
Image Local Polynomial Approximation (LPA) and its

Applications.

(Draft, March 2011)

Guennadi Levkine (email: hlevkin@gmail.com)

Vancouver, Canada.

Abstract.

The original treatment of image local polynomial approximation in blocks 3x3, 4x4, 5x5 and 7x7 is

proposed. An intention to demonstrate using of an alternate approach for different problem solving. Many

new convolution kernels are presented. Difference with Haralick facet model is the use of ordinary

polynomials of two variables instead of orthogonal polynomials, in considering rounded and cutting blocks

in 3D polynomial approximation.

Key words: Local Polynomial Approximation, image processing, image filtration, gradient, image resize,

video filtration, image convolution, convolution mask, noise filtration, facet model

1. Introduction.

Among different approaches to image processing some of the most popular are:

- Spectral transformation of images or local parts (blocks)

- Convolutions of images with square matrices of size 3x3, 4x4, 5x5, 7x7, 8x8. These square matrices are

called convolution kernels.

In the first approach it was described in many books and articles (look [1], [2], [3], [4] for example). It is

based on the theory of orthogonal/unitary transformations.

For the second approach we have to build convolution kernels of small sizes 3x3, 4x4, 5x5 and so on for

problem solving. Usually it is done empirically. But for development of such kernels it is possible to locally

approximate image intensity by polynomials of two variables (rows and columns) and after that use these

polynomial coefficients for different problem solving.

Here we give kernels for calculation of polynomial coefficients of different size and shape. We demonstrate

noise filtration, and gradient estimation, Laplace operator kernels, resizing, temporal video filtration and

more by the use of coefficients. The coefficients are calculated using Local Polynomial Approximation

(LPA) method, which will be described here.

2. Two dimensional polynomial approximations.

 In this method of LPA for every pixel we calculate 2D polynomial, which approximate image intensity in

some block around the pixel. A common view for such a polynomial is

ji
n

ji

ij yxcyxI 



0,

),(

For the coefficient calculation we use standard Least Square Fit method. Common block sizes are

3,4,5,7,8,9.

For n=0, n=1 , n=2, n=3, n=4 we use special notation:

),(0 yxI

yxyxI **),(1  

mailto:hlevkin@gmail.com

  22

2 ******, yyxxyxyxI  

  322322

3 ************, yyxyxxyyxxyxyxI  

432234

34 ********),(),(yyxyxyxxyxIyxI  

In this work we will use empirical “Interpolation Level” parameter for estimation to how close our

approximation to the 2D interpolation of the image. This parameter is calculated by the formula

kxelsInBlocNumberOfPi

alInPolynomiefficientsNumberOfCo
IL 

If this parameter is close to 1, it means that the approximation is close to an interpolation.

3. Linear local approximation in 3x3, 4x4 and 5x5 blocks.

In this case we use simple linear approximation

  yxyxI **,1  

 For 3x3 blocks estimation of  ,, coefficients is obvious. Interpolation level is 3/9= 1/3 and

convolution kernels for their calculation are:

















111

111

111

9

1
:























101

101

101

6

1
:





















111

000

111

6

1
:

For 4x4 blocks Interpolation level is 3/16 and convolution kernels are:



















1111

1111

1111

1111

16

1
:



























3113

3113

3113

3113

80

1
:



























3333

1111

1111

3333

80

1
:

For 5x5 blocks Interpolation level is 3/25 and convolution kernels are:























11111

11111

11111

11111

11111

25

1
:

































21012

21012

21012

21012

21012

50

1
:































22222

11111

00000

11111

22222

50

1
:

When we calculate kernels for coefficient estimation, all the pixels in the block have the same weight. But

it is possible to use different pixel weights: higher for pixels close to block center. We consider here weight

matrix (Rosenfeld’s weight matrix)

















121

222

121

and calculate for it coefficients  ,, . It was found that corresponding kernels are:

:

















121

242

121

16

1
 :























101

202

101

8

1
  :















 

121

000

121

8

1

These kernels are well known and widely used, kernel for  is used for noise filtration, kernels for  , ,

called Sobel’s kernels, and are used for gradient estimation. We named kernel  as Rosenfeld’s kernel.

