CMD /C Defrager.bat

There are more uses of the AT command than I have room to cover in this appendix.
To learn more about this command, type AT HELP in the Windows command prompt
or search for information about the command in the Windows help system.

When run by the Windows Scheduler Service, your scripts will not have access to

the same set of resources that are available when you execute them manually. For

example, any mapped drives you may have set up are not available to the script. In

these situations, you must equip your scripts with the ability to set up connections

to whatever resources they may require.

TRICK

TRAP

HINT

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
317

The following script demonstrates how you can use the AT command within Win-
dows shell scripts. In this example, I have created a scheduling script that sets up
scheduled tasks for five other Windows shell scripts. A script like this would be
useful in situations where you are responsible for setting up the same set of sched-
uled tasks on a large number of computers, such as might be the case if you worked
on a company’s desktop support team.

@ECHO off

REM ***

REM

REM Script Name: MastSched.bat

REM Author: Jerry Ford

REM Date: August 1, 2003

REM

REM Description: This script demonstrates how to schedule scripts using the

REM Windows scheduler service and the AT command.

REM

REM ***

REM ****** Script Initialization Section ******

REM Abort execution if OS is not Windows NT, 2000, XP, or 2003

IF NOT "%os%" == "Windows_NT" (

 ECHO.

 ECHO.

 ECHO Unsupported Operating system

 ECHO.

 ECHO.

 GOTO :EOF

)

REM Define a variable that specifies the location of this script log file.

318
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

SET ReportFile=C:\Scripts\ATReport.txt

REM ****** Main Processing Section ******

REM Call a procedure that logs this script's execution.

CALL :SetUpSchedLog

REM Call the procedure that sets up scheduled tasks.

CALL :SetUpSchedule

GOTO :EOF

REM ****** Procedure Section ******

REM This procedure writes a date and time entry to a report file.

:SetUpSchedLog

 ECHO %date% %time% MastSched.bat - Now executing. > %ReportFile%

GOTO :EOF

REM This procedure sets up the scheduled execution of other Windows shell

REM scripts using the AT command.

:SetUpSchedule

 AT 20:00 /EVERY:T CMD /C DiskClean.bat >> %ReportFile%

 AT 21:00 /EVERY:M,W,F CMD /C MapNtwkDrive.bat >> %ReportFile%

 AT 21:00 /EVERY:M,W,F CMD /C Archiver.bat >> %ReportFile%

 AT 22:00 /EVERY:M,W,F CMD /C BreakDriveMap.bat >> %ReportFile%

 AT 22:00 /EVERY:Th CMD /C Defrager.bat >> %ReportFile%

GOTO :EOF

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
319

The script begins by ensuring that is has not been started on an unsupported Win-
dows operating system. It then defines a variable named Reportfile and assigns it
the location of a file where the script is to maintain a log file. The script then
executes two procedures before terminating its own execution.

The first procedure called by the script is :SetUpSchedLog. This procedure redirects
the output of an ECHO statement to the specified log file in order to record the date
and time each time the script ran. Next, the :SetUpSchedule procedure is executed.
This procedure executes a series of five AT commands, as shown below.

AT 20:00 /EVERY:T CMD /C DiskClean.bat >> %ReportFile%

AT 21:00 /EVERY:M,W,F CMD /C MapNtwkDrive.bat >> %ReportFile%

AT 21:00 /EVERY:M,W,F CMD /C Archiver.bat >> %ReportFile%

AT 22:00 /EVERY:M,W,F CMD /C BreakDriveMap.bat >> %ReportFile%

AT 22:00 /EVERY:Th CMD /C Defrager.bat >> %ReportFile%

Each of these scripts is set up to run at different times and different days of the
week. The procedure also redirects any output produced by the execution of each
of these AT commands to the script’s log file.

Figure A.5 shows the scheduled tasks as they will appear when viewed from the
Windows Scheduled Tasks folder.

FIGURE A.5

Examining the
scheduled tasks

configured by
the Windows
shell script.

Figure A.6 shows how the script’s log file will look when the script runs successfully.

Scripts set up by the AT command to run under the control of the Windows scheduler

service but are not associated with specific user accounts may fail if the script attempts

to access secured resources. If this is the case, use the Windows Task Scheduler Wiz-

ard to configure the automated execution of your scripts. The wizard provides the ability

to run scripts using the security access provided by specified user accounts.

TRAP

320
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The Scheduled Task Wizard

As an alternative to using the AT command to add, view, and delete scheduled tasks,
you can also use the Windows Scheduled Task Wizard.

On Windows NT, XP, 2000, and 2003, only administrators are permitted to create and

manage scheduled tasks.

The Windows Scheduled Task Wizard walks you through the steps required to set
up an automated execution schedule for your scripts using any of the following
schedules:

• Daily

• Weekly

• Monthly

• One time only

• At startup

• At login

By default, scheduled tasks run by using a special built-in Windows account called
LocalSystem. Unfortunately, this account lacks sufficient security permissions to run
many tasks. One advantage the Windows Scheduled Task Wizard has over the AT
command is the ability to easily associate user accounts and their associated pass-
words with specific tasks. This allows tasks that require specific levels of access to
execute using the security access of the specified user account.

If you elect to associate a user account and its password with a scheduled task, the

started task will stop executing if the user account’s password expires. In addition,

the task will stop running if the user account’s password is changed and you forget to

return and update the password in the scheduled task. One way around this problem

is to create a new user account whose sole purpose is to run scheduled tasks. You

can then set up the account so that its password will not expire and will never change.

FIGURE A.6

Reviewing the text
audit report created

by the Windows
shell script.

TRAP

HINT

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
321

Starting the Task Scheduler Service

To run scheduled tasks on your computer, you must ensure that the Windows
scheduled task services is running. The following procedure outlines the steps in-
volved in performing this procedure:

1. Click on Start, Control Panel, and then Administrative Tools.

2. Open the Services console by double-clicking on the Services icon.

3. Find the Task Scheduler service and double-click on it.

4. Ensure that the Startup Type drop-down list is set to Automatic.

5. Click on Start if the service is not already started.

6. Click on OK.

Running the Scheduled Task Wizard

One of the nice things about using the Scheduled Task Wizard instead of the AT
command is that you no longer have to worry about the AT command’s syntax. All
you have to do is follow the wizard’s instruction and it will take care of the rest for
you. The following procedure outlines the steps involved in starting the Scheduled
Task Wizard and using it to set up new scheduled tasks.

1. Click on Start, Control Panel and then Scheduled Tasks. The Scheduled Tasks
folder appears.

2. Double-click on the Add Scheduled Task icon, and then click on Next when the
Scheduled Task Wizard appears.

3. The wizard displays a list of applications, as demonstrated in Figure A.7. Type
the name and path of your script or click on Browse to locate it. Click on Next.

FIGURE A.7

Specifying the
name and location
of your Windows

shell script.

4. Enter a task name and then select an entry from the list of available schedul-
ing options, as shown in Figure A.8.

322
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

5. If you select the Daily schedule, the wizard will display the following list of
options, allowing you to further refine the task execution schedule.

• Start time. Specifies the time that the task is to begin running.

• Perform this task. Configures the task to run daily, on weekdays, or every
__ days.

• Start date. Specifies the date on which the task should first be run.

Fill in the required information, click on Next, and then skip to step 11.

6. If you select the Weekly schedule, the wizard will display the following list of
options, allowing you to further refine the task execution schedule.

• Start time. Specifies the time that the task is to begin running.

• Every __ weeks. Configures the task to execute on a set period of weeks.

• Select the day(s) of the week below. Specifies the one or more days of the
week on which the task should be executed.

Fill in the required information, click on Next, and then skip to step 11.

7. If you select the Monthly schedule, the wizard will display the following list
of options, as shown in Figure A.9, allowing you to further refine the task
execution schedule.

• Start time. Specifies the time that the task is to begin running.

• Day. Specifies the day of the month that the task is to run.

• The _ _. Specifies the day of the month on which to run the task.

• Of the month(s). Specifies the month(s) on which to run the task.

Fill in the required information, click on Next, and then skip to step 11.

8. If you select the One time only schedule, the wizard will display the following
list of options, allowing you to further refine the task execution schedule.

• Start time. Specifies the time that the task is to begin running.

• Start date. Specifies the date on which the task is to start running.

Fill in the required information, click on Next, and then skip to step 11.

FIGURE A.8

Selecting the
execution frequency

for your Windows
shell script.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
323

9. If you select the When my computer starts schedule, the wizard will display the
following list of options, as shown in Figure A.10, allowing you to further re-
fine the task execution schedule.

• Enter the user name. Specifies the name of a user account to associate
with the task.

• Enter the password. Specifies the account’s associated password.

• Confirm password. A confirmation of the specified account’s password.

Fill in the required information, click on Next, and then skip to step 12.

FIGURE A.9

Providing detailed
information

regarding the
script’s execution

schedule.

10. If you select the When I log on schedule, the wizard will display the following
list of options, allowing you to further refine the task execution schedule.

• Enter the user name. Specifies the name of a user account to associate
with the task.

• Enter the password. Specifies the account’s associated password.

• Confirm password. A confirmation of the specified account’s password.

Fill in the required information, click on Next, and then proceed to step 12.

FIGURE A.10

Associating a
user account and
its password with

your Windows
shell script.

324
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

11. The wizard then displays the following list of options:

• Enter the user name. Specifies the name of a user account to associate
with the task.

• Enter the password. Specifies the account’s associated password.

• Confirm password. A confirmation of the specified account’s password.

12. Click on Finish.

Once finished, the wizard adds an entry for the new task in the Scheduled Tasks
folder, as demonstrated in Figure A.11.

FIGURE A.11

Examining the task
created by the

Scheduled Task
Wizard.

Creating a Chat Script

In the next example, I’ll show you how to build a chat-like script. I say chat-like
because this script only emulates a chat program. Whereas a true chat program
establishes and maintains a communication session between two computers, this
script simply facilitates the sending of messages to the same person over and over
again. In fact, the script may be more likened to instant messaging. However, be-
cause of its interface, it looks and feels more like a chat program.

In order for this script to work, the computer that runs it must also be running the

Windows Messenger service. Otherwise the NET SEND won’t be able to send and

receive any messages.

@ECHO off

REM ***

TRAP

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
325

REM

REM Script Name: NetSend.bat

REM Author: Jerry Ford

REM Date: July 25, 2003

REM

REM Description: This script is designed to emulate network chat

REM communication between two network users.

REM

REM ***

REM ****** Script Initialization Section ******

REM Display the name of the script in the Windows command console's title bar.

TITLE = NetSend Messenger

REM Set the color scheme to yellow on black.

COLOR 0E

REM ****** Main Processing Section ******

REM Call the procedure that displays the script's welcome screen.

CALL :WelcomeScreen

REM This label provides a callable marker for restarting the script.

:TryAgain

REM Call the procedure that prompts the user to enter the name of the

REM destination computer.

CALL :CollectUserName

REM If the user hits Enter without specifying a computer name, start over.

326
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

IF /I "%answer%" == "" CLS & GOTO :TryAgain

REM Terminate script execution if the user typed Quit.

IF /I %answer% == Quit CLS & GOTO :EOF

REM Call the procedure that collects and sends messages.

CALL :StartChatting

GOTO :EOF

REM ****** Procedure Section ******

REM This procedure displays the script's welcome screen.

:WelcomeScreen

 CLS

 ECHO.

 ECHO N e t S e n d I n s t a n t N e t w o r k M e s s a g e

 ECHO.

 ECHO D e l i v e r y C l i e n t Version 1.0

 ECHO.

 ECHO Operation:

 ECHO.

 ECHO 1. When prompted, enter the network username of the person with whom

 ECHO you wish to chat and press the Enter key.

 ECHO.

 ECHO 2. Messages from that person will appear in graphical popup dialogs

 ECHO on your computer screen.

 ECHO.

 ECHO 3. To send messages, type your text messages when prompted and press

 ECHO the Enter key.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
327

 ECHO.

 ECHO 4. To send messages to a different network user, type Switch and press

 ECHO the Enter key. Type a new network username when prompted and press

 ECHO. the Enter Key.

 ECHO.

 ECHO 5. When done chatting, type Quit and press the Enter key.

 FOR /L %%i IN (1,1,2) DO ECHO.

 PAUSE

GOTO :EOF

REM This procedure collects the name of the destination computer.

:CollectUserName

 CLS

 FOR /L %%i IN (1,1,23) DO ECHO.

 SET /P answer=Enter the target computer's name:

GOTO :EOF

REM This procedure collects the message to be sent and sends it.

:StartChatting

 CLS

 FOR /L %%i IN (1,1,4) DO ECHO.

 ECHO You are currently in chat mode with: %answer%.

 ECHO.

328
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 ECHO.

 ECHO Type a message and press the Enter key to send it or type Quit to

 ECHO exit NetSend.bat.

 FOR /L %%i IN (1,1,6) DO ECHO.

 SET /p MsgText=Message:

 REM If the user hit Enter without typing any text, prompt for input again

 IF /I "%MsgText%" == "" GOTO :StartChatting

 REM If the user entered Switch, then start over allowing the user to

 REM specify a different destination computer.

 IF /I "%MsgText%" == "Switch" GOTO TryAgain

 REM If the user entered Quit, terminate the script's execution.

 IF /I "%MsgText%" == "Quit" GOTO :EOF

 REM Send the message to the appropriate computer.

 NET SEND %answer% "%MsgText%"

 REM Prompt the user to enter a new message.

 GOTO :StartChatting

GOTO :EOF

This script begins by posting a message to the Windows command console’s title
bar. It then changes the console’s color scheme to yellow on black. Next, the
:WelcomeScreen procedure is called. This procedure displays the welcome screen shown
Figure A.12 and waits for the user to press a key before continuing.

Next the script calls the :CollectUserName procedure. This procedure uses a SET state-
ment to prompt the user to enter the name of a networked computer to which
messages will be sent (to mimic a chat session). Two IF statements then process the
user’s response, which is assigned to a variable named answer. If the user didn’t
type an entry, then a GOTO statement is used to transfer processing control to the

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
329

:TryAgain label, which is located at the beginning of the script. If the user typed
Quit, the script clears the display screen and terminates its own execution.

Next, the :StartChatting procedure is called. This procedure uses a SET statement to
collect input from the user and stores it in a variable called MsgText, as demon-
strated in Figure A.13.

FIGURE A.12

Using the NET SEND
command to create

a chat script.

The procedure then executes a series of three IF statements to determine what to do
next. If the value of MsgText is empty, then the user did not enter a test message, so
the procedure gives the user another chance to enter new text by using the GOTO
command to run itself again. If the user entered the word switch, a GOTO command is
used to switch processing control to the statement following the :TryAgain label lo-
cated at the beginning of the script. This way the user can enter a different com-
puter name in order to start a chat session with somebody else, or, if the user typed
an invalid computer name, they can start over and enter the correct computer name.

Users can also enter Quit instead of a message to terminate the script’s execution
from this screen. Finally, if the user did not press the Enter key, type Switch, or type
Quit, their text message is sent to the other network computer using the NET SEND
command, after which another GOTO command restarts the :StartChatting procedure

FIGURE A.13

Entering the text
message to be sent

to the other
computer.

330
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

to allow a new chat message to be sent. Figure A.14 demonstrates how the text mes-
sage will appear on the recipient’s computer.

FIGURE A.14

Viewing the text
message as it will

appear on the
destination computer.

Of course, for the NetSend.bat script to work effectively, copies of it must be distrib-
uted to both individuals who wish to chat with one another over the network.

Adding a Graphical Interface

As you saw in the previous chat example, you can take advantage of the Windows
NET SEND command to display information to users in graphical pop-up dialogs.
This provides an effective alternative for presenting users with information. But
what about collecting user information graphically? Well, that can be done as
well. To do so, you will need to download any of a number of freely distributed
utility programs from the Internet. One such utility is called MESSAGEBOX.EXE, which
you can download by visiting http://optimumx.com/ and clicking on the Downloads
link. Another similar utility is called MSGBOX.EXE, which you can download from
http://claudiosoft.online.fr/msgbox.html.

You can write Windows shell scripts that can execute either of these utility pro-
grams and pass messages to be displayed. You can also specify what buttons you
want displayed (OK, OK/Cancel, Yes/No, etc). The MSGBOX.EXE utility downloads as a Zip
file. One way to use it is to unzip its contents into the folder where your Windows
shell scripts are stored. To learn its syntax, open a Windows command console and
change the current working directory to the folder where you unzipped the utility
and then type MSGBOX as demonstrated below.

C:\>MSGBOX

Claudiosoft MessageBox 1.2

This program is FREEWARE for private use.

(C) Claudiosoft 2001

Usage : MsgBox Message Title Flag | YESNO | OKCANCEL | YESNOCANCEL

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
331

Example : MsgBox 'Do you want to continue?' 'Title' YESNO

MsgBox returns :

7 if the answer is NO,

6 if the answer is YES,

2 if the answer is CANCEL,

1 if the answer is OK.

The MESSAGEBOX.EXE utility’s syntax is even easier to access. Simply locate and double-
click MESSAGEBOX.EXE, and you’ll see the pop-up dialog shown in Figure A.15.

FIGURE A.15

Viewing the
MESSAGEBOX.EXE

command line
utility’s syntax.

As an example of how to work with these types of external command line utilities,
look at the following Windows shell script. It uses the MSGBOX command line utility
to generate a graphical pop-up dialog that displays a message with YES/NO buttons
asking the players if they would like to play another game.

@ECHO off

REM ***

REM

REM Script Name: Popup.bat

REM Author: Jerry Ford

REM Date: August 1, 2003

REM

REM Description: This script demonstrates how to use Claudiosoft's MSGBOX.EXE

REM program to interact with users via popup dialogs.

REM

332
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

REM ***

REM ****** Script Initialization Section ******

REM Abort execution if run on a computer not running

REM Windows NT, 2000, XP, or 2003.

IF NOT "%os%" == "Windows_NT" (

 ECHO.

 ECHO.

 ECHO Unsupported operating system

 ECHO.

 ECHO.

 GOTO :EOF

)

REM Define a variable that specifies the location of the MSGBOX.EXE program.

SET msgbox=C:\Scripts\MSGBOX.EXE

REM ****** Main Processing Section ******

REM Call a procedure that demonstrates how to use MSGBOX.EXE.

CALL :DisplayResults

REM If MSGBOX.EXE returned an exit code of 7, the user clicked on NO.

IF ERRORLEVEL 7 GOTO :Exit

REM If MSGBOX.EXE returned an exit code of 6, the user clicked on YES.

IF ERRORLEVEL 6 GOTO :PlayAgain

REM ****** Procedure Section ******

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
333

REM This procedure demonstrates how to display a message in a popup

REM dialog that includes YES and NO buttons.

:DisplayResults

 %msgbox% "You win! \n\nWant to play again?" "MSGBOX.EXE Demo" YESNO

GOTO :EOF

REM This procedure demonstrates how to display a message in a popup

REM dialog that includes the OK button.

:Exit

 %msgbox% "Thanks for playing! \n\nPlease come back soon!" "MSGBOX.EXE Demo"

GOTO :EOF

REM This procedures shows how the script waits on the user to

REM respond to the previous popup dialogs before continuing.

:PlayAgain

 ECHO.

 ECHO.

 ECHO This is where you would execute the GOTO command to restart the game.

 ECHO.

 ECHO.

GOTO :EOF

The script begins by ensuring that it has not been inadvertently started on an
unsupported Windows operating system. Next it defines a variable named msgbox
that stores the location of the MSGBOX.EXE command line utility. The script then
calls the :DisplayResults procedure. This procedure uses the MSGBOX.EXE command
line utility to display the graphical pop-up dialog shown in Figure A.16.

334
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Note that the MSGBOX.EXE utility translates the occurrence of \n characters into line
feed and character return operations. This gives you some control over the man-
ner in which text is displayed within the pop-up dialog.

Next, a pair of IF ERRORLEVEL statements interrogate the exit code returned by the
MSGBOX.EXE utility to determine which button the player clicked. An exit code of 7
indicates that the player clicked on the NO button, and an exit code of 6 indicates
that the player clicked on the YES button. If the NO button was clicked, the :Exit
procedure is called. This procedure uses the MSGBOX.EXE utility to display a message
in another pop-up dialog as shown in Figure A.17. If the player clicked on the YES
button, the :PlayAgain procedures is called instead.

FIGURE A.16

Collecting user input
using a pop-up

dialog.

FIGURE A.17

Displaying text
messages using a

pop-up dialog.

Working with Third-Party Applications

You can create Windows shell scripts that interact with and control many Win-
dows applications developed by software developers other than Microsoft. You can
do this because many software developers include built-in command line support
for their applications, allowing you to control the application from the Windows
command line.

The amount of functionality of an application’s command line interface will vary.
Some software developers provide no command line functionality, others provide
basic application functionality, while some others attempt to make available ev-
ery feature and function that is built into their GUI interface.