This approach (using pixel weight matrices) gives opportunities for creating kernels. It is convenient for

different tasks in image processing. For example it will be interesting to consider the following weight

matrix

2

1
121

2

1
122221

2224222

122221

2

1
121

2

1

Center of it equals to Rosenfeld’s weight matrix 3x3.

4. Quadric polynomial approximation in 3x3 block.

In this important case we use approximation

  22

2 ******, yyxxyxyxI  

Interpolation level is 6/9 = 2/3, two times stronger then linear LPA.

Convolution kernels for  ,,,,, coefficient calculation are:























121

252

121

9

1
:























101

101

101

6

1
:





















111

000

111

6

1
:























121

121

121

6

1
:





















101

000

101

4

1
:























111

222

111

6

1
:

This LPA saves mush more information about the image when compared with linear LPA. First of all we

see non-standard convolution kernel for coefficient . It has negative elements. Usually for estimation of

 kernels with positive elements are used. Coefficients  , have the same kernels as in linear LPA.

Coefficients  , detect vertical and horizontal ridges / valleys on image. Coefficient  detects saddle

points.

5. Quadric Polynomial approximation in 5x5 block.

In this other important case we use approximation

  22

2 ******, yyxxyxyxI  

Interpolation level is 6/25.

Convolution kernels for  ,,,,, coefficients calculation are:



























1327213

21722177

72227227

21722172

1327213

175

1
:

































21012

21012

21012

21012

21012

50

1
:































22222

11111

00000

11111

22222

50

1
:

































21212

21212

21212

21212

21212

70

1
:































42024

21012

00000

21012

42024

50

1
:

































22222

11111

22222

11111

22222

50

1
:

Interpretation of coefficients is the same as for 3x3 quadric LPA. Difference is only in the block size.

6. Cubic Polynomial approximation in 5x5 block.

In this interesting case we use approximation

  322322

3 ************, yyxyxxyyxxyxyxI  

Interpolation level is 10/25 = 2/5.

Convolution kernels for  ,,,,,,,,, coefficients calculation are:



























1327213

21722177

72227227

21722172

1327213

175

1
:

































314404431

5620625

176806817

5620625

314404431

420

1
:































31517531

4462686244

00000

4462686244

31517531

420

1
:

































21212

21212

21212

21212

21212

70

1
:































42024

21012

00000

21012

42024

50

1
:

































22222

11111

22222

11111

22222

70

1
:

































12021

12021

12021

12021

12021

60

1
:































42424

21212

00000

21212

42424

140

1
:

































42024

21012

42024

21012

42024

140

1
:































11111

22222

00000

22222

11111

60

1
:

Kernels for  ,,, are the same as corresponding kernels for quadric LPA.

We see here new non-trivial convolution masks for coefficients  , (gradient coefficients). They are the

same as coefficients in tetra LPA with polynomial power equals 4.

Here we have new coefficients  ,,, . It will be interesting to find their geometrical interpretation and

possible use.

7. Applications to noise filtration.

Noise filtration of images using Local Polynomial Approximation (LPA) based on assumption that the

image can be presented by set of formulas (one formula per pixel)

),(),(),(yxnyxIyxI ini 

Here),(yxI is an observable image, which is the sum of “ideal” image),(yxI ini without noise and

),(yxn , which is the noise in pixel with coordinates),(yx .

We assume that “ideal” image can be represented locally by set of polynomials. But it is not an analytic

function: changes in one part of image are very often not influential to other parts of the image. We also

assume that the noise),(yxn is Gaussian with 0 mean value and standard deviation),(yx which can

be vary from pixel to pixel. We also have to make assumption about the power of polynomial n, which can

be 0, 1, 2, 3, 4, 5.