An excellent example of a third-party application that exposes application func-
tionality via the command line is WinZip. WinZip is a popular file-compression
and archive-management program. WinZip is a shareware application that you
can download and try before deciding whether you want to purchase it. You can
download a copy of the latest version of WinZip from www.winzip.com.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
335

To start WinZip, you double-click on its executable file, named WINZIP32.EXE, which
by default is installed in C:\ProgramFiles\WinZip. However, WINZIP32.EXE also provides
a command line interface which gives you the ability to create and extract Zip
files under the control of Windows shell scripts. The syntax for WINZIP32.EXE is
outlined below.

WINZIP32 [-min] action [options] filename[.zip] files

The –min parameter enables WinZip to run minimized so that you won’t see its GUI
when your scripts run it. You must select from one of the following switches to
define the action parameter:

• -a. Create a new Zip file.

• -f. Refresh an archive.

• -u. Update an existing archive.

• -m. Move an archive.

You can include any of the following parameters in place of the options placeholder:

• -r. Adds files and folders to the Zip file.

• -p. Includes information about folder membership for each file.

• -hs. Includes any hidden and system files.

• -s. Specifies an optional password, which results in a Zip file that is password pro-
tected and encrypted. The password is specified using the format of –sPassword.

You may also optionally specify any one of the following switches in place of the
options placeholder:

• -ex. Applies WinZip’s maximum compression rate.

• -en. Applies WinZip’s default compression rate.

• -ef. Applies a lower than normal compression rate.

• -es. Applies the lowest available compression rate.

• -e0. Creates an uncompressed Zip file.

Finally, the WINZIP32.EXE files parameter is used to specify the file or files to be
added to the Zip file. For example, the following command demonstrates how to
use the WINZIP32.EXE command to create a new Zip file called TestArchive in the C:\Tmp
folder and to add to it all .txt files found in the C:\Reports folder.

WINZIP32 -A C:\Tmp\TestArchive.zip C:\Reports*.txt

The following Windows shell script demonstrates how to leverage WinZip’s built-in
command line support to automate the creation of a new Zip file. In this example,

336
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

the script will create a Zip file that that stores all of the Windows shell scripts found
in the computer’s C:\Scripts folder.

@ECHO off

REM ***

REM

REM Script Name: Zipper.bat

REM Author: Jerry Ford

REM Date: August 1, 2003

REM

REM Description: This script demonstrates how to execute WinZip functionality

REM from within Windows shell scripts.

REM

REM ***

REM ****** Script Initialization Section ******

REM Specify the location where WinZip was installed.

SET InstallLocation=D:\Program Files\WinZIP

REM Specify the files to be zipped up.

SET ScriptFileLoc=C:\Scripts*.bat

REM Specify the name of the Zip file that is to be created

SET ZipFileName=C:\Scripts\Script.ZIP

REM Call the procedure that temporarily adds the WinZip folder to the

REM search path.

CALL :UpdatePath

REM Display a message allowing the user an opportunity to halt script

REM execution.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
337

CALL :DisplayWarning

REM Call the procedure that creates the new Zip file.

CALL :CreateArchive

GOTO :EOF

REM This procedures adds the WinZip folder to the end of the search path.

:UpdatePath

 SET path=%path%;%InstallLocation%

GOTO :EOF

REM This procedure displays a message that gives the user a chance to halt

REM script execution.

:DisplayWarning

 ECHO.

 ECHO.

 ECHO This script creates a new Zip file containing copies of all the

 ECHO .bat script files located in %ScriptFileLoc%.

 ECHO.

 PAUSE

GOTO :EOF

REM This procedure creates the new Zip file.

:CreateArchive

 CLS

 REM Execute the WINZIP32.EXE command, run it in minimized mode, and

338
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 REM pass it the name of the Zip file to create and the name and

 REM location of the files to be added to the archive.

 WINZIP32 -MIN -A %ZipFileName% %ScriptFileLoc%

 REM Check for any errors and display the WINZIP32 command exit code if

 REM appropriate.

 IF ERRORLEVEL 1 (

 CLS

 ECHO.

 ECHO.

 ECHO An exit code of %ERRORLEVEL% was reported. As a result, the Zip file

 ECHO was not created.

 ECHO.

 ECHO.

) ELSE (

 ECHO.

 ECHO.

 ECHO A Zip file containing all the scripts located in %ZipFileName% has been

 ECHO created in %ZipFileName%.

 ECHO.

 ECHO.

)

 PAUSE

GOTO :EOF

The script begins by setting up three variables. The first variable is called
InstallLocation. It is assigned a string representing the location of the folder where
WinZip has been installed on the computer. The second variable is named
ScriptFileLoc. It is assigned a string representing the folder where the scripts to be
added to the Zip file are located. The third variable is named ZipFileName. It is as-
signed a string representing the complete file and path name of the Zip file that
the script is to create.

A
p

p
e
n

d
i x

 A
W

in
d

o
w

s
 S

h
e
ll S

c
ri p

t in
g

 A
d

m
in

is
t ra

t i v
e
 S

c
ri p

ts
339

The script then makes three procedure calls before terminating its own execution.
The first procedure called is :UpdatePath. This procedure appends the location of
the WinZip folder to the end of the search path. This way, the Windows shell will
be able to locate the WINZIP32.EXE command. Next, the :DisplayWarning procedure is
called. This procedure displays a warning message that explains to the user what
the script is about to do. The script then waits until the user presses a key, at which
time the :CreateArchive procedure is finally called. This procedure executes the
WINZIP32.EXE command in minimized mode, telling it to create a new Zip file speci-
fied by ZipFilename and to add all the files specified by ScriptFileLoc to it. The proce-
dure then uses an IF ERRORLEVEL statement to check the value of the exit code re-
turned by the WINZIP32.EXE command to determine if an error occurred.

Once executed, the script creates a new Zip file containing all the .bat files that
were located in the C:\Scripts folder. Figure A.18 demonstrates how the Zip file
will look when later opened from the Windows desktop.

FIGURE A.18

Examining
the contents of

the Zip file created
by the Windows

shell script.

This page intentionally left blank

B

T
o become an expert Windows shell script programmer, you must spend plenty
of time writing new scripts. When first starting out, it helps a lot to have a
collection of sample scripts from which to begin working. If you created and

tested the sample scripts in this book as you read along, you should now have that
foundation. However, just in case there were a couple of scripts that you did not get
the chance to complete, I have provided copies of each script on the book’s CD-ROM.
This appendix provides a brief reference to each of the scripts that you will find.

In addition to the book’s scripts, you will find shareware copies of two excellent text
editors. I will provide you with a high-level overview of the capabilities and benefits
of each editor.

What’s on
the CD-ROM?

A P P E N D I X

342
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Windows Shell Scripting Examples

Table B.1 provides a quick overview of all the sample scripts found in this book
that you will also find on the accompanying CD-ROM.

TABLE B.1 SAMPLE SCRIPTS ON THE CD-ROM

Book Reference Script Description

Chapter 1 Knock-Knock Joke Demonstrates how to create a
script that tells the player a
joke interactively

Chapter 2 Unpredictable Command Prompt Demonstrates different
techniques for having fun while
manipulating the Windows
command prompt

Chapter 3 Fortune Teller Game Demonstrates how to create
an automated fortune teller
that answers the player’s every
question

Chapter 4 “The Story of Buzz the Wonder Dog” Demonstrates how to use
variable substitution to create
a customized story based on
player input

Chapter 5 Guess a Number Game Demonstrates how to use
conditional logic to create a
game in which the player is
prompted to guess a randomly
selected number in the least
possible number of guesses

Chapter 6 Six-Million-Dollar Quiz Demonstrates how to create
and administer a quiz and how
to write a report card file

Chapter 7 Rock, Paper, Scissors Demonstrates how to recreate
the popular children’s game,
“Rock, Paper, Scissors”

A
p

p
e
n

d
i x

 B
W

h
a

t ’s
 o

n
 t h

e
 C

D
-R

O
M

?
343

TABLE B.1 SAMPLE SCRIPTS ON THE CD-ROM (CONTINUED)

Book Reference Script Description

Chapter 8 Tic-Tac-Toe Game Demonstrates how to recreate
the popular game of
Tic-Tac-Toe

Appendix A Script Scheduler Demonstrates how to use the
AT command programmatically
to automate the execution of
other scripts

Appendix A Network Drive Connector Demonstrates how to map a
connection to a network drive
programmatically

Appendix A Network Drive Breaker Demonstrates how to
disconnect a network drive
connection programmatically

Appendix A Windows Service Manager Demonstrates how to stop and
start Windows services
programmatically

Appendix A User Account Manager Demonstrates how to create
new user accounts
programmatically

Appendix A Network Messenger Demonstrates how to send a
network message to another
logged-on user

Appendix A Printer Queue Manager Demonstrates how to automate
the administration of print jobs

Appendix A Local Network Share Manager Demonstrates how to automate
the administration of shared
drives and folders

Shell Scripting Editors

This book’s CD-ROM also contains two excellent editors. One is free and the other
is distributed as shareware, allowing you to work with it for 30 days before you
have to either purchase it or quit using it. Unless you already have a script editor
that you really like working with, or you are just stuck on using Windows Notepad,
I recommend that you take a few minutes to give each of these editors a test drive.

344
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Unlike Notepad, both of these editors allow you to open or create and work with
multiple files at the same time. This is an especially handy feature when you find
yourself cutting and pasting lines of code from one script to another.

JGsoft EditPad Lite

The JGsoft EditPad Lite text editor is designed to replace Windows Notepad. Unlike
NotePad, EditPad Lite allows you to open an unlimited number of files for editing
at the same time. Each open file is displayed with a tab, making it easy to switch
between files, as shown in Figure B.1.

First Script

Second Script

Third Script

FIGURE B.1

The JGsoft EditPad
Lite text editor

provides the ability
to work with

multiple scripts at
the same time.

EditPad Lite is distributed as freeware, which means that it is free for non-com-
mercial use. Its major features include

• Advanced search and replace over all open files

• Unlimited redo and undo

• Line and column numbering

• Indent and outdent options

• Optional word wrapping

• The ability to configure dozens of preferences that affect the editor’s operation

• Open any of the last 16 files using the Reopen menu

• Perform lowercase, uppercase, and invert case operations

• A print preview capability

A
p

p
e
n

d
i x

 B
W

h
a

t ’s
 o

n
 t h

e
 C

D
-R

O
M

?
345

To learn more about the JGsoft EditPad Lite text editor, visit www.editpadlite.com/

editpadlite.html.

JGsoft EditPad Pro

JGsoft’s EditPad Pro is a full-featured text editor that provides all the features found
in EditPad Lite plus many more. You can download a copy of EditPad Pro from
www.editpadpro.com/editpadpro.html, as shown in Figure B.2.