If we use LPA, that means that coefficient “ ” for a selected pixel is a LSF approximation of image

brightness for this pixel:

)0,0(iniI

It means that we can use for filtration kernels for the estimation of coefficient  in polynomial

approximation.

For example if we make assumption that in blocks of 3x3 images can be described by linear polynomials,

that means we can use the kernel

















111

111

111

9

1

for noise filtration.

If we think that the best is a weighted (by Rosenfeld) linear approximation we have to use Rosenfeld’s

kernel

















121

242

121

16

1

If locally image is more complicated, we can use for 3x3 blocks square LPA:

  22

2 ******, yyxxyxyxI  

It means that noise filter should use kernel























121

252

121

9

1

Noise filtration based on quadric 5x5 LPA should use the kernel:



























1327213

21722177

72227227

21722172

1327213

175

1

Noise filtration based on tetra 5x5 LPA should use the kernel:

































1931243119

31561745631

2417442917424

31561745631

1931243119

825

1

And so on.

Filtration will be the best only in the case when the assumption about polynomial power is correct,

polynomials with this power will describe the image properly. We need special investigation to find proper

power of polynomial for any given image.

8. Exactly locally approximated images.

Obviously that image is a 3x3 linear LPA, if after filtration using kernel

















111

111

111

9

1
 (8.1)

the image does not change.

Similarly image is 3x3 quadratic LPA if after filtration using kernel























121

252

121

9

1
 (8.2)

the image does not change.

For any image it is possible to get linear LPA image most close to the first one by multiple filtration of it

until result will not change, Let’s use standard grey Lenna image from [10] (it is on Picture 1). After

around 550 repetitions of filtration with kernel (8.1) result image does not change. It is in Picture 2. We see

strong degradation of image after such a transformation. The difference between initial and transformed

image is in Picture 3.

Now we show result of using kernel (8.2). After around 70 repetitions of filtration with kernel (8.2) we see

that result image stops changing. It is in Picture 4. Compare this image with initial Lenna we can find only

small changes in sharp edges. Difference of Lenna with result image is in picture 5.

We conclude that image can be dividing onto three parts:

- part which is linear LPA (regular linear pixels)

- part which is quadric LPA (regular quadric pixels)

- part which needs more complex approximation(complex pixels)

We did a program which for every point estimates the power of LPA. We generate image in which every

linear point is black, every quadric point is grey, and every complex approximated point is white. The

calculation result is in Picture 6.

Similar investigations can be conducted using 5x5 LPA convolution matrices: standard and rounded. In this

case image is divided onto 4 parts:

- linear LPA pixels

- quadric LPA pixels

- tetra LPA pixels

- complex pixels

For Lenna image results are similar to previous one with some differences.

This pixel division can be used for fine image processing, where we first define the type of pixel and select

the proper kernel.

9. Gradient calculations.

 Gradient of function),(yxI is defined as a vector with coordinates:

x

yxI
yxGx






),(
),(;

y

yxI
yxGy






),(
),(;

In polynomial approximation the components of gradient are:

xG yG

Using different power of the approximating polynomial and different kernel mask we can generate many

different convolution kernel matrices for gradient estimation. Here we summarise masks for 3x3, 4x4, and

5x5 blocks for gradient calculations.

Linear and quadric 3x3 LPA:























101

101

101

6

1
:xG





















111

000

111

6

1
:yG

Rosenfeld weighted Linear LPA (Sobel kernels):























101

202

101

8

1
:xG















 

121

000

121

8

1
:yG

Linear and quardic 5x5 LPA:

































21012

21012

21012

21012

21012

50

1
:xG































22222

11111

00000

11111

22222

50

1
:yG

Cubic and tetric 5x5 LPA:

































314404431

5620625

176806817

5620625

314404431

420

1
:xG































31517531

4462686244

00000

4462686244

31517531

420

1
:yG

In appendices 2 and 3 there are gradient kernels for 5x5 rounded cubic LPA and for 5x5 corner-cutting

cubic LPA.