HINT

One of EditPad Pro’s best features is its ability to define a syntax color-coding scheme
for specific types of files like Windows shell script files. Once configured, the syn-
tax color-coding feature makes Windows shell scripts easier to work with by high-
lighting keywords in scripts using different colors. For example, all comments may
be displayed as red text, making them easier to find and modify. EditPad Pro comes
with a number of predefined syntax color-coding schemes that support many dif-
ferent file types. While it does not provide a default color-coding scheme for Win-
dows shell scripts, you can visit JGsoft’s Web site at www.editpadpro.com/cgi-bin/
cscslist.pl (as shown in Figure B.3) and download various predefined color schemes
for a host of different files types, including Windows shell scripts.

FIGURE B.2

Visiting the EditPad
Pro Web site.

346
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FIGURE B.3

By applying the
appropriate syntax

color-coding
scheme you can

turn EditPad Pro into
a Windows shell

script editor.

FIGURE B.4

Configuring EditPad
Pro to support
Windows shell

scripts.

EditPad Pro assists you in downloading and installing syntax color-coding schemes
on its Preferences dialog, as shown in Figure B.4. Here a scheme named MS-BATCH
Files (a term that is synonymous with Windows shell scripts) has been downloaded
and then selected from the Syntax Coloring drop-down list. The syntax color scheme
is then associated with all files that have a .bat or .cmd file extension.

Once one of the many available Windows shell script compatible color-coding schemes
is downloaded and installed, EditPad Pro can be used as a fully featured Windows
shell script editor, complete with syntax color coding (as shown in Figure B.5).

A
p

p
e
n

d
i x

 B
W

h
a

t ’s
 o

n
 t h

e
 C

D
-R

O
M

?
347

Other major features provided by EditPad Pro not found in EditPad Lite include

• Customizable syntax color-coding schemes

• The ability to perform file comparisons

• Spell checking

• The ability to organize and manage multiple scripts as a project

• The ability to bookmark specific lines within a file for later reference

• Support for up to 16 clipboards, allowing the simultaneous storage and
retrieval of multiple strings

For more information on the features provided by EditPad Lite and EditPad Pro,
check out JGsoft’s Web site.

FIGURE B.5

A syntax color-
coding scheme uses
font color, bold text,
and italics to help

make scripts easier
to read and
work with.

This page intentionally left blank

C

I
nstead of seeing this book as the end of your Windows shell scripting
education, you should think of it as the beginning. To become an accomplished
Windows shell script programmer, you will need to spend time developing and

honing your programming skills by writing and testing new scripts. You also need to
continue to read and learn more about Windows shell scripting. To help get you started,
I have put together a list of books and Web sites where you can go to learn more.

What Next?

A P P E N D I X

350
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Recommended Reading

Following is a collection of books that will help you further develop your Windows
shell script programming skills.

Microsoft Windows XP Professional Resource Kit Documentation

by Microsoft Corporation

ISBN: 0735614857, Microsoft Press, 2001

This book provides a collection of command line utilities for Windows XP. The
utility programs provided by this resource kit are essential tools for any system
administrator. Complete documentation for all these utilities is also provided.

Windows Shell Scripting and WSH Administrator’s Guide

by Jerry Lee Ford, Jr.

ISBN: 1931841268, Premier Press, 2001

The first half of this book provides additional coverage of Windows shell scripting.
This book will also give you a solid introduction to Microsoft’s other scripting
technology, the Windows Script Host, or WSH. This book serves as a great guide for
current or future system administrators, programmers, and power users, or for
beginner programmers who are ready to take that next step.

Windows 2000 Commands Pocket Reference

by Aeleen Frisch

ISBN: 0596001487, O’Reilly & Associates, 2001

This little guide provides documentation of the command line commands for
Windows 2000. The guide includes a review of Windows shell scripting statements,
making it a good resource for any Windows shell script programmer. Additionally,
this guide reviews the syntax of the command line utilities provided by the Win-
dows 2000 Resource Kit.

A
p

p
e
n

d
i x

 C
W

h
a
t N

e
x

t?
351

Windows NT Shell Scripting

by Tim Hill

ISBN: 1578700477, Que, 1998

Although this book does not cover recent enhancements to Windows shell script-
ing available in Windows 2000 and XP, it still provides a solid review of Windows
shell scripting.

Locating Internet Resources

Books are not the only source of information available to you for Windows shell
scripting. Perhaps the best source of free information is the Internet, where you
can find additional documentation and tons of free sample scripts. Following is a
list of Web sites where you can go to learn more.

www.labmice.net/scripting

The Scripting and Batch Programming Resources Web site (Figure C.1), provides
access to information on Windows shell scripting as well as other programming
languages. Here you will find a Windows command reference, a reference for Win-
dows Resource Kit commands and links to articles that provide all kinds of infor-
mation related to Windows shell scripting.

FIGURE C.1

Scripting resources
at www.labmice

.net/scripting/
default.htm.

352
W

in
d

o
w

s
 S

h
e
l l
 S

c
r i

p
t

P
ro

g
r a

m
m

i n
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

www.robvanderwoude.com

Another excellent resource is Rob van der Woude’s Scripting Pages Web site (Fig-
ure C.2). Here you will find plenty of Windows shell scripting examples. However,
the site states that its main objective is to help teach you how to create scripts. So
you can expect to find plenty of information on how scripting works. In addition,
you will find information about a number of other scripting languages.

FIGURE C.2

The Batch Files
page at www.

robvanderwoude
.com.

www.onesmartclick.com/programming/batch-files.html

Another excellent site is www.OneSmartClick.com (Figure C.3). This site is loaded
with links to articles where you will find all kinds of information related to Win-
dows shell scripting.

www.windowsshellscripting.com

This final recommended site (Figure C.4) is good for finding more information
about Windows shell scripting. You will find tutorials covering Windows shell script-
ing as well as sample scripts that you can download. In addition, this site features
an online discussion forum where you can post questions and receive answers from
other Windows shell script programmers.

A
p

p
e
n

d
i x

 C
W

h
a
t N

e
x

t?
353

FIGURE C.3

OneSmartClick
.com is loaded with
information links.

FIGURE C.4

www.
windowsshellscripting

.com offers
downloads and a
discussion forum.

This page intentionally left blank

Glossary

@. A Windows shell script command that suppresses the display of any statement
from the Windows command console.

@ECHO off. A Windows shell script statement that suppresses the display of all
statements within a script.

.bat. The file extension assigned to batch files, also known as Windows shell
script files.

.cmd. The file extension assigned to command files, also known as Windows
shell script files.

:EOF. A built-in Windows shell script function that simulates the end-of-file
marker, providing the ability to terminate procedures and scripts.

Application Event Log. A log file maintained by Windows NT, XP, 2000, and 2003
operating systems where application error messages are written.

Argument. An individual piece of data passed to a command, procedure, or
script at execution time.

Arithmetic Operators. Characters that you use to specify the type of mathematical
operation to perform within a script (+, -, *, /, and %).

Assignment Operators. Characters that you use when assigning values to
numeric variables using expressions (+=, -=, *=, /=, and %=).

ASSOC. A Windows command that displays or modifies file name extension
associations.

AT. A Windows command that provides the ability to view, create, and modify
scheduled tasks.

Batch Files. Files with a .bat file extension that contain Windows shell scripts.

CALL. A Windows shell command used to execute internal or external procedures
in which the calling script pauses and waits for the called script to finish execut-
ing before resuming its own execution.

CD (CHDIR). A Windows command used to change the current directory.

356
G

lo
s
s
a
ry

CHOICE.EXE. A Windows Resource Kit command that provides the ability to inter-
actively prompt the user for text input.

CLS. A Windows command that clears the Windows command console screen,
leaving only the command prompt visible.

COLOR. A Windows command that sets foreground and background colors in the
Windows command console.

Command Extensions. Modifications made to Windows shell commands since
the initial release of the Windows shell.

Command History. A list of previously executed commands that can be recalled
and executed by pressing F7 when using the Windows command console.

Command Prompt. Enables the Windows command console to accept text input
which is then passed to the operating system for processing.

Comments. Statements embedded within scripts that document the script with-
out affecting its execution. (See REM.)

Comparison Operators. Characters that you use to specify the type of compari-
son that you wish to perform when formulating IF statements (==, EQU, LSS, GTR,
LEQ, GEQ and NEQ).

Compound Commands. The execution of two or more commands using a collec-
tion of reserved characters (&, &&, ||, ()) that specify how and when commands
that follow the first command are to be executed.

Computername. An environment variable that stores the name assigned to the
local computer.

COMSPEC. An environment variable that identifies the location of the Windows
shell (e.g., CMD.EXE).

COPY. A Windows command that copies one or more files from one location to an-
other.

CMD. A Windows command that is used to open a new Windows shell session
within the current Windows command console.

CMDEXTVERSION. An environment variable that stores a string identifying the Win-
dows shell version number.

date. A variable that provides access to the current system date.

DATE. A Windows command that displays or modifies the system date.

G
l o

s
s
a
r y

357
Debug. A term used to refer to the processes involved in locating and fixing
errors within scripts and programs.

Defrag. A Windows command-line utility program that defragments files stored
on hard drives to reorganize disk space and improve disk performance by creat-
ing larger contiguous sections of free space.

Defragmenter. A graphical Windows utility that defragments files stored on
hard drives to reorganize disk space and improve disk performance by creating
larger contiguous sections of free space.

DEL. A Windows command that removes or deletes one or more files.

Delimiter. A marker (e.g., a space, comma, tab character, etc.) that identifies the
boundaries between individual pieces of data passed to commands, procedures,
or scripts.

DIR. A Windows command that displays the files and folders located in the
specified folder or directory.

Directory. A term that is synonymous with the terms folder and subfolder.

Dynamic Environment Variables. Environment variables generated by the
operating system that change over time.

ECHO. A Windows shell command that displays text and blank lines within the
Windows command console.

Endless Loop. A loop that never finishes processing and prevents a script from
completing its task.

ENDLOCAL. A Windows shell command that terminates variable localization by
restoring variables to their values as they existed before the preceding SETLOCAL
command was executed. (See SETLOCAL.)

Environment Variable. A variable defined and managed by the operating system.

ERASE. A Windows command that removes or deletes one or more specified files.

Error. A problem that occurs during the execution of a script.

ERRORLEVEL. A dynamically generated variable that contains a numeric value repre-
senting the exit code created by the previously executed command.

Execution Environment. The environment in which a script runs. For Windows
shell scripts, this is the Windows shell.

358
G

lo
s
s
a
ry

EXIT. A Windows command that terminates script execution and closes the
Windows command console. This command is also capable of returning an exit
code back to a calling command or script.