The best gradient estimation should be started from pixel type estimation: linear LPA or quadric LPA or

tetra LPA. And only after can one calculate the gradient, using the corresponding kernel. It will be the best

estimation of the gradient.

10. Laplace operators for 3x3 and 5x5 blocks.

 Laplace operator for function),(yxI is defined as a scalar field:

2

2

2

2),(),(

y

yxI

x

yxI










In polynomial approximation Laplace operator is equals to

  *2*2  .

Here we give examples of corresponding convolution kernels for 3x3 and 5x5 blocks.

Laplace operator for quadric 3x3 LPA:























212

141

212

3

1

Laplace operator for quadric 5x5 LPA:

































41014

12321

03430

12321

41014

35

1

It will be interesting to calculate Laplace operator convolution matrix for 5x5 tetra LPA.

11. Applications to image down-sampling.

Here we consider image Local Polynomial Approximation (LPA) method for a special case of resizing of

the images : reducing image size twice for width and height. Usually it is called “down-sampling”.

 Standard down-sampling algorithm is based on substitution of 2x2 blocks by one pixel. Value of a pixel is

a mean value of pixels in 2x2 block.

LPA based down-sampling uses 4x4 blocks for calculation of a coefficient “ ”. After that internal 2x2

block in 4x4 is substituted by pixel with “ ” value.

If we use cubic LPA, that convolution matrix for estimation of “ ” equals



























3223

2772

2772

3223

32

1
:

If we use tetra LPA with polynomial power equals 4, that convolution matrix for estimation of “ ” equals



























1991

981819

981819

1991

256

1
:

Up-sampling is more complicated and needs in special investigation.

12. Applications to grey scale image compression.

There are many ways that are possible for using of Local Polynomial Approximation (LPA) in image

compression. Here we shortly described one simple method, based on division of image onto 4x4 or 8x8

blocks.

For every block we do the following:

First of all we estimate coefficients of linear LPA

  yxyxI **,1  

and test the block on acceptance of this approximation. If exactness is acceptable, we mark this block as

linear and save),,( .

If block is not linear we use quadratic LPA

  22

2 ******, yyxxyxyxI  

and calculate and save coefficients),,,,,( .

As a result we have 6 sparse (except) small matrices with coefficients. We save them using lossless

compression.

After that for every block we create a residual block as a difference of block and its LPA prediction. We

compress it using DCT, quantization, zigzag rearrangement and entropy encoding.

13. Polynomial approximation in 3x3x3 cube and spatial temporal video filtration.

 Here we consider image LPA method for video streams. Let us take 3 consecutive frames from the stream

for the same scene.

In the middle frame we select one pixel and create a 3x3 pixel cube around it. For that in the left and right

frames we find 3x3 square blocks which corresponds to 3x3 block in the middle frame. We can use for this

any search algorithm for block matching for block motion estimation.

We have in result 3x3x3 cube of pixels, comprised from three vertical 3x3 square blocks, one block from

one frame. Pixels in the left square block have usual x,y coordinates and common time coordinate equals -1.

Pixels in the middle block have time coordinate t=0 and pixels in the right block have time coordinate t=1.

For approximation of pixels values in this cube we select quadric polynomial

222 ************),,(ttyytxyxxtyxtyxI  

For this 3 Dimensional LPA interpolation level equals 10/27.

Here convolution kernels are cubes not squares. We present each of them by three squares: one for the left

frame, one for the middle frame and one for the right frame. And for every convolution cube we give a

normalization multiplier.