Exit Code. A numeric value returned by commands that indicates whether they
ran successfully or experienced an error. Also known as a Return Code.

Expression. A script statement that evaluates the value of variables.

External Command. A non-Windows shell script command stored as an execut-
able file on the computer’s hard drive. (See Internal Command.)

External Procedure. A Windows shell script that is called by another script.
(See Internal Procedure.)

Flowchart. A graphic outline that provides a high-level overview of the compo-
nents of a script and shows their relationship to one another.

FOR. A Windows shell command that executes one or more commands repeti-
tively to facilitate the processing of files, folders, command output, and scripts.

FTYPE. A Windows command that displays and modifies file types that are
 associated with file name extensions.

Global Variables. Variables that can be accessed from any location within a script.

GOTO. A Windows shell command that alters processing flow within a script by
transferring control to a line containing a specified label.

GUI (Graphical User Interface). The point-and-click graphical interface used to
control Windows operating systems and their applications.

HELP. A Windows command that provides command prompt access to additional
information regarding Windows commands.

IF. A Windows shell command that performs conditional processing and alters
the execution flow within the script based on tested results.

IF CMDEXTVERSION. A form of the IF statement that retrieves a numeric value
indicating the current version of the Windows shell.

IF DEFINED. A form of the IF statement that provides the ability to determine
whether a variable already exists.

IF...ELSE. A form of the IF statement that provides the ability to execute either of
two sets of commands based on the outcome of a conditional test

IF ERRORLEVEL. A form of the IF statement that provides the ability to check the
exit code of the previously executed command.

G
l o

s
s
a
r y

359
IF EXIST. A form of the IF statement that provides the ability to determine
whether a file or folder exists.

IF NOT. A form of the IF statement that provides the ability to perform a
conditional test and take an action based on a negative result.

Integrated Development Environment. An application that is used to facilitate
the development and debugging of other scripts or programs.

Internal Command. A command built into the Windows shell.
(See External Command.)

Internal Procedure. A procedure defined within the script that, when called,
executes and then returns control back to the statement that follows the
statement that called it. (See External Procedure.)

Iterate. The act of executing one or more commands repeatedly.

JScript. A Microsoft scripting language based on Netscape’s JavaScript
programming language.

Label. A marker placed inside Windows shell scripts to set up loops, subroutines,
and procedures.

Local Variables. Variables created within a procedure that cannot be accessed
outside of the procedure.

LOGEVENT.EXE. A Windows Resource Kit command line utility that can be used to
write messages to the Windows application event log.

Logical Error. An error created when the programmer tells the script to do
something other than what it was actually intended to do, such as adding two
numbers that really should have been subtracted.

Loop. A collection of statements that are executed repeatedly.

MD (MKDIR). A Windows command that creates a new subdirectory or subfolder.

Modifiers. Parameters that can be used to change the behavior of a command’s
switches.

MOVE. A Windows command that moves one or more files from one location
to another.

Multi-line IF Statement. A form of the IF statement that allows programmers to
embed more than one statement inside IF statements.

Mutually Exclusive. A term that refers to situations in which only one of a col-
lection of options can be selected.

360
G

lo
s
s
a
ry

Nested IF Statement. One or more IF statements within another IF statement.

NET CONTINUE. A Windows command that reactivates a suspended service.

NET GROUP. A Windows command that modifies membership of global groups.

NET LOCALGROUP. A Windows command that modifies membership of local groups.

NET PAUSE. A Windows command that suspends the execution of a service.

NET START. A Windows command used to start services.

NET SEND. A Windows command used to send text messages to other network us-
ers or computers that will be displayed in the form of a graphical pop-up dialog.

NET STOP. A Windows command that terminates the execution of a service.

NET USE. A Windows command that provides the ability to establish connections
to network drivers, folders, and printers.

NET USER. A Windows command that provides the ability to programmatically
create new user accounts.

Order of Precedence. A term that refers to the order in which the Windows shell
performs different types of mathematical operations when evaluating expressions.

OS. An environment variable that identifies the currently running Windows
operating system.

Parameter. One or more arguments to be passed to commands, procedures,
or scripts for processing.

Parsing. The act of extracting a portion of a string.

path. An environment variable that specifies which folders are to be searched
when looking for a command in which the user has not specified the location
of the command.

PATH. A Windows command that provides the ability to modify the path variable
for the duration of the execution of a Windows shell session.

pathext. An environment variable that identifies a list of file extensions
representing executable programs.

PAUSE. A Windows shell command that halts script execution until the user
presses a key.

Perl (Practical Extraction and Reporting Language). A scripting language
originally made popular by its use on UNIX operating systems.

G
l o

s
s
a
r y

361
Pipe. The redirection of one command’s output to another command.
This output is then processed by the second command as input.

Pixel. The smallest area on the display screen that a computer can display or print.

POPD. Changes the current folder to the folder stored by a corresponding PUSHD
command. (See PUSHD.)

Procedure. A collection of statements that can be executed as a unit. Procedures
are used to switch processing control from one portion of a script to another
section and then back again when the procedure finishes executing.

Procedure Variable. A variable that has been localized within a procedure, prohib-
iting other parts of the script from accessing the variable. (See Script Variable.)

PROMPT. A Windows command that is used to modify the format of the Windows
command prompt.

Pseudo Code. A rough, English-like outline of the logic used in all or part of a script.

PUSHD. Changes the current working directory to the specified folder and stores
the previous folder for later reference by the POPD command. (See POPD.)

Python. A scripting language with a UNIX heritage that is named after the come-
dic troupe Monty Python.

random. An environment variable that returns a randomly generated number
between 1 and 32,767.

RD (RMDIR). A Windows command that removes or deletes a specified folder.

Recursive. The process a script goes through when it reinitiates its own execu-
tion or the execution of a specific collection of statements.

Redirection. The altering of a command’s input or output from its default source.

REG. A Windows Resource Kit command line utility that provides the ability to
access and change information stored in the Windows registry.

Registry. A specialized database used by Windows computers to store information
about users, hardware, software, and operating system configuration settings.

REM. A Windows shell command that provides the ability to add comments to a script.

REN (RENAME). A Windows command that renames a file or folder.

Return Code. A numeric value returned by commands and external procedures
indicating whether they ran successfully or terminated with an error. Also
known as an Exit Code.

362
G

lo
s
s
a
ry

REXX (Restructured Extended Extractor language). A scripting language developed
originally for execution on mainframe computers and later ported over to Windows.

Run-Time Error. A type of error that occurs when a script attempts to perform
an illegal action, such as referencing a non-existing disk drive. (Also known as an
Execution Error.)

Scheduled Task Folder. A folder in which Windows operating systems store and
manage scheduled tasks.

Scheduled Task Wizard. A graphical interface that assists in the creation of
scheduled tasks.

Script. An executable text file made up of one of more scripting language statements.

Script Editor. A specialized text editor that facilitates the development of scripts
by providing features such as statement color coding and line numbering.

Script Variable. A variable created during the execution of a Windows shell script
that can be accessed from any location within the script. (See Procedure Variable.)

SET. A Windows shell command that provides the ability to collect and assign val-
ues to variables.

SETLOCAL. A Windows shell command that records the current values assigned to
environment variables in the Windows shell, allowing them to later be restored
by the ENDLOCAL command. (See ENDLOCAL.)

SHIFT. A Windows shell command that alters the position of script parameters in
order to allow Windows shell scripts to access more than nine script input pa-
rameters.

Shortcut. A graphical link to an application or resource (often placed on the
Windows desktop).

SORT. A Windows shell command that sorts data provided to it as input and sends
the result to standard output.

Standard Error. The default location where the Windows shell sends all error
messages. (By default, this is the Windows command console.)

Standard Input. The location where the Windows shell looks for command
input. (By default, this is the computer’s keyboard.)

Standard Output. The default location where the Windows shell sends all
output. (By default, this is the Windows command console.)

G
l o

s
s
a
r y

363
START. A Windows shell command that starts a new Windows shell session by
opening a new Windows command console.

Statement. A line of code in a script or program.

String Substitution. The search for and replacement of a portion of text
within a string.

Subdirectory. Another term that refers to folders and subfolders.

Subroutine. A collection of statements that scripts jump to and continue pro-
cessing. Unlike procedures, subroutines do not return processing control back to
the statement that follows the statement that executed the subroutine.

Substring. A portion of text extracted from a text string.

Switch. An optional control that modifies the way in which a command is processed.

Syntax. A set of rules that outline the format in which commands must be
formulated for execution.

Syntax Error. A type of error that occurs when programmers fail to follow the
syntax rules that govern the formatting of commands.

systemroot. An environment variable that specifies the location of the Windows
system root folders.

TEMP. An environment variable that identifies the name of a folder that can be
used by applications for temporary storage.

time. An environment variable that stores a string representing the current
system time.

TIME. A Windows shell command that displays and modifies the system time.

TITLE. A Windows shell command that modifies the text displayed in the
Windows command console’s title bar.

Token. A representation of a piece of data located in a text string.

TMP. An environment variable that identifies the name of a folder that can be
used by applications for temporary storage.

Tracing. The process of tracking either script execution flow or variable values
during the execution of a script.

TYPE. A Windows command that displays the contents of files by sending their
output to standard output.

364
G

lo
s
s
a
ry

username. An environment variable that stores the username of the currently
logged on user.

Variable. A reference to a location in the computer’s memory where the script
stores a value.

Variable Tunneling. A technique used to pass procedure variables and their
 values out of procedures where variable localization has been implemented.

VBScript. A WSH supported scripting language that consists of a subset of the
Visual Basic programming language.

VER. A Windows shell command that displays the Windows version number.

Wild Card. A special character (either * or ?) that can be used to create matches
among files based on a pattern.

WINDIR. An environment variable that identifies the folder where Windows
system files are stored.

Windows Command Console. A window through which a new Windows shell
session can be accessed via the command prompt.

Windows Registry. A special built-in database that is a part of all Windows
operating systems, starting with Windows 95, where configuration information
is stored regarding system, application, hardware, and users settings.

Windows Shell. A text-based interface to the Windows operating system that
provides access to text-based commands and utilities.

Windows Shell Scripting. A built-in scripting language available on Windows NT,
XP, 2000, and 2003 that features a complete set of programming statements, thus
allowing for the development of scripts that include support for conditional logic,
iterative logic, and the storage and retrieval of data via computer memory.

Working Directory. A reference to the Windows folder on which the Windows
command console is currently focused.

WSH (Windows Script Host). An alternative scripting environment available on
all Windows operating systems starting with Windows 95.

WSH Object Model. A collection of objects provided by the Windows Script Host
that provides access to system resources such as printers and drives.

Index

A
/A switch

CMD command, 30
SET command, 100

About screen, creating, 179–180
access

access limits, variables, 99–100, 216–217
insufficient authority, 261

accessing
environment variables, 94–95
Windows shell, 10

account administration, 305–311
administration, account, 305–311
append operator, redirection, 67
application event log, Windows, 8
applications, third-party, 334–339
archive-management program, 334
arguments

B, COLOR command, 42
with blank lines, 93
defined, 90
F, COLOR command, 42
formatting rules, 29
large numbers of, 92
modifiers, 28
parameters, 28
PROMPT command, list of, 40
rules for, 262
switches, 28

arithmetic operators, 102
assignment operators, 101
ASSOC command, 34
AT command, script execution, 315–319

B
B argument, COLOR command, 42
background colors, 42
.bat file extension, 4–5
batch files, 4–5
blank lines, 18, 21, 93
bold text, 45
built-in commands, list of, 34–35
Buzz the Wonder Dog game example

assembled script, 111–121
command console, configuring, 105
game design, 105
project preview, 88–89
reader instructions, 107
story elements, 108–109
variable substitution, 109–111
welcome screen, 106

C
/C switch, CMD command, 30–31
CALL command

overview, 34
syntax, 212

case-sensitivity
commands, 29, 262
labels, 204
FOR loop, 160

CD command, 34
chat-like scripts, 324–330
CHDIR command, 34
Close command, 14
closing windows, 14
CLS command, 18

overview, 34
syntax, 42
Unpredictable Command Prompt game

example, 49

366

I n
d

e
x

CMD command, 11
examples of, 31
opening sessions using, 29–30
switches, list of, 30
syntax, 28

.cmd file extension, 5
code examples. See game examples
collections

for files, processing, 164–166
for folders, processing, 166–168

color-coding, statements, 13
COLOR command, 18

B argument, 42
F argument, 42
overview, 34
syntax, 42
Unpredictable Command Prompt game

example, 51
colors

background, 42
foreground, 26, 42
Windows command console, 32

Colors tab (Command Prompt Properties
dialog box), 47

comma-delimited text files, 169
command console, Windows, 11
Command History option (Command

Prompt Properties dialog box), 45
command prompt, 2
Command Prompt Properties dialog box

Colors tab, 47
Font tab, 45
Layout tab, 46
Options tab, 44–45
overview, 16

commands
arguments

with blank lines, 93
defined, 90
formatting rules, 29
large numbers of, 92
modifiers, 28
parameters, 28
switches, 28

ASSOC, 34
AT, script execution, 315–319
built-in, list of, 34–35

CALL
overview, 34
syntax, 212

case-sensitivity, 29, 262
CD, 34
Close, 14
CLS, 18

overview, 34
syntax, 42
Unpredictable Command Prompt game

example, 49
CMD, 11

examples of, 31
opening sessions using, 29–30
switches, list of, 30
syntax, 28

COLOR, 18
B argument, 42
F argument, 42
overview, 34
syntax, 42
Unpredictable Command Prompt game

example, 51
command line extensions, 31
compound, 69–70
COPY, 34
DATE, 34
DEL, 34
DIR, 12

overview, 34
redirection, 67

ECHO
overview, 34
syntax, 42
username variable, 51

ENDLOCAL
overview, 34
variable access limits, 99–100, 216–217

ERASE, 34
executing, 28, 36
EXIT

external procedures, 260
overview, 34
syntax, 259

File, 17
FOR

case-sensitivity, 160

In
d

e
x

367
collections, 159
files, processing, 164–166
folders, processing, 166–168
iterating predefined number of times,

172–174
looping through command output,

162–164
looping through string contents,

160–161
overview, 34, 158
parsing options, 160
switches supported by, 159
syntax, 159
text files, reading, 169–171

format of, 27
formatting rules, 29
FTYPE, 34
GOTO

overview, 34
:ProcessFiles subroutine, 205

grouping, 70
IF, 34
internal versus external, 34
MD, 35
MKDIR

compound commands, 69
overview, 35

MOVE, 35
mutually exclusive, 29
naming, 38
NET ACCOUNTS, 305
NET GROUP, 305
NET LOCALGROUP, 305
NET USE, 216, 298
NET USER, 305
PATH

overview, 35
path variable, 36–37
pathtext variable, 38
syntax, 36

PAUSE
Fortune Teller game example, 73–74
overview, 35

POPD, 35
PROMPT

arguments, list of, 40

overview, 35
syntax, 41

PUSHD, 35
RD, 35
REM

overview, 35
syntax, 60

REN, 35
RENAME, 35
RMDIR, 35
Save, 14, 17
SET

/A switch, 100
/p option, 19, 94
DELIM parameter, 163
numeric values, 94
overview, 35
syntax, 93
Unpredictable Command Prompt game

example, 49
variable values, changing, 98

SETLOCAL
overview, 35
variable access limits, 99–100, 216–217

SHIFT
arguments, large numbers of, 92
overview, 35

SORT, 66
START

opening sessions using, 29–30
overview, 35
parameters, list of, 33
syntax, 32

syntax, viewing, 28
text-based, 27, 174–175
TIME, 35
TITLE

Fortune Teller game example, 72
overview, 35
syntax, 39
Unpredictable Command Prompt game

example, 50
TYPE

error logs, 68
input/output, redirection, 65–66
overview, 35

VER, 35

368

I n
d

e
x

comments, adding to scripts, 60–61
comparison operators, 142
compound commands, 69–70
compression utilities, 334–339
COMSPEC environment variable, 95
conditional logic, 5
console. See Windows command console
COPY command, 34
Create Shortcut wizard, 15
creating shortcuts, 15
current working directory, 12
Cursor Size option (Command Prompt

Properties dialog box), 45
customizing Windows command console

color settings, 47
font settings, 45
options settings, configuring, 44–45

D
/D switch, CMD command, 30
data

passing to scripts, 90–91
procedures, 217–218

DATE command, 34
date of tasks, scheduling, 322
defragmentation, disk, 312–315
Defragmenter utility, 6
DEL command, 34
DELIM parameter, SET command, 163
delimiters, defined, 90
dialog boxes

Command Prompt Properties, 16
Colors tab, 47
Font tab, 45
Layout tab, 46
Options tab, 44–45

Run, 29
Save As, 14, 17

DIR command, 12
overview, 34
redirection, 67

directories, current working directory, 12
disk defragmentation, 312–315
Display Options option (Command Prompt

Properties dialog box), 45

displays, cluttered, 18
.doc file extension, 165
documentation, error handling, 251
dynamic environment variables, 97

E
ECHO command

overview, 34
syntax, 42
username variable, 51

ECHO statement, 18, 21
Edit Options option (Command Prompt

Properties dialog box), 45
editors

GUI-based, 13
JGsoft EditPad Lite, 344
JGsoft EditPad Pro, 345–347

EditPad Lite text-editor, 344
EditPad Pro text-editor, 345–347
education, error handling, 250–251
ELSE keyword, IF...ELSE statement, 129
end of file (:EOF), 205
endless loops, 263
ENDLOCAL command

overview, 34
variable access limits, 99–100, 216–217

environment variables
accessing, 94–95
creating, 95
defined, 93
dynamic, 97
system environment variables, 94
user environment variables, 94
viewing, 96–97

:EOF (end of file), 205
EQU comparison operator, 142
ERASE command, 34
errors

error handling
command error checking, 254–256
documentation, 251
files/folders, 263
graphical pop-up dialogs, error display,

258–259
insufficient authority, 261

In
d

e
x

369
logging messages, 256–257
logic flow, tracing, 251–254
user education, 250–251
user-friendly error messages, creating,

257–258
error logs, creating, 68
execution, 245
IF ERRORLEVEL statement, 131–132
logical

common types, 249–250
defined, 246

messages, execution, 20
run-time, 131

common types, 249
defined, 245

syntax, 131
common types, 246–248
defined, 245

event logs, 8
example code. See game examples
execution

AT command, 315–319
commands, 28, 36

execution environment, WSH, 7
execution errors, 245
exit code, 131
EXIT command

external procedures, 260
overview, 34
syntax, 259

external procedures
creating, 212–216
defined, 208

external versus internal commands, 34

F
F argument, COLOR command, 42
File command, 14, 17
files

batch, 4–5
collections for, processing, 164–166
error handling, 263
extensions

.bat, 4–5

.cmd, 5

.doc, 165
searching, 133–136
text files, reading, 169–171

folders
collections for, processing, 166–168
error handling, 263
LogFiles, 67
searching, 133–136

Font tab (Command Prompt Properties
dialog box), 45

FOR command
case-sensitivity, 160
collections, 159
files, processing, 164–166
folders, processing, 166–168
iterating predefined number of times,

172–174
looping

through command output, 162–164
through string contents, 160–161

overview, 34, 158
parsing options, 160
switches supported by, 159
syntax, 159
text files, reading, 169–171

foreground colors, 26, 42
formatting rules, commands, 29
Fortune Teller game example

assembled script, 79–85
execution environment, 71–72
exit process, 77
game design, 71
game replay, 79
player’s questions, 74–76
predictions, 78
project preview, 58–59
random answers, 77–78
story line, 73–74
welcome screen, 72–73

FTYPE command, 34

370

I n
d

e
x

G
game examples

Buzz the Wonder Dog game example
assembled script, 111–121
command console, configuring, 105
game design, 105
project preview, 88–89
reader instructions, 107
story elements, 108–109
variable substitution, 109–111
welcome screen, 106

Fortune Teller
assembled script, 79–85
execution environment, 71–72
exit process, 77
game design, 71
game replay, 79
player’s questions, 74–76
predictions, 78
project preview, 58–59
random answers, 77–78
story line, 73–74
welcome screen, 72–73

Guess a Number
assembled script, 149–153
correct guess, determining, 146–147
execution environment, 143–144
game design, 143
game results, 147–148
player input, 145–146
project preview, 124–125
welcome screen, 144–145

Knock Knock joke
assembled script, 22–24
display of, formatting, 18–19
execution environment, 18
player input, validating, 19–20
player responses, collecting, 19
preview, 2–3
punch line, displaying, 21
script development process, 17

Rock, Paper, Scissors
assembled script, 230–239
CheckForInvalid procedure, 227–228
CollectChoice procedure, 224

CompareChoices procedure, 225–227
DisplayMenu procedure, 223–224
DisplayResults procedure, 228–229
DisplayStats procedure, 229–230
flowcharts, as script development tool,

218–220
GetComputerChoice procedure, 224–225
Initialization section, 221
Main Processing section, 222
project preview, 202–203