Coefficient : normalization multiplier
27

1 , convolution cube for coefficient calculation:























212

141

212

















141

474

141























212

141

212

Coefficient  : normalization multiplier
18

1 , convolution cube for coefficient calculation:























101

101

101























101

101

101























101

101

101

Coefficient : normalization multiplier
18

1 , convolution cube for coefficient calculation:





















111

000

111





















111

000

111





















111

000

111

Coefficient : normalization multiplier
18

1 , convolution cube for coefficient calculation:























111

111

111

















000

000

000

















111

111

111

Coefficient : normalization multiplier
18

1 , convolution cube for coefficient calculation:























121

121

121























121

121

121























121

121

121

Coefficient : normalization multiplier
12

1 , convolution cube for coefficient calculation:





















101

000

101





















101

000

101





















101

000

101

Coefficient : normalization multiplier
12

1 , convolution cube for coefficient calculation:























101

101

101

















000

000

000























101

101

101

Coefficient : normalization multiplier
18

1 , convolution cube for coefficient calculation:























111

222

111























111

222

111























111

222

111

Coefficient : normalization multiplier
12

1 , convolution cube for coefficient calculation:





















111

000

111

















000

000

000





















111

000

111

Coefficient : normalization multiplier
18

1 , convolution cube for coefficient calculation:

















111

111

111























222

222

222

















111

111

111

For video noise filtration convolution cube for coefficient  calculation can be used.

14. Conclusions.

Local polynomial approximation (LPA) of images is a very powerful method for the solving of different

problems in image processing. Pixel classification onto regular and complex pixels is useful for image

processing without degradation.

It is regrettable that this approach is rarely and incompletely described in literature.

15. Future directions.

First of all, the question of how to process parts of the image with complex pixels is very important and

needs a special investigation.

Second, it will be useful to calculate all kernels for LPA coefficients in blocks 5x5, 7x7 and 8x8 for

polynomials up to power equals 5. It also will be interesting to get LPA coefficients for rounded 4x4 blocks.

Calculation of 3D LPA coefficients with different convolution cube size, geometry and polynomial power

will be useful for video stream filtration.

Third, to review the possible LPA using in different applications in image/video processing and

compression.

Fourth, it will be interesting to investigate other function types for local image approximation. For example,

investigate functions which are described by the formula

yexd

ycxba
yxF

**1

**
),(






And by the formula

yhxg

yfyxexdycxba
yxG

**1

),(

22






Because we are using here rational polynomial functions, it can be called LRA (local rational

approximation).

We used for LPA two discrete functions



































21012

21012

21012

21012

21012

),(yxX

































22222

11111

00000

11111

22222

),(yxY

But it possible to use other couples of functions of two variables

),();,(yxVyxU

for local approximation. Image brightness is represented by formula

...),((*),(*),(*),(*),(*),(*),(2  yxVyxVyxUyxUyxVyxUyxI 

For example, it may be interesting use of step functions



































32023

32023

32023

32023

32023

),(yxS x

































33333

22222

00000

22222

33333

),(yxS y

Appendix 1. Cubic polynomial approximation in 4x4 block.

Here we give convolution kernels for coefficients calculation using standard 4x4 mask

Corresponding polynomial is:

  322322

3 ************, yyxyxxyyxxyxyxI  

Interpolation level is 10/16=5/8. Kernels for coefficients calculations are:



























3223

2772

2772

3223

32

1
:



























9339

3113

3113

9339

400

1
:



























512125

415154

415154

512125

96

1
:



























5445

12151512

12151512

5445

96

1
:



























1111

1111

1111

1111

64

1
:



























1111

1111

1111

1111

64

1
:



























1331

1331

1331

1331

192

1
:



























1111

3333

3333

1111

192

1
:



























3333

1111

1111

3333

192

1
:



























3113

3113

3113

3113

192

1
:

Appendix 2. Linear, quadric and cubic LPA in rounded 5x5 block.