Six Million Dollar quiz
About screen, 179–180
assembled script, 184–199
execution environment, 176
game design, 175–176
game play, managing, 180–181
game results, displaying, 183–184
help screens, 178–179
menu selections, 177–178
player results, grading, 182
project preview, 156–157
pseudo code, 174–175
quiz results, recording, 183
score card report, 181–182
welcome screen and main menu,

176–177
Tic-Tac-Toe

About procedure, 271
assembled script, 280–294
board design, 268–269
game control activity, 271–274
game design, 264–265
game over, 279–280
game results, 278
help procedure, 270
initialization tasks, 265–266
InitializeBlanks procedure, 267
Main Processing section, 266–267
player moves, 277–278
project preview, 242–244
valid player selections, 274–277
welcome screen, 268

Unpredictable Command Prompt
assembled script, 54
colors, foreground and background, 51

In
d

e
x

371
game design, 48–49
project preview, 26
random number selection, 49–50
title bar, 50
user, greeting, 51
Windows command console, clearing, 50

GEQ comparison operator, 142
GOTO command

overview, 34
:ProcessFiles subroutine, 205

graphical interface, 330–334
graphical pop-up dialogs, error handling,

258–259
grouping commands, 70
GTR comparison operator, 142
Guess A Number game example

assembled script, 149–153
correct guess, determining, 146–147
execution environment, 143–144
game design, 143
game results, 147–148
player input, 145–146
project preview, 124–125
welcome screen, 144–145

GUI-based editors, 13

H
Height setting controls, screen buffer size, 46
hello.bat script, 15
help label, 178–179

I
IF CMDEXTVERSION statement, 132–133
IF command, 34
IF ERRORLEVEL statement, 131–132
IF EXIST statement, 134–136
IF NOT CMDEXTVERSION statement, 138
IF NOT DEFINED statement, 137–138
IF NOT ERRORLEVEL statement, 138
IF NOT EXIST statement, 139
IF NOT statement, 136–137
IF statement

multi-line, 139–140
nested, 140–141
overview, 127–128

syntax, 126
types of, 126

IF...Else statement, 129
indentation, 261
input

redirection, 63–65
standard input, 64

insufficient authority, error handling, 261
interface, graphical, 330–334
internal procedures

defined, 208
setting up, 208–211

internal versus external commands, 34
Internet resources, 351–353
italics, arguments in, 29
iterative logic, defined, 5
iterator variables, 159

J
JGsoft EditPad Lite text-editor, 344
JGsoft EditPad Pro text-editor, 345–347
JScript scripting language, 9

K
/K switch, CMD command, 30–31
Knock Knock game example

assembled script, 22–24
display of, formatting, 18–19
execution environment, 18
player input, validating, 19–20
player responses, collecting, 19
project preview, 2–3
punch line, displaying, 21
script development process, 17

L
labels, 204
Layout tab (Command Prompt Properties

dialog box), 46
LEQ comparison operator, 142
lines, blank lines, 18, 21, 93
LogFiles folder, 67
logging error messages, 256–257
logic, conditional and iterative, 5
logic flow, error handling, 251–254

372

I n
d

e
x

logical errors
common types, 249–250
defined, 246

looping
through command output, 162–164
through string contents, 160–161

loops. See also commands
defined, 75
endless, 263
precautions with, 263–264

LSS comparison operator, 142

M
mapped-network drives, 298
mathematical variables, 100–102
MD command, 35
menus

creating, 176–177
selections, 177–178
text-based, 174–175

Microsoft Windows XP Professional
Resource Kit Documentation, 350

MIN parameter, START command, 33
MKDIR command

compound commands, 69
overview, 35

modifiers, defined, 28
MOVE command, 35
mutually exclusive commands, 29

N
naming

commands, 38
variables, 98–99

NEQ comparison operator, 142
nested IF statements, 140–141
NET ACCOUNTS command, 305
NET GROUP command, 305
NET LOCALGROUP command, 305
NET USE command, 216, 298
NET USER command, 305
network drives, 298–303
NOT keyword, IF NOT statement, 136–137
Notepad, 13

O
OneSmartClick.com Web site, 352
operators

append, redirection, 67
arithmetic, 102
assignment, 101
comparison, 142
compound commands, 69
redirection, 65

Options tab (Command Prompt Properties
dialog box), 44–45

OS environment variable, 95
output

command output, looping through, 162–164
redirection, 64–65
standard, 64

P
/p option, SET command, 19, 94
parameters

defined, 28
shell scripts, 91
START command, list of, 33
TOKENS, 169

parsing options, FOR command, 160
passwords, scheduling tasks, 323
PATH command

overview, 35
path variable, 36–37
pathtext variable, 38
syntax, 36

PATH environment variable, 95
path variable, PATH command, 36–37
PATHTEXT environment variable, 95
pathtext variable, PATH command, 38
PAUSE command

Fortune Teller game example, 73–74
overview, 35

Perl scripting language, 10
pop-up dialogs, error handling, 258–259
POPD command, 35
procedures

external
creating, 212–216
defined, 208

In
d

e
x

373
internal

defined, 208
setting up, 208–211

precautions with, 264
tunneling data out of, 217–218
variable access, localizing, 216–217

:ProcessFiles subroutine, 205
PROMPT command

arguments, list of, 40
overview, 35
syntax, 41

pseudo code, 174–175
PUSHD command, 35
Python scripting language, 10

Q
/Q switch, CMD command, 30
quotation marks, 2

R
random values, 49–50
RD command, 35
reading text files, 169–171
redirection

append operator, 67
input/output, 64–65
input sources, 63–64
operators, 65
SORT command, 66

registry, Windows, 8
REM command

overview, 35
syntax, 60

REN command, 35
RENAME command, 35
reply variable, 19–20
reports, creating, 66–68
resources

Internet, 351–353
recommended readings, 350–351

return code, 131
REXX scripting language, 10
RMDIR command, 35
Rob van der Woude’s Scripting Pages Web

site, 352

Rock, Paper, Scissors game example
assembled script, 230–239
CheckForInvalid procedure, 227–228
CollectChoice procedure, 224
CompareChoices procedure, 225–227
DisplayMenu procedure, 223–224
DisplayResults procedure, 228–229
DisplayStats procedure, 229–230
flowcharts, as script development tool,

218–220
GetComputerChoice procedure, 224–225
Initialization section, 221
Main Processing section, 222
project preview, 202–203

Run dialog box, 29
run-time errors, 131

common types, 249
defined, 245

S
/S switch, CMD command, 30
Save As dialog box, 14, 17
Save command, 14, 17
Scheduled Task Wizard, 320–324
scheduled tasks, 320–324
script variables, 93
Scripting and Batch Programming

Resources Web site, 351
scripting languages

JScript, 9
Perl, 10
Python, 10
REXX, 10
third-party, 10
VBScript, 9

scripts. See also game examples; shell
scripts

hello.bat, 15
passing data to, 90–91
self-contained, 90
storing, 15

searching files/folders, 133–136
self-contained scripts, 90
semi-colon characters, 37
sessions, starting, 29–30

374

I n
d

e
x

SET command
/A switch, 100
/p option, 19, 94
DELIM parameter, 163
numeric values, 94
overview, 35
syntax, 93
Unpredictable Command Prompt game

example, 49
variable values, changing, 98

SETLOCAL command
overview, 35
variable access limits, 99–100, 216–217

shared network drives, 298–303
shell, Windows

accessing, 10
overview, 11
sending commands to, 12

shell scripts
alternatives to, 7–10
parameters, 91
supported operating systems, 7
uses for, 6–7

SHIFT command
arguments, large numbers of, 92
overview, 35

shortcuts, creating, 15
sites, resources, 351
Six Million Dollar quiz game example

About screen, 179–180
assembled script, 184–199
execution environment, 176
game design, 175–176
game play, managing, 180–181
game results, displaying, 183–184
help screen, 178–179
menu selections, 177–178
player results, grading, 182
project preview, 156–157
pseudo code, 174–175
quiz results, recording, 183
score card report, 181–182
welcome screen and main menu, 176–177

sizing Windows command console, 46

SORT command, 66
space-delimited text files, 169
spaces, formatting rules, 29
standard input, 64
standard output, 64
START command

opening sessions using, 29–30
overview, 35
parameters, list of, 33
syntax, 32

starting
scheduled task services, 321
sessions, 29–30

statements
color-coding, 13
defined, 5
ECHO, 18, 21
IF

multi-line, 139–140
nested, 140–141
overview, 127–128
syntax, 126
types of, 126

IF CMDEXTVERSION, 132–133
IF ERRORLEVEL, 131–132
IF EXIST, 134–136
IF NOT, 136–137
IF NOT CMDEXTVERSION, 138
IF NOT DEFINED, 137–138
IF NOT ERRORLEVEL, 138
IF NOT EXIST, 139
IF...Else, 129

storing scripts, 15
string substitution, 103
strings

contents, looping through, 160–161
extracting portions of, 104–105
replacing portions of, 103–104
substrings, 76

subroutines
creating, 204–207
defined, 204

substring operation, 103
substrings, 76

In
d

e
x

375
switches

CMD command, list of, 30
defined, 28
FOR loop, 159

syntax
CALL command, 212
CLS command, 42
CMD command, 28
COLOR command, 42
FOR command, 159
ECHO command, 42
EXIT command, 259
IF statement, 126
PATH command, 36
PROMPT command, 41
REM command, 60
SET command, 93
START command, 32
TITLE command, 39
viewing, 28

syntax errors, 131
common types, 246–248
defined, 245

system environment variables, 94

T
/T switch, CMD command, 30–31
tab-delimited text files, 169
tasks, scheduled, 320–324
TEMP environment variable, 95
templates, creating, 61–63
text-based commands, 27, 174–175
text editors. See editors
text files, reading, 169–171
third-party applications, 334–339
third-party scripting language, 10
Tic-Tac-Toe game example

About procedure, 271
assembled script, 280–294
board design, 268–269
game control activity, 271–274
game design, 264–265
game over, 279–280
game results, 278
help procedure, 270

initialization tasks, 265–266
InitializeBlanks procedure, 267
Main Processing section, 266–267
player moves, 277–278
project preview, 242–244
valid player selections, 274–277
welcome screen, 268

tilde (~), 104
TIME command, 35
time of tasks, scheduling, 322
TITLE command

Fortune Teller game example, 72
overview, 35
syntax, 39
Unpredictable Command Prompt game

example, 50
Title command, 18
TOKENS parameter, 169
tracing logic flow, 251–254
tunneling, variable, 218
TYPE command

error logs, 68
input/output, redirection, 65–66
overview, 35

U
/U switch, CMD command, 30
UNC (Universal Naming Convention), 298
underscored (_), 11
Universal Naming Convention (UNC), 298
Unpredictable Command Prompt game

example
assemble script, 54
colors, foreground and background, 51
game design, 48–49
project preview, 26
random number selection, 49–50
title bar, 50
user, greeting, 51
Windows command console, clearing, 50

user account administration, 305–311
user education, error handling, 250–251
username variable, ECHO command, 51
utilities, Defragmenter, 6

V
variables

access, localizing, 216–217
access limits, 99–100
defined, 19, 93
environment

accessing, 94–95
creating, 95
defined, 93
dynamic, 97
system environment variables, 94
user environment variables, 94
viewing, 96–97

iterator, 159
mathematical, 100–102
naming, 98–99
path, PATH command, 36–37
pathtext, PATH command, 38
reply, 19–20
rules for, 262
script, defined, 93
string substitution, 103
substring operation, 103
tunneling, 218
username, ECHO command, 51
values, changing, 98

VBScript scripting language, 9
VER command, 35
viewing

environment variables, 94–97
syntax, 28

W
Web sites, resources, 351
Width setting controls, screen buffer size, 46
wild card characters, 165
WINDIR environment variable, 95
Windows

application event log, 8
command prompt, 2

current working directory, 12
registry, 8
shell scripts

alternatives to, 7–10
supported operating systems, 7
uses for, 6–7

windows, closing, 14
Windows 2000 Commands Pocket

Reference, 350
Windows command console, 11

color options, 32
customization options

color settings, 47
font settings, 45
options settings, configuring, 44–45

sizing, 46
Windows NT Shell Scripting, 351
Windows Resource Kits, 8
Windows Script Host (WSH)

advantages/disadvantages, 8–9
complexities, 9–10
execution environment, 7

Windows shell
accessing, 10
overview, 11
sending commands to, 12

Windows Shell Scripting and WSH
Administrator’s Guide, 350

windowsshellscripting.com Web site,
352–353

WinZip compression, 334–339
wizards

Create Shortcut, 15
Scheduled Task, 320–324

WSH (Windows Script Host)
advantages/disadvantages, 8–9
complexities, 9–10
execution environment, 7

376

I n
d

e
x

Let’s face it.
C++, JavaScript, and

Java can be a little

intimidating. That’s why

Premier Press has deve-

loped the for theabsolute

beginner series—a fun,

non-intimidating intro-

duction to the world of

programming. Each book in

this series teaches a specific programming

language using simple game programming

as a teaching aid. If you are new to program-

ming, want to learn, and want to have fun,

then Premier Press’s for the absolute beginner

series is just what you’ve been waiting for!

Call now to order

ASP Programming
for the Absolute Beginner
ISBN 0-7615-3620-5

C Programming
for the Absolute Beginner
ISBN 1-931841-52-7

C++® Programming
for the Absolute Beginner
ISBN 0-7615-3523-3

Excel VBA Programming
for the Absolute Beginner
ISBN 1-931841-04-7

Java™ Programming
for the Absolute Beginner
ISBN 0-7615-3522-5

JavaScript™ Programming
for the Absolute Beginner
ISBN 0-7615-3410-5

Microsoft® Access VBA Programming
for the Absolute Beginner
ISBN 1-59200-039-8

Microsoft® C# Programming
for the Absolute Beginner
ISBN 1-931841-16-0

Microsoft® Visual Basic® .NET
Programming for the Absolute Beginner
ISBN 1-59200-002-9

Palm™ Programming
for the Absolute Beginner
ISBN 0-7615-3524-1

™

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions.
If, upon reading the following license agreement and notice of limited warranty, you cannot agree
to the terms and conditions set forth, return the unused book with unopened disc to the place
where you purchased it for a refund.

License:

The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You
are licensed to copy the software onto a single computer for use by a single user and to a backup
disc. You may not reproduce, make copies, or distribute copies or rent or lease the software in
whole or in part, except with written permission of the copyright holder(s). You may transfer the
enclosed disc only together with this license, and only if you destroy all other copies of the soft-
ware and the transferee agrees to the terms of the license. You may not decompile, reverse as-
semble, or reverse engineer the software.

Notice of Limited Warranty:

The enclosed disc is warranted by Premier Press to be free of physical defects in materials and
workmanship for a period of sixty (60) days from end user’s purchase of the book/disc combina-
tion. During the sixty-day term of the limited warranty, Premier Press will provide a replacement
disc upon the return of a defective disc.

Limited Liability:

THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY OF RE-
PLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PREMIER PRESS OR THE AUTHORS BE
LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE
FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS IN-
TERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUEN-
TIAL DAMAGES THAT MAY ARISE, EVEN IF PREMIER AND/OR THE AUTHORS HAVE PREVIOUSLY
BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:

PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES, EI-
THER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A
PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR
EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAM-
AGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:

This Agreement is governed by the laws of the State of Indiana without regard to choice of law
principles. The United Convention of Contracts for the International Sale of Goods is specifically
disclaimed. This Agreement constitutes the entire agreement between you and Premier Press re-
garding use of the software.

	Microsoft Windows Shell Script Programming for the Absolute Beginner
	Cover

	Contents
	Introduction
	Chapter 1 Introducing Windows Shell Scripting
	Project Preview: The Knock Knock Joke
	Overview of Windows Shell Scripting
	What Can Shell Scripts Do?
	Supported Microsoft Operating Systems

	Alternatives to Windows Shell Scripting
	The Windows Script Host
	Third-Party Scripting Languages

	Understanding the Windows Shell
	Assembling Your First Windows Shell Script
	Creating a Scripting Environment
	Back to the Knock Knock Joke
	Designing the Game
	The Final Result

	Summary

	Chapter 2 Interacting with the Windows Shell
	Project Preview: The Unpredictable Command Prompt
	Command Shell Command Syntax
	Starting Windows Shell Sessions
	Working with the CMD Command
	Working with the START Command

	Internal vs. External Commands
	How Windows Locates Commands
	Using the PATH Command
	Other Useful Windows Commands

	Customizing the Windows Command Console
	Customization Options

	Back to the Unpredictable Command Prompt
	Designing the Game
	The Final Result

	Summary

	Chapter 3 Windows Shell Scripting Basics
	Project Preview: The Fortune Teller Game
	More Scripting Basics
	Documenting Your Scripts with Comments
	Creating a Script Template

	Mastering Command Redirection
	Examining Data Input and Output
	Using One Command's Output as Another Command's Input
	Generating Reports
	Creating Error Logs

	Conditional Command Execution
	Chaining Two Commands Together
	Setting Up Conditional Command Execution
	Grouping Commands

	Back to the Fortune Teller Game
	Designing the Game
	Establishing the Execution Environment
	Creating a Welcome Screen
	Building the Story Line
	Collecting the Player's Question
	Creating an Exit Process
	Generating Random Answers
	Displaying the Fortune Teller's Prediction
	Replaying the Game
	The Final Result

	Summary

	Chapter 4 Storing and Retrieving Information in Variables
	Project Preview: The Story of Buzz the Wonder Dog
	Passing Data to Scripts at Execution Time
	Handling Large Numbers of Arguments
	Handling Arguments That Include Blank Spaces

	Working with Variables
	Accessing Environment Variables
	Creating, Modifying, and Deleting Script Variables

	Back to "The Story of Buzz the Wonder Dog"
	Designing the Game
	Configuring the Windows Command Console
	Building the Welcome Screen
	Providing the Reader with Instructions
	Collecting Key Story Elements from the Reader
	Using Variable Substitution to Write the Story
	The Final Result

	Summary

	Chapter 5 Applying Conditional Logic
	Project Preview: The Guess a Number Game
	Applying Conditional Logic to Control Script Execution
	Working with the IF Statement
	Providing for an Alternative Course of Action
	Determining Whether a Variable Already Exists
	Keeping an Eye Out for Errors
	Checking the Windows Shell Version
	Looking for Files and Folders
	Reversing the Logic of Conditional Tests

	Building Multi-Line IF Statements
	Creating Advanced Conditional Logic Tests
	Performing Different Kinds of Comparisons
	Back to the Guess a Number Game
	Designing the Game
	The Final Result

	Summary

	Chapter 6 Creating Loops to Process Collections of Data
	Project Preview: The Six-Million-Dollar Quiz
	Creating Loops
	Looping Through String Contents
	Looping Through Command Output
	Processing Collections of Files
	Processing Collections of Folders
	Reading Text Files
	Iterating a Specified Number of Times

	Back to the Six-Million-Dollar Quiz
	Using Pseudo Code
	Designing the Game
	The Final Result

	Summary

	Chapter 7 Creating Procedures and Subroutines
	Project Preview: The Rock, Paper, Scissors Game
	Reorganizing Your Windows Shell Scripts
	Understanding Labels
	Defining Subroutines

	Improving Script Organization with Procedures
	Setting Up Internal Procedures
	Creating External Procedures
	Using Procedures to Localize Variable Access
	Tunneling Data Out of Your Procedures

	Back to the Rock, Paper, Scissors Game
	Using a Flowchart as a Script Development Tool
	Translating Flowchart Design into Script Requirements
	The Final Result

	Summary

	Chapter 8 Debugging and Error Handling
	Project Preview: The Tic-Tac-Toe Game
	Understanding Windows Shell Script Errors
	Syntax Errors
	Run-Time Errors
	Logical Errors

	Examining Windows Shell Script Error Messages
	Common Syntax Errors
	A Typical Run-Time Error
	A Typical Logical Error

	Examining Different Ways of Dealing with Errors
	Educating Your Users
	Tracing Logic Flow within Scripts
	Command Error Checking
	Logging Error Messages
	Displaying Error Messages

	Creating Scripts That Return a Custom Exit Code
	Other Things to Look Out For
	Insufficient Authority
	Dealing with Scripts That Are Difficult to Read and Understand
	Working with Windows Commands
	Managing Arguments and Variables
	Handling Files and Folders
	Taking Precautions with Loops
	Keeping Procedures Straight

	Back to the Tic-Tac-Toe Game
	Designing the Game
	The Final Result

	Summary

	APPENDIX A Windows Shell Scripting Administrative Scripts
	Working with Network Drives
	Account Administration
	Disk Defragmentation
	Scheduling Script Execution
	The AT Command
	The Scheduled Task Wizard
	Starting the Task Scheduler Service
	Running the Scheduled Task Wizard

	Creating a Chat Script
	Adding a Graphical Interface
	Working with Third-Party Applications

	APPENDIX B What's on the CD-ROM?
	Windows Shell Scripting Examples
	Shell Scripting Editors
	JGsoft EditPad Lite
	JGsoft EditPad Pro

	APPENDIX C What Next?
	Recommended Reading
	Locating Internet Resources

	Glossary
	Index
	Team DDU