Here we give convolution kernels for coefficients calculation using geometry mask























###

#####

#####

#####

###

Linear LPA polynomial is:

yxyxI **),(1  

Interpolation level is 1/7. Kernels for coefficients calculations are:























111

11111

11111

11111

111

21

1
:

































101

21012

21012

21012

101

34

1
:































222

11111

00000

11111

222

34

1
:

Quadric LPA polynomial is

  22

2 ******, yyxxyxyxI  

Interpolation level is 2/7. Kernels for coefficients calculations are:































14314

1437543714

35471543

1437543714

14314

335

1
:































202

21012

00000

21012

202

36

1
:

































101

21012

21012

21012

101

34

1
:































222

11111

00000

11111

222

34

1
:

































297829

2309119891230

190131238131190

2309119891230

297829

4690

1
:





























230190230

29911319129

7819823819878

29911319129

230190230

4690

1
:

Cubic LPA polynomial is:

  322322

3 ************, yyxyxxyyxxyxyxI  

Interpolation level is 10/21. Kernels for coefficients calculations are:































14314

1437543714

35471543

1437543714

14314

335

1
:































202

21012

00000

21012

202

36

1
:

































404

236206223

218408421

236206223

404

300

1
:































232123

46284624

00000

46284624

232123

300

1
:

































297829

2309119891230

190131238131190

2309119891230

297829

4690

1
:





























230190230

29911319129

7819823819878

29911319129

230190230

4690

1
:

































202

111401411

3180183

111401411

202

300

1
:































11311

21418142

00000

21418142

11311

300

1
:































242

63636

00000

63636

242

100

1
:

































606

23032

46064

23032

606

100

1
:

Appendix 3. Linear, quadratic and cubic LPA in edge cutting 5x5 block.

Here we give convolution kernels for coefficients calculation using geometry mask























#

###

#####

###

#

Linear LPA polynomial is:

yxyxI **),(1  

Interpolation level is 3/13 (low). Kernels for coefficients calculations are:























1

111

11111

111

1

13

1
:





























0

101

21012

101

0

14

1
:





























2

111

00000

111

2

14

1
:

Quadric LPA polynomial is

  22

2 ******, yyxxyxyxI  

Interpolation level is 6/13 (middle). Kernels for coefficients calculations are:

































1

121

12321

121

1

11

1
:



























0

101

00000

101

0

4

1
:





























0

101

21012

101

0

14

1
:





























2

111

00000

111

2

14

1
:

































50

1716617

3588923889358

1716617

50

2618

1
:





























358

178917

5016623816650

178917

358

2618

1
:

Cubic LPA polynomial is:

  322322

3 ************, yyxyxxyyxxyxyxI  

Interpolation level is 10/13 (high). Kernels for coefficients calculations are:

































1

121

12321

121

1

11

1
:



























0

101

00000

101

0

4

1
:

























0

000

18081

000

0

12

1
:































1

080

00000

080

1

12

1
:

































50

1716617

3588923889358

1716617

50

2618

1
:





























358

178917

5016623816650

178917

358

2618

1
:

























0

000

12021

000

0

12

1
:































1

020

00000

020

1

12

1
:



























0

121

00000

121

0

4

1
:





























0

101

02020

101

0

4

1
:

References

[1] A. Rosenfeld, “Picture Processing for Computer”, Academic Press, NY, 1969

[2] W. Pratt “Digital Image Processing”, Wiley-Interscience, 2007

[3] M. Sonka, V. Hlavac, R. Boyle “Image processing, analysis and Machine Vision”,

[4] K. Castleman, Digital Image Processing, Prentice-Hall, 1979

[5] Handbook of Image and Video Processing, editor Al Bovik, Elsevier, 2005

[6] A.M. Tekalp, Digital Video Processing, Prentice-Hall, 1995

[7] R. Haralick, “7.3. The Digital Step Edge”, NASA report

[8] Quang Ji, R. Haralick, “Efficient facet edge detection and quantitative performance evaluation”, Pattern

Recognition 35 (2002), 689-700

[9] R. van den Boomgaard, “The image Facet model”, Informatics Institute, University of Amsterdam

[10] www.hlevkin.com/TestImages/lenna.bmp

Picture 1. Lenna image

Picture 2. Linear 3x3 approximated Lenna image

Picture 3.Difference of Picture 1 and Picture 2, multiplied by 2

Picture 4. Quadratic 3x3 approximated Lenna.

Picture 5. Difference between Picture 1 and Picture 4, multiplied by 4

Picture 6. Segmentation of Lenna image.

